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ABSTRACT  
Two-dimensional graphene, carbon nanotubes, and graphene nanoribbons represent a novel class of 
low dimensional materials that could serve as building blocks for future carbon-based nanoelectronics. 
Although these systems share a similar underlying electronic structure, whose exact details depend on 
confi nement effects, crucial differences emerge when disorder comes into play. In this review, we consider 
the transport properties of these materials, with particular emphasis on the case of graphene nanoribbons. 
After summarizing the electronic and transport properties of defect-free systems, we focus on the effects 
of a model disorder potential (Anderson-type), and illustrate how transport properties are sensitive to the 
underlying symmetry. We provide analytical expressions for the elastic mean free path of carbon nanotubes 
and graphene nanoribbons, and discuss the onset of weak and strong localization regimes, which are 
genuinely dependent on the transport dimensionality. We also consider the effects of edge disorder and 
roughness for graphene nanoribbons in relation to their armchair or zigzag orientation.   
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Introduction

Since the discovery of fullerenes (C60), carbon-based 

materials have been the subject of intense research, 

which led to the discovery of carbon nanotubes [1

4] and the fabrication of individual one-atom thick 

graphene layers [5]. This opens unprecedented 

avenues for the investigation of quantum transport 
in low dimensional (1-D and 2-D) systems, as well as 
attracting the interest of industry, given the potential 
for innovative applications. Carbon nanotube 
science is now a mature field of research, whose 
theoretical foundations have been reviewed in many 
textbooks and articles (see Refs. [3, 4] and references 
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therein). More recently, the possibility of singling 
out a graphene plane, either through an exfoliation 
process [5], or by means of an epitaxial growth 
mechanism [6], has allowed the whole mesoscopic 
physics community to revisit basic foundations of 
quantum transport in 2-D systems, such as quantum 
Hall effects or weak localization phenomena [7 15], 
in a material with remarkable electronic properties 
[4]. Additionally, routes for an alternative carbon-
based nanoelectronics are being actively investigated 
ranging from device optimization to graphene 
integration at the wafer scale [6, 16 21]. However, 
since truly two-dimensional graphene is a zero-gap 
semiconductor, its use as an active electronic device, 
such as a fi eld-effect transistor, requires the reduction 
of its lateral size to benefit from induced quantum 
confinement effects. Energy band gap engineering 
has been demonstrated with both carbon nanotubes 
(CNTs) and graphene nanoribbons (GNRs) [18, 22, 
23]. In the case of GNR-based fi eld-effect transistors, 
this results in an increase of performance with 
downscaling the ribbon width from several tens of 
nm to 2 nm [17 21, 24]. In contrast to CNTs, whose 
integration in operating devices at a large scale 
remains a tremendously complicated challenge, 
GNRs present the potential to be fabricated and 
massively integrated in complex architectures, thanks 
to the use of conventional lithographic techniques.

In this work, we discuss the transport properties 
of carbon-based low dimensional materials by 
focusing on the effect of a case of disorder potential, 
namely the Anderson-type model [25]. This model 
has been widely employed in studying the scaling 
theory of localization, and through analytical 
and numerical results, it allows us to overview 
the behavior of the basic transport length scales 
(elastic mean free path and localization lengths) 
and associated transport regimes in systems with 
different symmetries and transport dimensionality. In 
the case of GNRs, the presence of the edges exposes 
the system to further sources of disorder. In order 
to account for this peculiarity, we also consider the 
effects of impurities and roughness at the edges of 
the GNRs on the transport properties.

Section 1 is devoted to an overview of the 
electronic structure and quantum transport properties 

of 2-D-graphene, quasi-1-D CNTs and GNRs in 
the absence of disorder. We start from a simple 
nearest neighbor (N-N) tight-binding model and 
highlight differences and similarities between these 
different carbon structures due to their different 
dimensions and lack or presence of edges, as these 
are the underlying factors that determine the specifi c 
response of their transport properties to disorder. 
We include a discussion about how the electronic 
structure of narrow GNRs is modified when 
performing ab initio calculations and how to mimic 
this behavior by means of a third nearest neighbor 
tight-binding model. In the case of nanoribbons, 
we also elaborate on the dependence of the spatial 
symmetry of the system on the armchair or zigzag 
edge orientation and the number of carbon atoms 
in the primitive cell since, in certain cases, this has a 
deep impact on the transport features. At the end of 
the section, two interesting examples of transport in 
clean nanoribbons are also analyzed. The first one 
is the so called “pseudodiffusive” transport regime, 
which presents curious and intriguing analogies with 
the diffusive transport regime of disordered metals. 
The second one explores the effects of high magnetic 
fi elds on the energy bands, the transport properties, 
and the spatial distribution of electrical currents 
fl owing through the ribbons.

In Section 2, we consider the effect of disorder 
on the density of states and the transport properties 
of the CNTs and GNRs. We focus on the analysis 
of typical length scales such as the mean free path 
and the localization length, taking an Anderson-
type disorder as a reference model. In spite of its 
simplicity, this type of disorder allows us to point 
out the differences between 2-D graphene and other 
graphene-derived materials. More realistic types of 
disorder would lead to more complicated effects that 
might mask the essential dependence of the transport 
properties on the dimensionality and symmetries of 
the investigated systems. A subsection is also devoted 
to the edge disorder (roughness and Anderson-type) 
in GNRs. The effect of this kind of disorder on the 
transport properties depends very critically on the 
armchair or zigzag edge orientation of the ribbons. 
In the literature, several different models of edge 
disorder have been considered and investigated 



363Nano Res (2008) 1: 361 394

with not always unanimous conclusions. In the last 
part of the section, we discuss the charge mobility in 
graphene-based systems subjected to different types 
of disorder, since this quantity is key to assess the 
performance of different devices.

Section 3 concludes the review by stressing the 
most relevant features.

1. Electronic properties and transport in 
defect-free systems

In most cases, the energetics of graphene-based 
materials can be conveniently described as a first 
approach by a π-effective electron model [4]. Indeed, 
for the honeycomb geometry, σ bonds are formed by 
three out of four valence electrons (sp2 hybridization), 
whereas the remaining single electron per carbon 
atom occupies a 2pz orbital whose hybridization with 
fi rst neighbors generates π and π* bands. A restriction 
of the Hamiltonian to a single pz orbital per carbon 
atom thus provides an effective energetic model 
that well describes the electronic properties close 
to the charge neutrality point (CNP). In the case of 
GNRs, we assume that the σ bonds at the edges are 
saturated with H atoms, thus eliminating dangling 
bonds.

1.1   2-D Graphene band structure

CNP locates the Fermi level for 2-D undoped 
graphene and metallic nanotubes and graphene 
ribbons, and the mid-gap of semiconducting CNTs 
and GNRs. Defining γ0 as the integral overlap 
between pz orbitals, the electronic properties of 
2-D graphene are straightforwardly derived by 
diagonalizing a 2 × 2 matrix as

  H(k)=(                      )                                  (1)
0

f *(k)
f *(k)

0

with  f (k) =γ0∑meik·em (em are the vectors that connect 
A-type sites to the three nearest neighbor B-type 
sites, see Fig. 1 (a)) and γ0 ≈ 2.7 eV. It is readily 
shown that  

E± (kx , ky)=±γ0 [3+4cos(√3kxa
  2 )cos(kya

  2 )+2 cos(kya)]1/2    (2)

(see Fig. 1(b)).

