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Abstract The charge transport in the modified DNA model is studied by taking into

account the factor of solvent and the effect of coupling motions of nucleotides. We report

on the presence of the modulational instability (MI) of a plane wave for charge migration

in DNA and the generation of soliton-like excitations in DNA nucleotides. By applying the

continuum approximation, we show that the original differential-difference equation for the

DNA dynamics can be reduced to a set of three coupled nonlinear equations. The linear sta-

bility analysis of wave solutions of the coupled systems is performed and the growth rate of

instability is found numerically. We also investigate the impact of solvent interaction. The

solvent factor introduces a new behavior to the wave patterns, modifying also the intrinsic

properties of localized structures. In the numerical simulations, we show that the solitons

exists when taking into account the effect of solvent and confirms an highest propagation

of localized structures in the systems. The effect of solvent forces introduces a robustness

behavior to the formed patterns, reinforcing the idea that the information in the DNA model

is confined and concentrated to specific regions for efficiency. We also show that the local-

ized structures can be disappeared with the highest value of solvent factor and thereafter the

information within the molecule is not perceptible or not transmitted to another sites.
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1 Introduction

Charge transfer through biomolecular systems is one of the most promising ongoing

investigations in biophysics and nanotechnology. So, understanding the charge-transport

mechanisms is essential for the development of molecular electronic devices. In this con-

text, the study of different modes of charge transfer, both theoretical and experimental, is

devoted to illumination of the mechanisms of charge transport [1–3]. In this context, Cher-

stvy et al. [4] studied the non-linear effect in charge transport. Sun-Yong et al. [5] studied

the effect of the base pair on the charge transport in double-strand DNA. The authors proved

that the charge transport decreases when the base pairs are opened. Dirk et al. [6] proved

that the soliton is responsible for the energy transfer and localization. Toko et al. [7] inves-

tigated the propagation of localized structures in a DNA model, which takes into account

helicity and solvent interaction by using the Peyrard and Bishop model. The authors showed

that the solvent interaction term modulates and increases the width of the pulses [7]. In

recent years, localized and nonlinear excitations [8–16], (solitons, discrete breathers, intrin-

sic localized modes) have been drawing increasing attention and are widely believed to be

responsible for several effects in molecular chains, such as charge and thermal conductiv-

ity, energy transfer, and localization. A particular interesting discrete system that support

solitons and localized modes is desoxyribonucleic acid, or DNA. In this system, localiza-

tion of energy has been suggested as a precursor of the transcription bubble [9], and moving

localized oscillations as a method of transport of information along the double strand [12].

In recent years, due to experiments on single molecules of DNA, models with two and

more degrees of freedom have been introduced with insistence on the radial and torsional

aspects. We take as an example Barbi, Cocco and Peyrard [12], and later improved by

Cocco and Monasson [13, 14]. In recent research, localized structure waves are paid too

much attention while studying DNA dynamics in the presence of some perturbations. The

impact of damping and thermal fluctuations on lattice soliton patterns due to the presence of

thermal noise were studied by Arévalo et al. [15, 16] and Ekobena et al. [17], who demon-

strated a gradual increase energy soliton pattern due to the presence of thermal noise in

the bi-exciton molecular chain. Kalosakas et al. [18] shows that the thermal fluctuations do

not destroy completely the soliton localization in biological molecule. Many authors, for

example Samora-Sillero et al. [19], have shown that the most standard mechanism through

which bright solitons or solitary wave structures appear is through the activation of modu-

lational instability (MI) of plane waves. Fialko and Laklno [20, 21]has studied the transport

of charge and hole along the short DNA molecule by using the Peyrard–Bishop–Holstein

(PBH) model [22, 23]. These authors investigate the impact of long-range transfer of charges

through the DNA molecule.

Then, Kornyshev et al. [24] studied the process of denaturation in a DNA model by

nonlinear effects of torsional deformations. Hidayat et al. [25] investigated the impact of

the viscosity in the process of denaturation. The result obtained showed how at a certain

temperature the increase of the viscosity coefficient will decrease the melting temperature.

The way that the solvent factor affects the transport of charges via MI, in the DNA model

with the vibrational and rotational coupled motions, is the main focus of the present work.

This work is organized as follows. In Section 2, we propose the model and we derive the

equations of motion. In Section 3, linear analysis is also studied in this part and predictions

for some localized structure formation. The validity of this analysis is proved by numerical

simulations in Section 4 where we will point out the effect of solvent interaction, which will

lead to a conclusion in Section 5.
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2 Model and equations of motion

Structural dynamics of DNA base-pair is described by [26].