The underlying symmetry and sublatt ice 
degeneracy of the honeycomb lattice can be unveiled 
from a different starting point. In a tight-binding 
representation, one can separate the two sublattices as

by introducing creation (A†
, B†) and annihilation (A, B) 

operators for electrons on site A or B, respectively. To 
diagonalize the Hamiltonian, one applies the Bloch 
theorem to the Bravais lattice, which yields  

   

with Nm the number of unit cells. By means of this 
transformation, 

   
with 

   

In the sublattice basis, at a given crystal momentum, 
this also is expressed as  

   

Now, by performing a linearization close to K points, 
i.e., k=K±+p/h at fi rst order in p= ih

∆

, one fi nds  

   

where vF=√3α│γ0│/2h is the Fermi velocity. Therefore, 
the effective Hamiltonian takes the form of a Dirac 
Hamiltonian for massless particles  

   

with σx,y,z being the Pauli matrices. Finally, by 
identifying each of the K-points with the index, these 

Figure 1   Honeycomb lattice, graphene π and π* bands, and 

dispersion relation close to the K± points of the fi rst Brillouin zone

†
AR=          ∑

k∈1BZ

e ik·RAk
Nm

1 † †
BR+em

=          ∑
k∈1BZ

e ik·(R+em)Bk
Nm

1 †

(4)

H = ∑
k∈1BZ

hkBkAk                                                 (5)†

H =γ0   ∑ ∑ BR+em 
AR+h.c.                           (3)

R∈B.L. m=1

3
†

hk =γ0  ∑ e ik·em=│hk│eiθk                   (6)
m=1

3

H = ∑
k∈1BZ

(Ak , Bk)(         )(     )                              (7)† † 0
hk

hk

0
Ak

Bk

HK+
=vF(                        )                             (8)

0
px ipy

px+ipy

0

HK+
 (p)=vFσ·p     HK  (p)= vFσ·p              (9)

（a） （b） （c）
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Hamiltonians can be rotated into a diagonal form 
with the unitary operator (θ=arctan (py/px))  

   

so that  
  

The dispersion relation describes a cone-type 
structure in reciprocal space (see Fig. 1(c)), whereas 
the corresponding eigenvectors define a spinor 
(pseudospin) [4]  

  

T h e  s p i n o r  i s  a l s o  a n  e i g e n s t a t e  o f  t h e 
h e l i c i t y  o p e r a t o rε=(1/2)σ·p/|p| ,  s u c h  t h a t 
ε|Ψ+

p(s=±1)〉=±(1/2)|Ψ+
p(s)〉. Thus, eigenstates 

have a well-defi ned helicity (good quantum number). 
Note, however, that the above derivation is valid 
in fi rst order in p, whereas trigonal warping, which 
appears at second order [3], will bring substantial 
modifications of band structure with consequences 
on transport properties.

The electronic properties of the 2-D graphene 
can thus be described by an effective massless Dirac 
fermion model in the vicinity of the CNP, with 
linear dispersion and electron-hole symmetry. These 
properties derived close to the K point are also 
valid for 1-D systems such as metallic nanotubes 
and wide armchair nanoribbons. However, other 
symmetries result in semiconducting systems with 
varying gaps. Semiconducting nanotubes and 
ribbons with increasing diameter (or width) show a 
linear downscaling of their associated energy gaps. 
By using proper boundary conditions, the electronic 
band structure of both types of systems can be 
analytically derived.

In the presence of a uniform magnetic field 
B threading the 2-D graphene sheet along the 
orthogonal z direction, we make use of the minimal 
substitution in the Hamiltonian. If we choose the fi rst 
Landau gauge, the vector potential is A=(By,0,0) and 
the new momentum operator is  

Uα(p)=                                                     (10)1
2 αe iαθαe iαθ

1 1(                       )
U†

α(p)Hα(p)U†

α(p)=αvF = αvF|p|σz           (11)
|p|   0    

  0     |p|(                 )

|Ψ+
p  =

1
2
Ψ+

p (A)

Ψ+
p (B)(              ) 1

2
seiθ/2

e iθ/2(         )=                             (12)

π=
πx

πy
(     ) =       (13)

px

py
(                )

e
c By

and so  
   

Let us defi ne the following operators  
   

These can be identified as annihilation and creation 
operators, since [ , †]=1. The Hamiltonian around 
K+, is now  

  

Let us consider the square of the Hamiltonian  
   

We can identify †  as the number operator; 
therefore, the eigenvalues of H (given by the square 
root of the eigenvalues of H2 ) are [26]  

   

where the eigenvalues En are expressed in meV and 
the magnetic field B in T. In contrast to ordinary 
2-D electron gases, in graphene Landau levels are 
proportional to the square root of the magnetic 
fi eld and to the square root of the integer number n. 
Moreover, a doubly degenerate zero energy level is 
present.

1.2   Graphene nanoribbon band structure: Nearest 

neighbor tight-binding model

Graphene nanonoribbons are strips of graphene that 
can be obtained by cutting a graphene sheet along 
a certain direction. Depending on this direction, the 
edges of the ribbon can be armchair-like (Fig. 2(a)) or 
zigzag-like (Fig. 3 (a)). In the following, we will refer 
to an armchair ribbon composed of N dimer lines 
as N-aGNR, and to a zigzag ribbon composed of N 
zigzag lines as N-zGNR.

The band structures of ideal GNRs with width 
below ≈100 nm and well defined edge symmetries 
(zigzag or armchair types) are dominated by 
confi nement effects and van Hove singularities [27
35], similarly to CNTs. As for 2-D graphene and 
CNTs, a nearest neighbor tight-binding model is 
found to describe low energy properties with a 
degree of approximation high enough for many 

[πx，πy] = i
h2

l 2
0

with = i ch
eB

l0 (14)

= l0

h

1
2

(π x+ i π y) ; †= l0

h

1
2

(πx- i π y) (15)

Hk+
=β 0

†

0
with(         ) β= 2

hvF

l0

(16)

H2
k+

=β2 0
†

†

0(               )=β2(                   ) (17)
†

0

0
† +1

En=±β n ≈31.65 B n    with    n=0, 1, 2, 3, … (18)
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the wavefunctions at both edges of the ribbon 
(qy=2pπ/(√3a(N+1)) , p=1, 2,..., N), one obtains [35]

   

with N=   2/Nx(N+1) being a normalization factor. 
Then, by rewriting the Schrödinger equation as a 2 
× 2 matrix, eigenvalues and eigenvectors are readily 
found:  

applications. This approach has been widely 
employed for studying transport properties in pure 
or defected GNRs [27 29, 31, 33, 35 38].

1.2.1   Armchair nanoribbons

An armchair GNR unit cell contains N A-type atoms 
and N B-type atoms, see Fig. 2(a). Thanks to the 
bipartite lattice of graphene, the total wavefunction of 
the system can be constructed by a linear combination 
of A-type ΨA and B-type ΨB sublattice wavefunctions. 
By applying Dirichlet boundary conditions for 

Figure 2   (a) Structure and primitive cell of an armchair ribbon composed of N dimer lines; (b) equivalent coupled chains with N 

orbitals each; (c) energy bands for a metallic ribbon with N=53; (d) 2-D projection (at the Γ point) of the two wavefunctions just 

below and above the Fermi level for a 20-aGNR; (e) the same for a 35-aGNR. Blue and red colors correspond to opposite signs of 

the wavefunction

(1/N)|Ψ   =cA

N

j=1

∑
xA j

∑ eikxAj sin ( 3qyaj/2)|A j  +

N

j=1

∑
xB j

∑ eikxBj sin ( 3qyaj/2)|Bj  cB

(19)
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and  
   

By analyzing Г(k, qy), we can see that the ribbon 
is metallic if N=3m+2, where m is an integer number, 
and semiconducting in the other cases. In particular, 
we can evaluate the energy gap ∆N as a function of 
the N dimer chains: 

Figure 3   (a) Structure and primitive cell of a zigzag ribbon composed of N carbon lines; (b) equivalent fi nite chain with 2N 

orbitals; (c) energy bands for N=32; (d) 2-D projection (at the Γ point) of the two wavefunctions just below and above the Fermi 

level for a 9-zGNR; (e) the same for the 10-zGNR. Blue and red colors correspond to opposite signs of the wavefunction

E(k, qy)=±|γ0(2eika/2 cos( 3qy a/2)+e ika)|

            =±|Г(k, qy)|
(20)

|Ψ =1/√2 (ΨA± Г*(k, qy)/Г(k, qy)ΨB) (21) 











 ∆3m      =|γ0| (4cos            2)πm
3m+1

∆3m+1  =|γ0| (2 4cos              )π(m+1)
3m+2

∆3m+2  = 0

(22)

with ∆3m＞∆3m+1＞∆3m+2= 0. However, as reported in 
Section 1.3, ab initio calculations do not predict the 
existence of metallic ribbons and a give a different 
gap size hierarchy.

Further insight into the electronic structure of 
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GNRs can be gained by representing the Hamiltonian 
on the Bloch sums. If we order the basis as A1 , 
B2 , A3 ,..., AN 1, BN and B1 , A2 , B3 ,..., BN 1, AN , the 
Hamiltonian can be split into four N×N blocks 

   

where d(k)=eikb/2. The diagonal blocks are tridiagonal 
matrices with 0 diagonal elements and γ0 off-
diagonal elements, the off-diagonal blocks are 
diagonal matrices with alternating γ 0 exp(±ikb/2) 
elements. Hamiltonian (Eq. (23)) is equivalent to the 
Hamiltonian of two coupled chains with N orbitals, 
as indicated in Fig. 2(b). Within each chain, the 
nearest neighbor orbitals are coupled by the hopping 
parameter γ0 and have vanishing onsite energies. 
The interchain hopping is given by the parameters 
γ0 exp(±ikb/2). By diagonalizing (Eq. (23)), the 
energy band structure is obtained. As an example, 
the energy bands of a metallic armchair ribbon with 
N=53 are reported in Fig. 2(c). Note the typical Dirac-
like linear dispersion around k=0. The mapping of 
the six Dirac points of 2-D graphene into k=0 can be 
easily understood by projecting the graphene band 
structure onto the axis corresponding to the armchair 
orientation [39]. At k=0, the Hamiltonian (Eq. (23)) is 
real and our coupled chains turn into a ladder with 
two legs and N rungs and all hopping parameters 
equal to γ0. The eigenvalues of such a system are 
analytically known [40, 41] and give again the energy 
gap ∆N  reported in Eq. (22).

The N-N tight-binding band structure of armchair 
nanoribbons with N=3m ,  3m+1 and 3m+2 is 
summarized in Fig. 4 for N=9, 10, and 11.

From the viewpoint of spatial symmetry, aGNRs, 
and GNRs in general, are very different from 
nanotubes. In fact, an ideal (perfect) CNT presents 
a well defined symmetry with respect to a large 

















H(k)=γ0

0 1 0 ... d 0 0 ...
1 0 1 ... 0 d* 0 ...
0 1 0 ... 0 0 d ...
... ... ... ... ... ... ... ...
d* 0 0 ... 0 1 0 ...
0 d 0 ... 1 0 1 ...
0 0 d* ... 0 1 0 ...
... ... ... ... ... ... ... ... 
















(23)

number of mirror planes containing the tube axis. 
As a consequence, the parity (even or odd) of the 
wavefunction has been demonstrated to have an 
impact on the transport properties of defected CNT-
based systems, as scattering can only occur between 
eigenstates with the same parity [42 45]. On the 
contrary, wavefunctions in GNRs do not always 
present a well defined parity associated to mirror 
reflections with respect to the axis of the ribbon. 
The spatial symmetry depends on both the edge 
termination (zigzag or armchair) and the even or 
odd number of chains that comprise the ribbons. In 
the case of odd-indexed armchair ribbons (such as 
the 9-aGNR and 11-aGNR in Fig. 4), the system is 
invariant under mirror reflection with respect to a 
plane perpendicular to the ribbon and containing 
its axis. In the case of even-indexed armchair 
ribbons (such as the 10-aGNR in Fig. 4), the system 
is "asymmetric", in the sense that it is no longer 
invariant under the mirror reflection operation. 
Still, it is invariant under glide plane symmetry, 
which consists of the mirror reflection followed 
by a fractional translation along the ribbon axis. 
Figures 2 (d) and 2(e) show the 2-D-projection at the 
Γ  point of the two wavefunctions just below and 
above the Fermi level for perfect asymmetric (d) and 
symmetric (e) armchair ribbons (calculated with the 
SIESTA package [46]). As is clearly visible in Figs. 
2(d) and 2(e), the existence of a mirror symmetry 
plane in ribbons leads to a well defi ned parity of the 
wavefunctions with respect to that mirror plane. The 
well defi ned (or not) parity of the wavefunctions does 
not affect the electronic transport properties of ideal 
unperturbed ribbons, but it may have a huge impact 
in the presence of defects. For example, the electronic 
transport properties of boron doped armchair ribbons 
have been shown, by means of ab initio calculations, 
to depend strongly on the symmetry of the ribbon, as 
B-induced potentials that preserve the parity of the 
wavefunctions do not affect the conductance of odd-
indexed ribbons at low energies.1 This suggests that 
scattering by certain defects might be suppressed, 
provided that the defects preserve the underlying 
symmetric geometry of the ribbon.

1 
Biel, B.; Blase, X.; Triozon, F.; Roche, S. submitted
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1.2.2   Zigzag nanoribbons

For zGNRs, the handling of the boundary conditions 
is slightly more involved. A possible approach 
is solving the Dirac equation requiring that the 
wavefunction vanishes at the edges of the ribbon [32]. 
As evident from Fig. 3(a), the lower edge is entirely 

composed of A-type carbon atoms, while the upper 
edge is made up of B-type carbon atoms. Therefore, 
the boundary conditions can be imposed on the two 
sublattices separately. In particular, the wavefunction 
of the A-type sublattice is required to vanish on 
the upper edge and the wavefunction of the B-type 

Figure 4   Band structures of 2-D graphene, (9,0) and (10,0) zigzag and (10,10) armchair CNTs, and 10-zGNR, 9-, 10-, and 

11-aGNRs obtained by the N-N tight-binding model, the third N-N tight-binding model and ab initio calculations. The energy 

bands of 2-D graphene are plotted along the K-Γ-M-K' direction. The energy bands of the GNRs and CNTs are plotted in the one-

dimensional fi rst Brillouin zone. The wavevector k is in units of π divided by the lattice constant
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energy and located exactly on the edges of the ribbon, 
and (N 1)-fold degenerate eigenvalues E= ±γ0 , as 
observed in point (3) above. If we consider a very 
large ribbon, our chain can be thought as semi-
infi nite. In this case, an analytical expression for the 
retarded Green's function projected on the first (A1) 
site can be obtained [48]  

   

where the sign in front of the square root is positive 
if 0<c(k)≤1/2 and negative if 1/2<c(k)≤1. In order 
to have a nonvanishing density of states (DoS), the 
discriminant under the square root must be negative, 
since the DoS is proportional to the imaginary part 
of the Green's function. Therefore, the four curves 
E(k)=±γ0 ± 2γ0 cos(ka/2), along which the discriminant 
is vanishing, define the boundaries of the band 
structure and their intersection at k=±2π/(3a) 
identifies the folded Dirac points. As in the case of 
armchair nanoribbons, the mapping of the Dirac 
points can be predicted by the projection of the 2-D 
graphene bands onto the axis corresponding to the 
zigzag orientation. When E→0, the retarded Green's 
function has a continuum of poles for 0<c(k)≤1/2, 
which correspond to the fl at bands for |k|>2π/(3a). 
The structure of the energy bands around the Dirac 
points and for finite width ribbons is obtained by 
considering that c(k=±2π/3a)=1/2, i.e., the hopping 
energies of the equivalent chain all become equal 
toγ0. The eigenvalues of such a Hamiltonian are 
known [49] and, for large ribbons and around the 
CNP, can be approximated as  

   

As observed in point (4) above, this means that these 
levels are equispaced and the spacing is inversely 
proportional to the width of the ribbon itself.

The N-N tight-binding band structure of zigzag 
nanoribbons is summarized in Fig. 4 for N=10. As in 
the case of aGNRs, the even or odd number of chains 
that composes the ribbons determines the mirror 
or glide plane symmetry of zGNRs. Even-indexed 
zigzag ribbons (such as the 10-zGNR in Fig. 4) are 
invariant under mirror reflection with respect to a 
plane perpendicular to the ribbon and containing 

















H(k)=γ0

 0 2c(k) 0 ... ... 0
 2c(k) 0 1 0 ... 0
 0 1 0 2c(k) 0 ... 
 ... 0 2c(k) 0 ... ...
 ... ... ... ... ... 2c(k)
 0 ... ... 0 2c(k) 0

(24)

















sublattice is required to vanish on the lower edge. 
With these restrictions, the eigenfunctions of the 
Dirac equation can be separated into two groups. The 
fi rst group includes states with wavenumber k>1/W, 
where W is the width of the ribbon. They are surface 
states and decay exponentially from the edges of the 
ribbon. The second group of eigenfunctions with k<1/
W corresponds to confined states with nodes along 
the transverse section of the ribbon. To obtain the 
exact shape of these bands within the simple tight-
binding approximation, a different approach can be 
used, viewing the GNR as a macromolecule with a 
basis of four carbon atoms [47].