H1 =
∑

j

{

p2
wj

2m
+

p2
λj

2m
+

p2
φj

2I
+

p2
θj

2I

}

+
∑

j

{

k

2
[(wj − wj−1)

2 + (λj − λj−1)
2]

}

+
∑

j

{

ξ

2
[(φj − φj−1)

2 + (θj − θj−1)
2]

}

+
∑

j

U(yj ) +
∑

j

Vsol(yj ). (1)

where

wj =
uj + vj√

2

λj =
uj − vj√

2
, (2)

The displacement of the H bond between two adjacent discs j , used in this present work,

can be written as [26]

yj = (uj − vj + d + 2r) − r(cos θj + cos φj ). (3)

In the above equation, pwj
(or pλj

) and pφj
(or pθj

) are the linear and angular moments,

respectively. The parameters uj and vj represent the transverse and the longitudinal dis-

placements from equilibrium (stretching) of the base-pair at site j and the rotational motions

characterized by θj and φj [26]. We consider that the mass m and the inertia of moment

I are the same value for all nucleotides, and also the constants k and ξ . In this present

work, we consider only the artificial and the homogeneous DNA molecule. Consequently,

all bases pair are identical. The Morse potential is given by [27].

U(yj )=Dj

[

exp
(

−a(yj − y0)
)

−1
]2 =Dj

[

exp
(

−a
√

2λj −g(φj , θj )
)

−1
]2

. (4)

where Dj is the energy of dissociation of the base pair and a is the parameter with dimension

of inverse length, y0 = 2r + d is the equilibrium point (distance between the centers of the

discs), and the function g(φj , θj ) is given by

g(φj , θj ) = r(cos φj + cos θj ). (5)

Since all biological molecules like DNA are always in contact with a thermal bath, the above

extended PB model will be coupled by the solvent interaction term [28–30]:

Vsol(yj ) = Djfs

(

tanh

(√
2λj − g(φj , θj )

ls

)

− 1

)

, (6)

The term resulting from the solvent has the effect of modulating the amplitude of the soliton

fs and by a term ls setting the range of this potential. All these external factors contribute to

increase the energy and the charge. In the following, the above extended PB model will be

coupled to the excitons. Thus, the Hamiltonian of excitons for the system can be written as.

H2 = −
∑

j
V

(

B+
j Bj+1 + B+

j Bj−1,
)

(7)

In this Hamiltonian, B+
j and Bj are creation and annihilation operators, respectively, for

charge carrier at the j th base pair of the double strand, and V represents the coupling trans-

fer integral between � orbital at adjacent base pairs. The simplest way to take into account
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the impact of charge–lattice interaction is through a linear coupling of charge’s on-site

energy with the displacements λj , as proposed in Holstein model [22, 23]. So that the

Hamiltonian interaction of the system can be expressed as:

H3 =
∑

j
χλjB

+
j Bj . (8)

where χ is the coupling vibrational and rotational constant. The equations of motion are in

the Appendix.

3 MI analysis and DNA wave patterns

In order to perform the linear stability analysis of system (57)–(59), we assume that:

ϕ = ϕ0 exp i(kx − w0t),

λ = λ0,

ψ = ψ0 exp i(kx − w0t), (9)

with real constants w0, λ0, ψ0 and ϕ0 is a complex constant, k and w0 are wave number and

frequency, respectively, of the system without perturbation. Introducing the above relation

into (57)–(59), we get:

w2
0 − w0 + Q′ = 0. (10)

where

Q′ = −
(

1

P1
(Q1 + Q2λ0χ) + Q3λ0 + Q4λ

2
0 + Q5 − βγλ3

0

)

. (11)

and

k4 − μk2 + μ1 = 0. (12)

where

μ = −
1

P 2
1

(1 + 2P1Q1 + 2P1Q2χλ0). (13)

μ1 =
[

−
P1μ

2
−

1

2P1

]2

+ Q3λ0 + Q4λ
2
0 + Q5 − βγλ3

0. (14)

Equation (10) has the following solution

w0+ =
1 +

√
1 − 4Q′

2
, (15)

w0− =
1 −

√
1 − 4Q′

2
, (16)

and (12) have fourth solutions giving by:

k2
+ =

μ +
√

μ2 − 4μ1

2
, (17)

k2
− =

μ −
√

μ2 − 4μ1

2
, (18)