In this case too, further information can be 
obtained by expressing the tight-binding Hamiltonian 
on the Bloch sums. It  is  easy to see that the 
k-dependent Hamiltonian is a tridiagonal 2N × 2N 
matrix with alternating off-diagonal elements [48] 

   

where c(k)=cos (ka/2) and the Bloch sums have been 
ordered as A1, B1, A2, ..., AN, BN. This Hamiltonian 
is equivalent to the Hamiltonian of the 2N-orbital 
chain reported in Fig. 3(b). By diagonalizing matrix 
(Eq. (24)) numerically, the band structure is obtained 
for N=32, as shown in Fig. 3(c). The energy bands 
present some typical features: (1) the Dirac points 
of the 2-D graphene are mapped into k=±2π/(3a); 
(2) there are two partially flat degenerate bands 
with zero energy between the Dirac points and the 
border of the Brillouin zone, and the corresponding 
states are mainly located at the edges; (3) the bands 
are highly degenerate at the borders of the Brillouin 
zone; (4) at the Dirac points and close to the CNP 
the levels are equispaced. All these characteristics 
can be understood by simple considerations of the 
equivalent chain of Fig. 3(b). For example, at the 
edges of the fi rst Brillouin zone we have c(k=±π/a)=0,
thus the 2N-orbital chain splits into two isolated 
orbitals at its end and N 1 couples of dimers. This 
configuration generates two eigenstates with zero 

G(E,k)=
E2 4γ0

2c2+γ0
2 ±   (E2 4γ0

2c2+γ0
2)2 4γ0

2E2

4γ0
2E

(25)

En=|γ0|              ( n+     )    with    n=0, ±1, ±2,...
π

N+1/2
1
2 (26)
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its axis. Odd-indexed zigzag ribbons are invariant 
under glide plane symmetry. The parity of the 
wavefunctions with respect to the spatial symmetry 
of the GNR is clearly visible in Figs. 3(d) and 3(e), 
where we show the 2-D-projection at the Г point 
of the two wavefunctions just below and above the 
Fermi level for perfect asymmetric (Fig. 3(d)) and 
symmetric (Fig. 3(e)) zigzag ribbons (calculated with 
the SIESTA package [46]). The spatial symmetry of 
zGNRs and the respective parity of the wavefunctions 
play an important role in determining the electronic 
transport properties in the presence of external fi elds 
[50 54]. For example, a valley-valve effect (blocking 
of the electrical current by a p-n junction) has been 
demonstrated theoretically in zigzag ribbons in the 
presence of an external potential [50]. This effect 
depends critically on the parity of the number of 
zigzag chains across the ribbons [51] and has been 
successfully explained by realizing that, in case of 
even-indexed zGNRs, the symmetry of the ribbons is 
preserved by the considered superimposed potential, 
thus forbidding potential-induced transitions 
between opposite parity eigenstates [53, 54]. A similar 
explanation has been found for the case of an applied 
bias in zigzag ribbons, when transitions between the 
valence and the conduction bands are only allowed 
for asymmetric ribbons [52], and the opening of a 
conductance gap in the vicinity of the Fermi level 
is expected for symmetric zigzag ribbons. This 
intriguing particularity has no analogue in nanotubes.

1.2.3   Carbon nanotube band structure

As for GNRs, the electronic properties of nanotubes 
are strongly modulated by small structural variations; 
in particular, their metallic or semiconducting 
character is determined by the diameter and helicity 
(chirality) of the carbon atoms in the tube. This 
dependence is easily understood starting from the 
energy dispersion relations of graphene around 
the Fermi level, by retaining only the π π* bands. 
Rolling the graphene into a cylinder imposes 
periodic boundary conditions for the wavefunctions 
along the circumference of the tube and results in 
a quantization of the momentum component along 
this direction. For details of the derivation of the 
tight-binding graphene dispersion relations, and the 

Eq
± (k) = ±γ0       1 ± 4 cos      cos       +4 cos2           ka

2
qπ
N

ka

2
(27)

subsequent zone-folding procedure to obtain the 
band-structure of nanotubes, we refer the reader to 
Ref. [4]. The bands obtained for armchair tubes with 
helicity (N, N) are, for instance, given by 

   

where q(=1, 2,..., 2N) specifies the discrete part of 
the wavevector perpendicular to the tube axis (i.e., 
the band index), k is the continuous component that 
describes eigenstates in a given subband ( π<ka<π) 
and  a=2.46 Å is the graphene lattice constant.

The band structures for the armchair (10,10) and 
the zigzag (9,0) and (10,0) nanotubes calculated 
within the N-N tight-binding model are shown in 
Fig. 4.

1.3   Ab initio results

In spite of the good description the most simplified 
N-N π-orbital tight-binding model provides for the 
electronic properties of 2-D-graphene and CNTs, 
some particular features regarding mainly the effect 
of edges in GNRs have only been unveiled by means 
of ab initio simulations [55 60] or more sophisticated 
tight-binding models [61 63]. The stability of edge 
states in zGNRs has been analyzed both with and 
without H atoms by means of ab initio simulations. 
The almost flat bands in the vicinity of the Fermi 
level, originated by edge states, become more 
dispersive, thus producing a peak in the conductance 
of the system, which jumps from one to three 
conduction channels in a region of ~0.3 eV below the 
CNP of the ideal ribbon. The dispersion at the edge 
state predicted by first-principles calculations has 
been attributed to the interaction with next-nearest 
neighbors, that decreases the energy eigenvalue 
of the edge state [62], though there are still some 
discrepancies with respect to experimental data [64
66]. However, the metallic character of zigzag ribbons 
is preserved as long as the spin degree of freedom is 
not taken into account [57].

On the other hand, ab initio studies have 
demonstrated that there are no truly metallic armchair 
GNRs [58 60]. Even for those armchair ribbons 
predicted to be metallic by the N-N tight-binding 
model, a gap opens, thus modifying their character 
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where a1=( 3 , 3 )a/2 and a2=( 3 , 3 )a/2 are the 
translation vectors of the hexagonal lattice and  

  

with Hi,j=Hj,i for i≠j. First, second, and third nearest 
neighbor hopping constants are here calledγ0 ,γ1 
andγ2, in accordance with Fig. 5(b). The onsite energy 
is indicated by ε0. Analogously, we defi ne σ0 ,σ1, and 
σ2 to be the overlap matrix elements between first, 
second and third nearest neighbors, respectively, and 
thus obtain a formula for S that looks just like Eq. (28), 
with every H replaced by an S and  

   

where of course Si,j=Sj,i for i≠j. We now defi ne  
   

which permits us to write the Hamiltonian H as 

from metallic to semiconducting. The magnitude of 
the gap, however, decreases with increasing ribbon 
width, and for a ribbon of ~5 nm with a metallic 
behavior predicted by the N-N tight-binding model, 
the ab initio estimated band gap is only ~0.05 eV. The 
magnitude of the gaps of the semiconducting ribbons 
predicted by the N-N tight-binding model also differs 
from those estimated by means of first-principles 
calculations. There have been several explanations 
for the origin of these gaps, supported by more 
sophisticated tight-binding models that take into 
account edge distortion [59, 61], up to three nearest 
neighbor interactions [60], or both [63].

The ab initio band structure of 2-D graphene 
and different types of nanoribbons and nanotubes 
are shown in the last column of Fig. 4. All the ab 
initio calculations were performed with the SIESTA 
package [46].

1.4   Third nearest neighbor interaction tight-

binding model

1.4.1  Changes in 2-D graphene band structure

In Section 1.1, it was mentioned that the band 
structure of 2-D graphene can be calculated using the 
nearest neighbor tight-binding approximation [67]. 
This leads to Eq. (2), which is plotted in Fig. 1 (b) and 
Fig. 4. We will now see how this result is modifi ed by 
taking into account higher orders of interaction and 
orbital overlap.

Figure 5(a) graphically shows the distances 
between first, second, and third nearest neighbors. 

These distances are given by d1=1.42 Å, d2= 3 d1≈
1.73d1 and d3 =2d1. From Fig. 5(a), we also see that 
every atom in the graphene lattice has three nearest 
neighbors, six second nearest neighbors and three 
third nearest neighbors. The small difference in 
length between the distances of second and third 
nearest neighbors (d2 and d3) suggests the inclusion 
of both of these interactions. Figure 5(b) allows 
us to evaluate which interactions exist between 
the unit cell here labeled (0,0) and its neighboring 
unit cells. We can therefore write the tight-binding 
Hamiltonian, including up-to-third nearest neighbor 
interaction: 

H(k)=H0,0+eik·a1H1,0+e ik·a1H 1,0+eik·a2H0,1+e ik·a2H0, 1

+eik·(a1+a2)H1,1+e ik·(a1+a2)H 1, 1+eik·(a1 a2)H1, 1+e ik·(a1 a2)H 1,1

(28)

H0,0 = (             ),ε0

γ0

γ0

ε0

H1,1 = (             ),0
0
γ2

0

H1, 1 = (             ),γ1

γ2

γ2

γ1

H0, 1 = (             ),γ1

γ0

0
γ1

   H0,1 = (             ),γ1

0
γ0

γ1

H 1, 1 = (             )0
γ2

0
0

(29)

S0,0 = (             ),1
σ0

σ0

1

S1,1 = (             ),0
0
σ2

0

S1, 1 = (             ),σ1

σ2

σ2

σ1

S0, 1 = (             ),σ1

σ0

0
σ1

S 1, 1 = (             )0
σ2

0
0

S0,1 = (             ),σ1

0
σ0

σ1
(30)

g0(k)=1+eik·a1+eik·a2

g1(k)=eik·a1+e ik·a1+eik·a2+e ik·a2+eik·(a1 a2)+e ik·(a1 a2)

g2(k)=eik·(a1+a2)+eik·(a1 a2)+e ik·(a1 a2)

(31)

H=(                                                              )ε0 γ1g1(k)
γ0g0

*(k) γ2g2
*(k)

γ0g0(k) γ2g2(k)
ε0 γ1g1(k)

(32)

Figure 5   (a) An atom in the graphene lattice with its fi rst, second, 

and third nearest neighbors, indicated by three dashed circles. Second 

nearest neighbors belong to the same sublattice of the considered 

atom, first and third nearest neighbors to the opposite sublattice 

type. (b) A unit cell of the graphene lattice and its adjacent unit cells. 