Adding a small perturbation in above the equilibrium state, that is

ϕ = (ϕ0 + ǫϕ1) exp i(Kx + w0t),

λ = λ0 + ǫλ1,

ψ = (ψ0 + ǫψ1) exp i(Kx + w0t), (19)
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and using it in (57)–(59), with the help of condition (10), we write ϕ0 = a1 + ia2, ϕ1 =
u+iv, ψ0 = b1+ib2, ψ1 = u1+iv2 where we are taking a1 = a2 for the sake of simplicity,

and we separate imaginary and real parts as follows:

into (20–24), where K1 and � are the perturbation wave number and frequency, respectively.

cc is the complex conjugate. We arrive to five coupled linear equations

M(u01, v01, λ01, u10, v20)
T = 0. (30)

with M =
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−i(� + m45)
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⎞

⎟

⎟

⎟

⎟
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⎟
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⎟
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P1
∂2u

∂x2
−

∂v

∂t
+ Q1u + Q2a1λ1 = 0. (20)

P1
∂2v

∂x2
+

∂u

∂t
+ Q1v + Q2a2λ1 = 0. (21)

c0
∂2λ1

∂x2
+

∂2λ1

∂t2
+ (A − 2Bλ0 + 3Wgλ

2
0)λ1 + 2c2(ua1 + a2v) = 0. (22)

∂2u1

∂t2
+ 2w0

∂v2

∂t
− w2

0u1 + c1

(

∂2u1

∂x2
− 2K

∂v2

∂x
− K2u1

)

− Q3b1λ1 − Q3λ0u1

+ 2Q4λ0b1λ1 − 3b1λ
2
0γ λ1 − βγλ3

0u1 + Q5u1 = 0. (23)

∂2v2

∂t2
− 2w0

∂u1

∂t
− w2

0v2 + c1

(

∂2v2

∂x2
+ 2K

∂u1

∂x
− K2v2

)

− Q3b2λ1 − Q3λ0v2

+ 2Q4λ0b2λ1 − 3b2λ
2
0γ λ1 − βγλ3

0v2 + Q5v2 = 0. (24)

Then, we insert

u = u01 exp i(K1x − �t) + cc. (25)

v = v01 exp i(K1x − �t) + cc. (26)

λ1 = λ01 exp i(K1x − �t) + cc. (27)

u1 = u10 exp i(K1x − �t) + cc. (28)

v2 = v20 exp i(K1x − �t) + cc. (29)
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Fig. 1 Parameter of the non-linear dispersion relation (41) as function of wave-numberK1 for m = 300amu,

a = 4.41A◦−1, χ = 1.2eV A◦−1, D = 4.05eV , V = 0.05eV , k = 2.04, ξ = 2.04, r = 0.3A◦, I = 300amu,

ϕ0 = 10−3A◦−1
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where

m13 = Q2a1,

m23 = Q2a2,

m32 = 2c2a2,

m31 = 2c2a1,

m11 = −P1K
2
1 + Q1,

m45 = −c1KK1,

m33 = A − 2Bα0 + 3Wgα
2
0 − c0K

2
1 ,

m43 = −Q3b1 + 2Q4λ0b2 − 3βλ2
0γ b2,

m44 = −w2
0 − c1K

2
1 − c1K

2 − βλ3
0γ + Q3λ0 + Q5. (31)

The condition that (30) has a non-trivial solution requires its determinant to be zero. This

gives the eigenvalue equation:

�8 − P�6 − T �5 + M�4 + N�3 + R�2 + Z� + Q = 0. (32)

where

P = m2
11 + m33 + 2m44 − 4w2

0,

T = 4w0m45. (33)

N = w0(4m33m45 − 4m2
11m45). (34)
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Fig. 2 Growth rate and solutions of (27) for m = 300amu, a = 4.41A◦−1, χ = 1.2eV A◦−1, D = 4.05eV ,

V = 0.05eV , k = 2.04eV A◦−2, ξ = 2.04eV , r = 0.3A◦, I = 300amu, ϕ0 = 10−3A◦ −1
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M = 2m33m44 − 2m31m11m13 + m2
11(2m44 + m33 − 4w2

0)

+ m2
44 + 4m33w

2
0 − m2

45. (35)

R = 2m2
11m33m44 + 4m23m44m32m11 − m33m

2
44 − (m11m44)

2 + 8m11m31m13w
2
0

− m33m
2
45 − (m11m45)

2 − 4w2
0m

2
11m33. (36)

Z = w0m45(8m11m13m31 − 4m2
11m33). (37)

Q = 2m2
45m11m13m31 − m2

11m33m
2
45 − 2m11m13m31m

2
44 + m2

11m33m
2
45. (38)

To make sure that our system is stable, we have plotted the coefficients of (32) in Fig. 1,

as function of wave number K1. We also plot the solution of the (12) (see Fig. 2a, b) and the

growth rate of instability (see Fig. 2c). The MI gain G(�,K1)=|Im(K1(�))| is the largest

value among those corresponding to the various branches of the dispersion relation. The full

spectrum of the MI gain G(�,K1) was found from a numerical solution of the dispersion

(32). In Fig. 3, the corresponding gain is shown in tridimensional and surface plots against

the wavenumber K1 and the frequency of perturbation �. This is a first confirmation of the

possibility of MI in the system under our study. The major remark is that the dispersion coef-

ficient’s relation curve which oscillating motion. This behavior is due to the introduction

of the torsional movement and the solvent interaction factor. In context of charges trans-

port, the charges are confined in some specific sites under the influence of the oscillation

of the coefficients of (32). The charges can jump from one atom to another. The rotational

Fig. 3 MI integrated gain as a function of K1 and �: We observe two peaks if K1 ∈ [−45π; 72π ], which

correspond to the instability domains (see panel Fig. 3a), for m = 300amu, a = 4.41A◦−1, χ = 1.2eV A◦−1,

D = 4.05eV , ξ = 2.04eV , V = 0.05eV , k = 2.04eV , ξ = 2.04eV , r = 0.3A◦, I = 300amu, ls = 1 and

fs = 1. We noted that the two peaks become one common gain peak if K1 increases (see panel Fig. 3b).

This explains the phenomenon of MI in the system under our study
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movement can prevent the spreading of charges. Taking into account the solvent factor in the

DNA model, the energy can be trapped within the molecule, and consequently the charges

are stored in a site. There is no longer propagation or transfer of genetic information. The

gene that encoded the information may not copy properly. This explains some chromosomal

diseases. We have plotted in Fig. 2c the behavior of the growth rate of instability according

to the solvent interaction factor fs . When it is high, the peak of instability increases. The

solvent factor clearly fluctuates with instability. The solvent factor amplifies the instability

gain and increases the domains of instability within the molecule (see in Fig. 2c). There-

fore, in the presence of environment ions and the solvent molecules, DNA tries to minimize

its energy by altering its conformation. This in turn changes the charge transport properties

through DNA. Effectively, the interaction of sugar group with polar water molecules and

ions changes the electron cloud at the sugar group, which in turn can change the electron

cloud at the base. This result was suggested by Voityuk et al. [35]. Certain parameters used

in the present work have been borrowed in the references [22, 27, 31] and others have been

modified by the authors. We can see that: ls and fs tunes the width of the solvent barrier.

In fact, the potential Usol introduces a potential barrier in the Morse potential, materialized

by the factor fsD, as shown in Fig. 4. The potential barrier can prevent unstacked bases

re-closing when the H-bonds have been broken. In this case, lattice vibrations under charge

dynamics will remain well inside the Morse potential and will be prevented from jumping

the barrier. The charge can be trapped by the barrier and there is no longer propagation of

charges within the molecule. We can conclude that the water and the ions present in the

hydration of the DNA can affect the transport of charges. In fact, when λj < ls , the hydro-

gen bonds are broken and linked to solvent molecules. The plateau that appears for λj > ls
represents a situation where the unstacked regions are stabilized by free solvent, so that they

can no longer move in any direction (Fig. 4).

4 Numerical analysis of MI and DNA wave patterns

In order to check the validity of our analytical approach and to explore the formation of

localized modes with solvent interactions, we exactly solve the set of nonlinear coupled
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differential equations by using the standard Fourier transform method, with an integration

time step of 0.055s. In our numerical simulations, the initial conditions at time t = 0, are

coherently modulated plane wave of the form:

λn = λ0(1 + 0.01 cos(Kn)) cos(K0n),

ϕn = ϕ0(1 + 0.01 exp(iKn)) exp(iK0n),

ψn = ψ0(1 + 0.01 exp(iKn)) exp(iK0n). (39)

where λ0 = 0.0035 and ψ0 = ϕ0 = 0.002 are the initial displacement and the initial

probabilities for the charge transport. For our study, we use K = 0.71π and K0 = 0.55π

that are values are the wavenumbers for the perturbation and the carrier waves. These val-

ues correspond to a point belonging to the red region of the instability of Fig. 3. We use

these values of parameters, and we investigate the emergence of localized structures in our

model. Since a biological molecule like DNA is always in an environment (or heat bath)

with finite temperature, the state and properties of the soliton are affected by the temper-

ature and the medium. For this point of view, Tabi et al. [17, 18] and Mvogo et al. [32]

are already showed that, the perturbations of thermal noise do not destroy localized struc-

tures but contributes to enhancing and ensuring better transport of energy into the molecule.

Among the biomolecules that are likely to be used as electrical wire, those of DNA have

many advantages. They have the faculty of assembling spontaneously in ordered assem-

blies (self-assembly), of duplicating themselves, and of adopting varied conformations. The

electrons that gravitate around the atoms on the farthest orbits are very little constrained to

remain in this orbit. This idea also justifies the peak of charges observed in charges pat-

terns. The charge can be jumped from one atom to another after long times localization in

specific sites because the charges are inside the potential of interaction of solvent. However,

from a theoretical point of view, the solvent interaction plays an important role in its inter-

nal dynamics. So it is necessary to explore the role of solvent in the process of formation

Fig. 5 The manifestations of modulational instability of charge transport in the DNA model under the influ-

ence of charge-vibrational and rotational coupling constant without solvent interaction. The main remark is

that the emergence of the charges exists. These are propagated within the molecule. The numerical density of

these charges decreases in our model with the coupling factor. This was demonstrated in our previous work

[33]. The charges can migrate in all the directions of the wave propagation. The charges can occupy the pairs

of bases or can be trapped by pairs bases. This explains the existence of small radiations at certain sites of the

molecule. The constant values used are as follows: m = 300amu, a = 4.4A◦−1, D = 4.1eV , V = 0.1eV ,

r = 0.3A◦, I = 300amu, m = 300amu, with a χ = 0.6eV A◦−1 and b χ = 0.8eV A◦−1
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of localized structures. As is shown in Fig. 5, the initial condition tends to disintegrate dur-

ing the propagation, leading to a break-up of the wave into a pattern of wave trains. This

result confirms also our analytical predictions. We observe that the patterns do not saturate

and their amplitude decreases with decreasing time. The efficiency of transport of charges

in the study is affected by stretching of the molecule due to the solvent. Taking into account

the solvent factor, the energy is trapped within the molecule, and consequently the charges

are stored in a specific site for efficiency (see Fig. 5a and b). There is no longer propa-

gation or transfer of genetic information. The gene that encoded the information may not

copy properly. In fact, the ions under the effect of water can capture one, two, or three elec-

trons and is transformed into a more oxidizing molecule. The presence of a single electron

gives these molecules most of the time great instability and a high reactivity. In this case,

electrical charges circulate and induce energy reactions. They bring about rapprochements,

selective distances in time, and space. They modify the energy state of atoms, a state that

is transmitted to other atoms, which induces electromagnetic emissions. Consequently, the

transmission of information between the cells by the electrons and the photons is perturbed.

The solvent factor ls or fs can also lead to the loss of DNA fragments and thus, during

the repair process, the pairing of non-homologous chromosomes (which do not belong to

the same pair) leading to the loss or amplification of the chromosomes. We also note that

the charge patterns are sensitive to solvent interactions, as they get more localized with the

increasing of ls (see Fig. 6). We also note that the density of charges is highly localized

when the time increases, as is shown in Fig. 6b, where the red regions correspond to high-

est the concentration of charges. In this case, the charges are stored in specific domains and

the vital process like duplication of DNA molecule can be stopped (Fig. 7). Further increas-