Boundaries between unit cells are marked in green, and are labeled 

in blue. Purple lines represent fi rst, orange lines second, and red lines 

third nearest neighbor
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and the overlap matrix S as 
   

Now all that is left to do is to solve the generalized 
characteristic equation,  

where we introduce ε1 , 2 , 3 , 4  as a shorthand notation. 
From comparison between Eqs. (32) and (33) we see 
that  

   

We are thus left with the following dispersion relation 
for 2-D graphene: 

   

The values for γ0 2 and σ0 2 have been calculated by 
Reich et al. by comparing and fi tting band structures 
from ab initio and tight-binding calculations [68]. 
The third nearest neighbor tight-binding band 
structure with these parameters is plotted in Fig. 
4. Recently, more sophisticated GW (G=Green's 
function, W=screened Coulomb interaction) ab initio 
calculations [69] for bilayer and few-layer graphene 
provided ~20% larger values of γ0 2. This is in better 
agreement with some experimental measurements, 
in particular angle-resolved photoemission (ARPES), 
where the long range Coulomb interaction plays 
an important role and the band structure at high 
energies requires a more accurate description.

1.4.2   Effects on the band structure of GNRs

It has already been mentioned that the metallicity of 
armchair GNRs of widths N=3m+2 (m∈N) is only 
found in the N-N tight-binding approximation, while 

Figure 6   (a) Band gaps of armchair GNRs as a function of their 

width N in N-N and 3N-N tight-binding. Because of the three-fold 

periodicity in the band gap width, it is convenient to plot three 

different curves or sets of points corresponding to mod (N,3)=0, 1, 2. 

The symbols show N-N results, and the lines the corresponding 3N-N 

results. (b) The gap opening/closing obtained from a comparison of 

N-N and 3N-N tight-binding results. The symbols show the opening (or 

closing) of the band gap in armchair GNRs of the respective widths. 

The lines are fi tted to α/N, where α is the fi tting parameter. This is 

analogous to the case of zigzag carbon nanotubes in which the gap 

decreases as 1/d, where d is the diameter of the tube

ab initio calculations show all armchair GNRs to 
be semiconducting (cf. Section 1.2 and Section 1.3). 
This fi nding is reproduced by third nearest neighbor 
tight-binding calculations. The gap opening can 
be quantified by comparing N-N and third nearest 
neighbor (3N-N) tight-binding results with each other 
(see Fig. 6). The relative opening or closing of the band 
gap decreases with the width as 1/N . Furthermore, 
it has been shown that edge deformations [34, 35] 
and strain [70, 71] signifi cantly change the band gap 
of armchair GNRs, turning metallic ribbons into 
semiconducting ones, even when calculated with the 
N-N tight-binding model. The metallicity of certain 
armchair ribbons should therefore be considered an 
artifact of the N-N tight-binding approximation and 
not a robust feature of these ribbons.

In the case of zGNRs the 3N-N tight-binding 
model shows robust metallicity and a higher 

S=(                                                              )1+σ1 g1(k)
σ0g0

*(k)+σ2g2
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σ0g0(k)+σ2g2(k)
1+σ1 g1(k)

(33)

|H ES|=|                         |=0

⇒ (HAA ESAA)2 (HAB ESAB)(H*
AB ES*

AB )=0

⇒E2(S2
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ε1 = (1+σ1 g1(k)) 2 |σ0 g0(k)+σ2 g2(k)|2

ε2 = [ (γ0 g0(k)+γ2 g2(k))×(σ0 g0
*(k)+σ2 g2

*(k))+c.c.]
ε3 = (ε0 γ1 g1(k))×(1+σ1 g1(k))
ε4 = (ε0 γ1 g1(k))2 |γ0 g0(k)+γ2 g2(k)|2

(35)

E± =
(ε2 2ε3 )±   (ε2 2ε3 )2 4ε1ε4

2ε1

(36)
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chiralities and GNRs, similar expressions can be 
obtained.

1.5.1  "Pseudodiffusive" transport in clean graphene 

nanoribbons

Transport through short and wide clean graphene 
monolayers around the CNP shows very peculiar 
behaviors analogous to those observed in diffusive 
coherent disordered conductors. This turns out to 
be a mere but extremely surprising coincidence, due 
to the particular distribution of the transmission 
coefficients.  In two first  theoretical  studies, 
Tworzydło et al. [77] and Katsnelson [78] investigated 
the transmission coeffi cients for a ribbon of length L 
and width W in the limit of short and wide armchair 
ribbons (L<W) with hardwall or smooth confining 
potential at the edges. The system is kept at energies 
around the CNP, and it is connected to two leads 
at high potential with a large number N of active 
conductive channels. The electronic transmission 
is thus mainly sustained by tunneling through 
evanescent modes, and an analysis based on the 
Dirac equation leads to  

   

for the hardwall confining potential, and a very 
similar expression for the smooth potential [77]. As 
a consequence, in the limit of a very large number of 
transmission channels and high aspect ratio (N>>W/
L→∞)  

   

where G is the conductance and F is the Fano factor, 
i.e., the ratio between shot noise and Poissonian 
noise. In this limit, the system is ohmic with 
minimum conductivity σmin=4e2/πh and Fano factor 
equal to 1/3, as in the case of a diffusive conductor. 
This theoretical result has been tested numerically by 
calculations based on a tight-binding model [77, 79], 
and a good agreement was found, as shown in Fig. 7.

Schomerus has recently proved [80] that this 

dispersion of the edge state than in the case of only 
nearest neighbor interaction (cf. Fig. 4). The full ab 
initio results show a band gap that opens due to 
magnetic ordering [59]. This feature is not reproduced 
by the tight-binding model employed here, but one 
can account for such spin-related effects by including 
a Hubbard term in the Hamiltonian [39, 72 74].

It can thus be said that the third nearest neighbor 
tight-binding method leads to significantly better 
results than the nearest neighbor method when 
compared to ab initio results, while keeping within 
the simplicity of the tight-binding model.

The 3N-N energy bands for 2-D graphene and 
different types of nanoribbons and nanotubes are 
summarized in the fourth column of Fig. 4.

1.5   Transport in nanotubes and nanoribbons

When neglecting disorder effects, a CNT of length 
L between metallic contact reservoirs is a ballistic 
conductor with an L-independent conductance 
given by the energy-dependent number of available 
quantum channels N⊥(E). Each channel carries one 
conductance quantum G0=2e2/h, thus G(E)=2e2/h×
N⊥(E), including spin degeneracy. This only occurs in 
the case of perfect (refl ection-less) or ohmic contacts 
between the CNT and metallic voltage probes [75, 
76]. In this regime, the expected energy-dependent 
conductance spectrum is easily deduced from band 
structure calculations, by counting the number of 
channels at a given energy. For instance, armchair 
nanotubes present two quantum channels at the 
CNP, which result in G(EF)=2G0. At higher energies, 
the ballistic conductance increases as more channels 
become available to conduction.

In contrast, the eigenstates of defect-free armchair 
GNRs in the fi rst plateau are constrained by the hard-
wall (Dirichlet) boundary conditions which require a 
node at the edges, thus excluding the cosine solutions 
[36]. As a result, a singly degenerate band is left in 
the fi rst conductance plateau.

Within the linear regime near the CNP, a closed 
expression for the the number of channels is given by  

   

in the case of an armchair CNT. For CNTs of other 
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behavior is essentially independent of the specific 
configuration of the contacts, provided that the 
graphene system is very close to the neutrality point 
and the leads support a large number of propagation 
modes. The introduction of disorder is expected 
to affect the Fano factor, but the literature does not 
agree on the results. In one case [81] the Fano factor 
turns out to be lowered by disorder, but still retains 
a value close to 0.3. In another case [82], the Fano 
factor is found to be a little lower than 1/3 for very 
weak disorder with a small peak at the neutrality 
point, and then remain around 1/3 for short and 
wide ribbons for weak disorder, and to exceed 1/3 
for stronger disorder.