Fig. 6 Localized structures with solvent interaction. Taking into account the interaction factor of the sol-

vent, the plane wave solutions should break in trains of localized structures. However, we note a new result

when increasing the interaction factor of the solvent fs—the localized structures also increase (see Fig. 6a,

b). We can conclude that the increase in the solvent factor must saturate the panel network with localized

structures. Therefore, the charge transfer can be interrupted by the solvent. So we find ourselves in a compe-

tition between the transport and the capture of the load by the solvent. The ions present in the hydration of

the DNA can affect the transport of the charges because the solvent can induce the ionization of the double

helices of the DNA. The genetic information within the molecule is thus disturbed. The vital phenomena that

exist in the molecule, namely transcription, translation, and even reproduction, can be damaged. This may

explain some chromosomal mutations. The values of parameters are m = 300amu, a = 4.41A◦−1, fixing

ls = 2A◦ and χ = 1.2eV A◦−1, I = 300amu, D = 4.1eV , V = 0.05eV , ξ = 2.04eV , k = 2.04 and

r = 2.3A◦ fs = 0.5 see Fig. 6a and fs = 0.70 see Fig. 6b
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Fig. 7 Diagrams of stability/instability. Black domains in stability/instability diagrams are regions of insta-

bility, the plane wave solutions are expected to break into trains of solitons (localized structures). The other

regions (white domains) are where the propagation of waves are expected to remain stable under the mod-

ulation. We have fixed ls = 1 and taking fs = 0.2 and fs = 0.5, one obtains, respectively, Fig. 7a and b.

In general, increasing fs and fixing ls , obviously increases instability domains. Fixing fs = 1 and taking

ls = 0.02 and ls = 0.05, one obtain the Fig. 7c and d. We note that increasing ls and fixing fs , obviously

increases the stability domains, i.e., reduces instability domains. The stability/instability dramatically modi-

fied by the solvent factor, both quantitatively and qualitatively (enlarged unstable wavenumber region). Other

parameters are m = 300amu, a = 4.41A◦−1, χ = 1.2eV A◦−1, D = 4.1eV , V = 0.05eV , k = 0.04eV = ξ ,

r = 0.3A◦ and I = 300amu

ing simultaneously fs and ls , has revealed another interesting feature, as patterns of charges

can be localized over a long time for the highest values of fs and ls . We also point out the

role of coupling constant and solvent interaction in the second case; we observe that the

localized structures tend to disappear (see Fig. 8b, and c). In general, the effect of solvent

dampens out the amplitude soliton in the wave patterns and tends to form peaks that seem to

enhance the information in the molecule. We note that the localized structures or excitations

disappear. In fact, the softness of the biomolecule can also indirectly cause damage to cells

by creating free radicals. Free radicals are extremely reactive molecules due to the pres-

ence of free electrons (ions), created by the separation of water molecules. They can form
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Fig. 8 Localized structures with simultaneous effect of coupling constant and solvent interaction for m =
300amu, a = 4.41A◦−1, fixing ls = 2A◦, I = 300amu, D = 4.0eV , V = 0.005eV, ξ = 2.04eV ,

k = 02.04eV , fs = 3, and r = 2.3A◦, with fs = 0.4 and χ = 1.2eV A◦−1 see Fig. 8a, fs = 0.4 and

χ = 0.4eV A◦−1 (see Fig. 8b and fs = 0.8 and χ = 0.75eV A◦−1 see Fig. 8c). We note that in the presence

of the solvent factor and the coupling constant, the density of charge can migrate in all the directions of the

wave propagation (see Fig. 8a), but from Fig. 8b, we observe that the density of charges finally vanishes

in small radiations when the coupling constant χ decreases. This result was suggested by Tabi et al. [34],

which considered the DNA model in the presence of thermal effect. By increasing fs and χ , the propagation

of charges is not possible or not perceptible (see Fig. 8c). In fact, after the H-bonds are broken due to the

water, the bases are maintained opened. Therefore many chemical reactions can occur within the molecule.

Consequently, the DNA molecule opens locally and exposes the base pairs at the surface. In this case, the

migration of charges is not perceptible. The localization and the propagation of charges in our model can

become chaotic and beyond our control when fs and χ increases. Consequently, the information within the

molecule and the DNA functions can be blocked, see Fig. 8c

compounds such as hydrogen peroxide or superoxide, which can induce chemical reactions

within cells. As a result of these chemical changes, the cells can undergo various structural

changes that lead to their death or transform their function. In this case, we have the non-

localization and the transfer of loads in the molecule. Then, the charges are mapped to the

atomic charges of system. The spreading of loads vanishes and the efficiency drops steeply

with the increasing of coupling χ and fs see patterns of Fig. 8.
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5 Conclusions

We discuss solvent interactions and the possibility of generation of soliton-like excitations

along the DNA model, based on a set of coupled nonlinear equations. The linear stability has

been studied under the continuum approximation and the emergence of localized structures

in DNA model have been displayed. From numerical methods, we have plotted the region

of stability/instability due to the increase of solvent interaction. We also showed that our

model could be subjected to MI, as indicated by the numerical representation of the growth

rate of instability. Our analytical predictions have been verified numerically, where the pat-

tern of charges has been displayed. In this case, increasing the solvent factor, the domains

of instability increases and prevents charge spreading. The potential barrier brought by the

term fsD destroys the H-bonds and blocks charge spreading. We also show that the solvent

factor does not completely destroy the emergence of localized modes but prevents the prop-

agation of the flow of information in the cells. We note that the charge patterns are sensitive

to solvent interactions as they get more localized with increasing fs and ls . Further increas-

ing fs , has revealed another interesting feature, as patterns of charge can be localized over

a long time for highest values of ls . The solvent molecules can collide and bring additional

charges in the patterns. This explains the highest density of charges observed in Fig. 6. Tak-

ing into account the solvent factor in our model, the localized structures become robust with

high values of ls . The spectrum of behaviors is displayed in Fig. 6. We can see that, the local-

ized modes persists with robustness behavior a much better candidate of non-linear modes

responsible for a locally open state where biological functioning takes place. The efficiency

of transport of charges is affected by stretching of the molecule. The density of loads van-

ishes and the efficiency drops steeply. Thereafter, the life-time of charges decreases with an

increase of fs reinforces the spatial confinement of the charge carrier in specific domains.

Increasing fs and ls in the model also revealed that due to the environment effect of the

charges, we observe that the bubbles form spatiotemporal “hot-spots”, which inhibit charge

propagation along the strands and enhance its confinement. Thereafter, the flux of charges

is concentrated for a long times in specific sites. Consequently, the transfer of information

along the molecule is also blocked. This explains some chromosome diseases or mutations

due to an accumulation of mutations that increase its proliferation capabilities, the instabil-

ity of its genome, and its ability to escape systems that eliminate abnormally proliferating

cells. Our results obtained suggest that it is possible to reduce some chromosome diseases

by including the solvent factor interactions and χ in DNA model. Taking into account the

effect of solvent factor and the coupling constant, the density of charges can vanish, and

only the small quantity of charges can migrate in the DNA model. We can conclude that, the

solvent factor can be facilitators or inhibitors charge transport in the modified DNA model

and the good conduction of current is also depend on the flux of charges carrier. However,

theoretical investigations of charge transport and localization in DNA are complicated, not

only due to the intrinsic disorder caused by the different nucleotides and dynamics of bases

present in DNA but also because of the softness of the biomolecule. However, in this present

study, other factors are not considered, such as viscosity and diffusion effect. It is impor-

tant to consider their influence in the charge transport model, which is work that we are

currently doing.
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Appendix

The total Hamiltonian of our system is:

H = H1 + H2 + H3 (40)

Now, we use semiclassical equations of motion [22, 23], i.e., we treat the quantum charge

mechanically and the vibrational and rotational motion classically. The equation for the

time evolution of the charge probability amplitude is obtained with the use of Schrödinger

equation: i�
d|ϕc(t)>

dt
= (H2+H3)|ϕc(t) > where H2 and H3 are the charge and the coupling

Hamiltonian, respectively i.e.,

i�
d

dt
ϕj = −V

(

ϕj+1 + ϕj−1

)

+ χλjϕj . (41)

where ϕj is the probability amplitude for the charge carrier located at the j th base pair. To

obtain our equations of motion, we use the Newton equations:
dλj

dt
= ∂H

∂pj
,

dpj

dt
= − ∂H

∂pj
and

pj = m
dλj

dt
. Recall:

d tanh(x)

dx
=

1

cosh2(x)
= sech2(x), (42)

we have

dVsol

dλj

=
√

2Djfs

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (43)

dVsol

dφj

= −
r sin φjDjfs

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (44)

dVsol

dθj

= −
r sin θjDjfs

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (45)

After using the above equation, the Newton equations of motion for the stretching wj ,

λj , and the rotational θj , φj motions becomes:

mẅj = k(wj+1 + wj−1 − 2wj ). (46)

mλ̈j = k(λj+1 + λj−1 − 2λj ) + 2
√

2aD(exp(−a
√

2λj − g(θj , φj )) − 1)

× (exp(−a
√

2λj − g(θj , φj ))) − χλj |ϕj |2

+
√

2Djfs

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (47)

I φ̈j = ξ(φj+1 + φj−1 − 2φj ) − 2raD sin φj (exp(−a
√

2λj − g(θj , φj )) − 1)