Three reports of recent experimental work [83–
85] on exfoliated graphene samples confi rm the main 
theoretical predictions. Miao and co-workers [83] 
have evidenced that for wide and short graphene 
strips (W/L>4) the minimum measured conductivity 
approaches the value 4e2/πh. This result has been 
observed in particular for very broad ribbons (W>>L), 
because in this case boundary effects are negligible. 
DiCarlo and co-workers [84] and Danneau and co-
workers [85] performed measurements of the shot 
noise and observed the predicted value, F=1/3, for 
clean samples. Moreover, some other predictions [82] 
seem to be confi rmed, i.e., the increasing value of the 
Fano factor for weakly disordered systems [85] and 
the presence of a (larger than expected) peak at the 
neutrality point for very clean ribbons [84].

The coincidence between the behavior of coherent 
disordered conductors and short and wide ballistic 
graphene ribbons is a puzzling issue, whose origin, if 

dn(k) = exp[± (          +         α)]kb

2
nα
 2

N+1
 4

(40)

cn(k) = cos (          +         α)ka

2
nα
 2

N+1
 4

(41)

any, is not clearly understood.

1.5.2   High magnetic fi elds and spatial chirality of currents 

in GNRs

As seen in Section 1.1, a homogeneous perpendicular 
magnetic field B  that threads a 2-D graphene 
sheet induces Landau levels spaced as n and 
proportional to B [26, 86]. A prescription for the 
inclusion of magnetic field effects into the band 
structure of carbon-based nano-networks can be 
found in Ref. [87]. An energy structure similar to that 
of 2-D graphene is also observed for bulk electrons 
in nanoribbons, provided that the width W of the 
ribbon is larger than the magnetic length. At the 
borders of the Brillouin zone, the bands bend upward 
or downward due to the finite width of the ribbon. 
The corresponding magnetic states are located at the 
upper and lower edges.

In the simple N-N tight-binding model described 
in Section 1.2, we can account for the magnetic fi eld 
by means of the Peierls phase factors on the hopping 
parameters. By choosing the gauge properly, the 
Hamiltonian preserves the translation invariance 
along the longitudinal axis of the ribbon and can 
be conveniently expressed on the Bloch sums basis. 
Armchair and zigzag ribbons are still equivalent to 
a 2N-orbital chain and two coupled N orbital chains, 
respectively, but the hopping energies now depend 
on the chain index n=1,2,…,N [48]. In the case of 
aGNRs, the coupling parameters between the two 
chains become (see Fig. 8(a))  

 
  

whereα=2πΦ (B)/Φ0 is proportional the ratio 
between the magnetic flux Φ through a hexagonal 
plaquette  of  the honeycomb latt ice  and the 
elementary magnetic fl ux Φ0. In the case of zGNRs, 
the hopping k-dependent parameters between the 
orbitals of the chain become (see Fig. 8(c))  

   
A direct numerical diagonalization of the Hamiltonian 
provides the energy bands for an N=611 armchair 
ribbon (Fig. 8(b)) and N=353 zigzag ribbon (Fig. 8(d)) 

Figure 7   Conductivity σ of a zigzag ribbon as a function of its 

aspect ratio (length L divided by width W), in the case of graphene 

with leads and energy just above the charge neutrality point. 

For short and wide nanoribbons (0.1<L/W<0.4), the value of the 

conductivity is very close to 4e2/πh. This fi gure is taken from Ref. [79]
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and downward for hole-like particles. In fact, the 
particles cannot complete the cyclotron orbit due to 
the edges and as a consequence their energy rises. As 
in an ordinary 2-D electron gas, the states on the right 
side of the Brillouin zone are located on the upper 
edge of the ribbon, while the states on the left side are 
located on the lower edge. The double degeneracy 
of the bands is removed for edge states. This can be 
explained in terms of the Dirac equation since the 
boundary conditions for armchair ribbons entail the 
admixing of the valleys [88]. As a consequence, the 
corresponding wavefunctions hybridize thus giving 
rise to the observed structure.

In the case of zigzag ribbons, see Fig. 8(d), we 
observe a positive and a negative set of Landau levels 
around each of the two valleys, and a zero energy 
level that extends from one valley to the other. The 
states on the right side of each valley are located on 
the upper edge of the ribbon, while the states on the 
left side of each valley are located on the lower edge. 
Again, when the average transverse position of the 
states approaches the edges of the ribbon, the energy 
bands bend upward for electron-like particles and 
downward for hole-like particles. The structure of the 
energy bands around the two valleys is exactly the 
same. Again, this can be understood by considering 
the Dirac equation. In contrast to armchair ribbons, 
the boundary conditions for the wavefunction do 
not mix the two valleys and therefore, close to the 
CNP, they behave independently of each other. The 
Dirac equation also explains the peculiar structure 
of the two lowest Landau levels. The corresponding 
wavefunctions are located at one edge for a sublattice 
and behave as ordinary magnetic states for the other.

From the transport perspective, the fi rst important 
consequence of the magnetic electronic structure 
of GNRs is the theoretical prediction and the 
experimental observation of the so called anomalous 
(half-integer) Hall effect [7, 31, 89, 90], i.e., the 
magnetoconductivity is given by  

   

The large separation between the fi rst Landau levels 
allows the observation of this phenomenon at room 
temperature.

Figure 8   (a) Coupled chains equivalent to an armchair ribbon 

threaded by a perpendicular and homogeneous magnetic field B; 

(b) energy bands of an aGNR with N=611, corresponding to a width 

of about 75 nm, for B=10 T; (c) chain equivalent to a zigzag ribbon 

threaded by a perpendicular and homogeneous magnetic fi eld B; (d) 

energy bands of a zGNR with N=353, corresponding to a width of 

about 75 nm, for B=10 T

for B=10 T. We consider ribbons much wider (about 
75 nm) than those considered in the absence of a 
magnetic fi eld, in order to have the onset of Landau 
levels at relatively small magnetic fi elds.

In the case of armchair ribbons, see Fig. 8(b), 
we can clearly observe the sequence of doubly 
degenerate Landau levels. At the borders of the 
Brillouin zone, the average transverse position of the 
states approaches the edges of the ribbon and the 
energy bands bend upward for electron-like particles 

G=       (n+    )4e2

h

1
2

(42)
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In addition to this, magnetic edge states have 
peculiar and interesting properties. Since the 
direction of the carrier group velocity depends on 
the sign of their energy band slope with respect to 
the wavevector k, electron-like particles can only 
fl ow from the left side of the ribbon to the right side 
along the upper edge, and from the right side to the 
left side along the lower edge. In the case of hole-
like particles the energy bands are reversed and they 
can only fl ow from the left side of the ribbon to the 
right side along the lower edge, and from the right 
side to the left side along the upper edge. The spatial 
separation between the conductive channels that 
support current in opposite directions is called spatial 
chirality. In the case of GNRs, electron- and hole-like 
particles have opposite spatial chiralities [48]. This 
property may be exploited to manipulate the current 
and obtain a current switch [91]. In fact, the edge the 
transport currents flow along is determined by the 
position of the energy of the electrons with respect to 
the CNP, and their energy can be varied by means of 
top or back gates, even locally.

2. Disorder effects

Transport properties in graphene-based materials 
also turn out to be strongly affected by disorder, 
which can originate from impurities (charges trapped 
in the oxide, chemical impurities, etc.), topological 
defects (vacancies, edge disorder...), or long range 
deformation modes (ripples) in 2-D graphene. A 
certain control on contamination can be obtained by 
annealing processes at high temperature in ultrahigh 
vacuum, or, at low temperature, by current induced 
cleaning [92]. Importantly, the dominant scattering 
processes and resulting transport features are very 
dependent on the range of the disorder potential 
and the robustness or destruction of the underlying 
sublattice symmetries.

For massless Dirac fermions, a long range 
scattering potential, i.e., with Fourier components 
V(q) such that |q|< < |K|, will strongly reduce the 

intervalley scattering probability between the two 
non-equivalent Dirac nodes (K →K+). In the one-
dimensional case provided by armchair CNTs, 
this results in a full suppression of backscattering 

probability as demonstrated by Ando and co-workers 
[93, 94]. The impact of long range disorder in two-
dimensional graphene remains more controversial, 
with open issues concerning how weak or strong 
localization regimes are genuinely affected by the 
specifi c properties of Dirac fermions [95, 98].

In contrast, the presence of short range disorder 
(q≈k) will allow for all possibilities of intravalley 
and intervalley scattering events between K+ and K , 
leading to stronger backscattering and localization 
effects, although the possibility of a true Anderson 
localization in two-dimensional graphene remains 
fiercely debated theoretically, because of the “Dirac 
nature” of low energy excitations [99, 101].

Disorder effects in the quantum coherent regime 
can yield localization regimes [102 105], and indeed 
some experimental evidence for weak and strong 
Anderson localization regimes has been reported 
in disordered CNTs [4, 106 115], but one should 
also stress that the effects of disorder on quantum 
transport in graphene-based materials of lower 
dimensionality, such as CNTs and GNRs, are 
expected to be maximized compared to the case 
of 2-D graphene. Indeed, low dimensionality and 
confinement effects yield strong modifications of 
band structures with the appearance of van Hove 
singularities, close to which energy dispersion or 
wavepacket velocity is very low. In the forthcoming 
sections, we will focus on short range disorder effects 
by using the Anderson-type disorder potential, and 
we will review their effects on electronic states, mean 
free paths and localization phenomena.

2.1   Density of states in weak disordered CNTs and 

GNRs

The spectrum of a system may be affected by 
weak disorder only through small energy shifts 
in the energy. A constant DoS will  therefore 
remain unaffected by weak disorder. Regions of 
slowly changing DoS will only show small effects. 
Discontinuities and van Hove singularities will, in 
contrast, be strongly affected and appear smeared out 
at the energy scale of the disorder strength [116, 117].

The  DoS of a general quantum wire under the 
influence of Anderson disorder can be obtained via 
an algorithm based on diagrammatic perturbation 
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theory that takes into account localization effects 
by including multiple scattering [116]. By dropping 
the crossing diagrams within the noncrossing 
approximation (NCA) [118], we can write the self-
energy ∑(E) to all orders as a recursive expression, 
which can then be iterated numerically until self-
consistency is reached. Though the applicability of the  
NCA is not obvious, it can be justifi ed by comparing 
the contribution of various terms at low orders [116].

The original formulation of this approach is 
restricted to the special case of CNTs where all atoms 
are equivalent through symmetry and the self-energy 
takes the same value for all atoms. It can, however, be 
generalized to arbitrarily structured quantum wires 
using matrix notation. The self-energy ∑(E) that 
accounts for disorder is a diagonal matrix obeying 
the recursive relation, 

   

For a periodic system, the self-energy has the 
same periodicity as the Hamiltonian. The block-
tridiagonal matrix (E+i0+ H0 ∑(E)) can therefore 

be inverted numerically using a highly convergent 
renormalization-decimation algorithm [119, 120], 
allowing us to go beyond the energy range near the 
Fermi energy, where the special band structure allows 
analytic inversion.

Starting with ∑=0, each numerical iteration of 
this recursive relation is equivalent to one additional 
perturbative order. Typically, convergence is achieved 
after less than ten iterations, except for energies near 
a van Hove singularity, where hundreds of iterations 
may be necessary. This clearly indicates that low order 
perturbation theory breaks down near band edges.

The  local DoS (LDoS) of each orbital i in the unit 
cell can now be obtained directly from the imaginary 
part of the Green's function, 

   

Figure 9 shows this quantity in direct comparison 
with the numerically exact value obtained by sample 
averaging. The slight deviation visible at the flanks 
of the van Hove singularities is caused by the  NCA 
[116]. The elastic mean free path lel based on the DoS 
of a disordered system, displayed in Fig. 10, is no 
longer a purely perturbative quantity, but takes into 
account the scattering into localized states present at 
any given energy.

The DoS of aGNRs, see Fig. 11(a), is obtained 
straightforwardly and shows the expected smoothing 
of van Hove singularities (including those at the gap 
edges) in complete analogy to CNTs. For zGNRs 
(Fig. 11(b)), the most prominent feature in the DoS is 
the strongly broadened edge state around the Fermi 
energy, whose shape displays a clear deviation of the 
NCA from the numerical exact calculation.

[∑(E)]i, j=δijσ2
εi[(E+i0+ H0 ∑(E)) 11] 

i,j (43)

gi(E)=   Im[(E+i0+ H0 ∑(E)) 1]i,i

1
π (44)

Figure 9   Density of states g(E) of an infi nite armchair (5,5) CNT under the infl uence of Anderson 

disorder. Dashed line (grey): g(E) of the clean system displaying the van Hove singularities. Solid 

line (blue): g(E) from Eq. (44). Data with error bars (green): values obtained numerically by sample-

averaging. Adapted from Ref. [117]

Figure 10   The elastic mean free path lel in a (5,5) CNT with 

Anderson disorder of strength σε=0.5 eV. Both lines are obtained 

from Eq. (49). In the case of the dashed line, g(E) and Nch correspond 

to the values of the clean system, resulting in discontinuities at the 

band edges. For the solid line, the disorder effects on g(E) and Nch are 

taken into account
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2.2   Elastic mean free paths

The elastic mean free path (lel) is a key quantity in 
mesoscopic transport. Hereafter we focus on the case 
of short range disorder, which allows us to illustrate 
common properties of transport length scales in 
graphene-based low dimensional materials. The 
Anderson disorder model is the most generic case 
for investigating localization phenomena in low 
dimensions. In this model, the onsite energies of pz 
orbitals assume random values within an interval 
( W/2, W/2) with a given probability distribution. 
Hereafter  we assume a uniform probabil i ty 
distribution i.e., P=1/W.

In a situation of weak disorder, within the 
Born approximation scheme, lel can be derived at a 
certain degree of approximation, thus enabling the 
possibility to extract an analytical expression. The 
simplest approximation for 2-D graphene can be 
derived as follows. The total DoS can be written as  

   
As a result, writing lel=vFτ, and using a simple Fermi 
Golden Rule approach for the elastic scattering 

timeτ(τ 1=(2π/h)ρ(EF)W
2/12 ), we obtain  

   

which diverges when |E|→0. This crude estimation 
pinpoints a difficulty in calculating transport length 
scales when the Fermi level lies close to the Dirac point. 
A numerical calculation within the Kubo approach 
allows the evaluation of lel at a quantitative level in 
2-D disordered graphene with Anderson scattering 
potential. In Fig. 19 (inset) (adapted from Ref. [152]), 
lel is shown for W=1, 1.5, 2, 2.5 inγ0/2 units and 
ranges from several tens of nanometers down to a few 
nanometers close to the Dirac point (for W≈3.4 eV).

In quasi-1-D systems (such as CNTs and GNRs), 
scattering angles are restricted to two cases. Forward 
scattering events at zero angle lead to momentum 
relaxation but do not affect the elastic transport 
length scale. Only the backscattering events at an 
angle of π are taken into account in the derivation of 
the elastic mean free path lel. By using the Anderson 
disorder model, White and Todorov derived an 
analytical formula for the elastic mean free path 

Figure 11   (a) Density of states g(E), number of channels Nch, elastic mean free path lel and localization length lloc of 

an armchair GNR of width Na=20 under the infl uence of Anderson disorder (σε=0.2 eV). Dashed lines (grey): g(E) 

and Nch of the clean system. Solid lines (blue): g(E) from Eq. (44), Nch obtained as transmission through a cross section 

through an infi nite system with self-energy from Eq. (43) and lengths obtained from these. Data with error bars (green): 

values obtained numerically by averaging over about 180 samples of length to 20000luc. (b) The same for a zigzag 

GNR of width NZ=18. The most prominent feature is the disorder-broadened peak in the DoS caused by the edge 

state that causes a strong reduction in the elastic mean free path and the localization length. The analytical values 

fail to describe the true shape of this feature because the expressions neglect the difference in the various channels. 

Adapted from Ref. [117]

ρ(E)=( 3a2/2π)|E|/(hvF)
2 (45)

lel≈(γ0/W)2α|γ0|/|E|                (46)
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Figure 12   The elastic mean free path lel in a (5,5) CNT with 

Anderson disorder of strength σε=0.1 eV. The numerical results 

are obtained from the transmission of a single disordered unit cell, 

averaged over 4000 samples as lel=L/(Nch/〈T〉 1) . The analytical 

result is obtained via Eq. (49) using g(E)  of a disorder-free system

(lel) close to the CNP [94]. For armchair metallic 
nanotubes, they obtained  

   

showing that, for a fixed disorder strength, lel will 
increase linearly with the nanotube diameter, a 
property unique to these systems and pinpointing 
long ballistic systems. Triozon and co-workers [122] 
numerically confi rmed such a prediction and further 
reported the strong energy dependence of lel close 
to the onsets of new subbands. Similarly, in metallic 
N-aGNRs [36] lel was derived as  

   

Therefore, both low dimensional carbon systems 
show a mean free path that diverges with increasing 
diameter or ribbon width for a fi xed disorder strength 
W. Note however that only armchair nanotubes 
really display 1-D massless Dirac fermions close to 
the CNP, since there is a gap opening in all GNRs due 
to edge boundary conditions.