× (exp(−a
√

2λj − g(θj , φj )))

+
Dj rfs sin φj

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (48)

http://creativecommons.org/licenses/by/4.0/
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I θ̈j = ξ(θj+1 + θj−1 − 2θj ) − 2raD sin θj (exp(−a
√

2λj − g(θj , φj )) − 1)

× (exp(−a
√

2λj − g(θj , φj )))

+
Dj rfs sin θj

ls
sech2

(√
2λj − g(φj , θj )

ls

)

. (49)

Let:

Xj =
θj + φj√

2
,

�j =
θj − φj√

2
, (50)

xj =
Xj√

2
,

ψj =
�j√

2
, (51)

Our priority is to transform (48) and (49) into one equation. Substituting (51) and (52) into

equations 48-49, we obtain the following equation:

I ψ̈j = ξ(ψj+1 + ψj−1 − 2ψj ) − 2raDj sin ψj cos xj (exp(−a
√

2λj − g(xj , ψj )) − 1)

× (exp(−a
√

2λj − g(xj , ψj )))

+
Dj rfs cos xj sin ψj

ls
sech2

(√
2λj − g(xj , ψj )

ls

)

. (52)

where g(Xj , �j ) = g(xj , ψj ) = 2r(cos xj cos ψj ). Equation (46) has plane solutions.

Our attention will be focused on the nonlinear (47–49). For small angular motion we have

cos xj ≃ 1, sin ψj ≃ ψj and exp(−a
√

2λj − g(xj , ψj )) ≃ exp(−a
√

2λj ) because

g(xj , ψj ) ≃ 2r and r is the constant.

Using this approximation, and (52) becomes:

I ψ̈j = ξ(ψj+1 + ψj−1 − 2ψj ) − 2raDjψj (exp(−a
√

2λj ) − 1)(exp(−a
√

2λj ))

+
2Dj rfsψj

ls
sech2

(√
2λj − 2r

ls

)

. (53)

Finally, after using all cited approximations, the equations of motion become three

discrete equations for three variables,

i�
d

dt
ϕj = −V

(

ϕj+1 + ϕj−1

)

+ χλjϕj . (54)

mλ̈j = k(λj+1+λj−1−2λj )+2
√

2aDj (exp(−a
√

2λj )−1)(exp(−a
√

2λj ))−χλj |ϕj |2

+
√

2Djfs

ls
sech2

(√
2λj − 2r

ls

)

. (55)

I ψ̈j = ξ(ψj+1 + ψj−1 − 2ψj ) − 2raDjψj (exp(−a
√

2λj ) − 1)(exp(−a
√

2λj ))

+
2Dj rfsψj

ls
sech2

(√
2λj − 2r

ls

)

. (56)
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Let sech2(y) = 1 − y2. After expanding the terms in exponential up to the third order

and using the continuum approximation, we obtain the following equations

i
d

dt
ϕ = P1

∂2ϕ

∂x2
+ Q1ϕ + Q2λϕ. (57)

λ̈ + c0
∂2λ

∂x2
+ Aλ + Bλ2 + Wgλ

3 + c2|ϕ|2 = 0. (58)

ψ̈ + c1
∂2ψ

∂x2
+ Q3ψλ + Q4ψλ2 − γβψλ3 + Q5ψ = 0. (59)

where Wg = 4a2Dj

m
, α0 = 3a

√
2

2
, c0 = −k

m
, c1 = −ξ

I
, P1 = − 2V

�
, Q1 = −V

�
, Q2 = χ

�
,

γ = 7a2

3
, β = mrWg

√
2

2I
, A = 8rDj fs

l3s
+ Wg , B = α0Wg + 2

√
2Dj fs

l3s
, Q3 = 8

√
2r2Dj fs

l3s
− β,

Q4 = − 4rDj fs

l3s
+ βα0 and Q5 = 2rDj fs

mls

(

1 − 4r2

l2s

)

.
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32. Mvogo, A., Ben-Bolie G.H., Kofané, T.C.: Discrete energy transport in collagen molecules. Chin. Phys.

B. 23(9), 098701 (2014)

33. Ngoubi, H., Ben-Bolie, G.H., Kofané, T.C.: Charge transport in DNA model with vibrational and

rotational coupling motions. J. Biol Phys. 43, 341–351 (2017)

34. Tabi, C.B., Dang Koko, A., Oumarou Doko, R., Ekobena, H.P., Kofané, T.C.: Modulated charge patterns
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