An expression for lel that holds at arbitrary energies 
can be derived from the Fermi Golden Rule [117] 

   

with luc the length of the unit cell and the sum 
running over all orbitals i within one unit cell. In 
this form, the expression can be applied to arbitrary 
quantum wires, including GNRs, where it also covers 
the special case of edge disorder by making σ2

εi  
dependent on the orbital number i.

Neglecting multiple scattering, the elastic mean 
free path lel and the diffusive transmission Tdiff are 
defi ned in terms of the LDoS gi(E) of the disorder-free 
system. Likewise, Nch is defi ned by the leads, where 
it follows an exact integer step function. Near band 
edges, this diffusive transmission is discontinuous, as 
can be confi rmed numerically to arbitrary precision, 
by computing it as the sample average〈T〉of the 
transmission of many disorder configurations, as 
displayed in Fig. 12.

For stronger disorder and extended disordered 
regions, the elastic mean free path is no longer a 
purely perturbative quantity due to the fact that 
it depends on the DoS and has to include non-

perturbative effects near van Hove singularities. We 
can, however, retain Eq. (49) by simply including 
the non-perturbative effects in gi(E) using Eq. (44). 
Furthermore, the number of channels Nch must also 
take into account the non-perturbative effects near 
band edges, which can be achieved by including 
the self-energy term Eq. (43) in the calculation 
of the transmission through a cross section of an 
infinite quantum wire as described in Ref. [117]. 
Incorporating these effects, we obtain the elastic 
mean free path in an infinitely long disordered 
quantum wire as displayed in Fig. 10.

 
2.3   Quantum interference effects and localization 

phenomena in disordered graphene-based materials

Knowledge of the mean free path lel in quasi-1-D 
systems is crucial since it allows the identifi cation of 
the frontier between the ballistic and the diffusive 
propagation of wavepackets in weakly disordered 
systems. Assuming that the transport regime remains 
coherent, a new class of scattering paths will yield 
an important contribution to the resistance, known 
as the weak localization correction, which eventually 
turns the metallic state to an insulating one [102
105]. The localization length ξ is the other physical 
length scale that defi nes such a transition, where the 
conductance decays exponentially with the system 
length as G≈G0 exp ( L/ξ).

lel=lucNch[π2      σ2
εi g

2
i (E)] 1

i

∑
uc

(49)

lel=12(γ0/W)2(N+1)acc                           (48)

lel=18 3acc(γ0/W)2N                          (47)
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Weak localization phenomena have been observed 
in multiwalled CNTs with diameters ranging 
from ~3 20 nm [106, 107, 110 113]. Similarly, weak 
localization has been recently clearly unveiled in 
GNRs with widths in the order of ~200 500 nm [123]. 
In addition, a transition to weak anti-localization has 
been reported [14, 123, 124]. Weak anti-localization 
(WAL) in graphene-based materials is argued to 
originate from some pseudospin-induced sign 
change of the quantum correction, similar to what is 
observed in systems with strong spin-orbit coupling 
[95 98]. For the same kind of disorder potential, 
pseudospin symmetries might not be preserved for 
GNRs with small width. We can expect that the effect 
of edge disorder and intrinsic defects (topological, 
vacancies, adsorbed impurities, ...) will play an 
increasing role as GNR width decays from ~20 nm 
down to ~5 nm.

It is thus genuinely important to evaluate the 
varying effects of disorder on quantum transport 
as the dimensionality or symmetries are changed. 
It is worth stressing that, in order to unveil weak 
localization effects, an external magnetic field is 
generally applied to tune the intensity of quantum 
corrections. Indeed, the phase of the quantum 
wavefunction is modified by the magnetic field 
(through a term giving the circulation of the potential 
vector along the scattering path), which reduces 
the probability of return to the origin and enhances 
the conductance (this phenomenon is known as 
the negative magnetoresistance effect). However, 
for low dimensional systems such as CNTs, it was 
demonstrated that a magnetic field has also severe 
consequences on the band structure, so that the 
resulting magnetofi ngerprints in localization regimes 
become more complicated [106, 107, 110 113] to 
follow. This will also apply to magnetoresistance 
effects in GNRs with width  ≤10 nm.

Let us illustrate the quantum localization effects 
in GNRs. As seen in Section 1.2, zGNRs display very 
peculiar electronic properties, with wavefunctions 
sharply localized along the ribbon edges for energies 
in the vicinity of the CNP. Using a conventional 
Landauer Büttiker approach [36 38, 125], one 
can explore the scaling properties of the quantum 
conductance of these systems. In Fig. 13, the energy-

dependent conductance for both zGNRs and 
aGNRs of width ~20 nm are shown for pure, weak 
disorder (W=0.5) and strong disorder (W=2) limits, 
respectively.

In the weak disorder limit (W=0.5, inset of Fig. 
13(a)), aGNRs appear to be much less sensitive to 
disorder effects than zGNRs with the same width. 
As can be seen in the insets of Figs. 13(a) and (b), the 
averaged normalized conductances are exponentially 
damped, following〈 lnG/G 0〉≈L/ξ,  where an 
average over ~400 different disorder configurations 

Figure 13   (a) Conductance for a single disorder confi guration of a 

zigzag (solid blue line) and an armchair (dashed red line) GNR with 

width  ≈20 nm for W=0.5. Black lines correspond to ideal zigzag (solid 

lines) and armchair (dashed lines) ribbons. Inset (a) Configuration 

averaged (over ~400 samples) normalized conductance as a function 

of GNR length for both zigzag and armchair GNRs. The solid blue 

(dashed red) arrow shows the energy at which the calculations for the 

zGNR (aGNR) were performed. (b) The same information as for (a) but 

for a larger disorder strength (W=2). Adapted from Ref. [152]

（a）

（b）
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Figure 14   Localization length of a (5,5) CNT. Dashed line (grey): value obtained from Eq. (51) 

by naively using the perturbative values for lel and  N⊥ based on the self-energy and DoS of the 

disorder-free system. Solid line (blue): value based on the non-perturbative quantities including 

disorder in the self-energy and DoS. The numerical values indicated by error bars (green) are 

obtained from logarithmic sample averaging. Adapted from Ref. [117]

has been performed. From these calculations, ξ is 
found to be up to two orders of magnitude smaller in 
zigzag than in armchair ribbons in the low disorder 
limit (W=0.5), for an energy value far from the close 
vicinity of the CNP (following [36 38]). In contrast, 
for disorder strength as large as W=2 (inset of Fig. 13 
(b)), the localization lengths for both types of ribbons 
are almost equal, showing that edge symmetry does 
not play any role. This result can be understood by 
the lower transport dimensionality in the case of 
zigzag edge symmetry, driven by more confined 
wavefunctions [27 29, 31, 33, 35].

An important result of mesoscopic physics is that 
there exists a fundamental relationship between lel 
and ξ known as the Thouless relation [126]. In a 
strictly 1-D system, Thouless [126] demonstrated that  

           ξ=2lel                                                (50)
whereas for quasi-1-D systems (with N⊥(E) conducting 
channels), the relation was generalized as  

      ξ(E)=[β(N⊥(E) 1)/2+1]lel(E)                  (51)
with β a factor dependent on the time-reversal 
symmetry [127]. Avriller and co-workers [128] 
recently confirmed numerically such relation by 
studying chemically doped metallic CNTs.

As was shown in Ref. [117], Eq. (51) still holds to 
good precision near van Hove singularities on the 
condition that the non-perturbative effects of multiple 
scattering are correctly included in the calculation of 
the DoS and the number of channels N⊥ as described 
before for the elastic mean free path. As can be 
seen in Fig. 14, this correction greatly improves the 
agreement with the true value obtained via sample-
averaging. The remaining deviation is predominantly 
caused by the fact that the different conduction 
channels have very different velocities and thereby 

very different elastic mean free paths, whereas Eq. (51) 
is based upon the assumption of equivalent channels 
with one common elastic mean free path.

The expressions for the DoS and the localization 
length obtained and demonstrated before for CNTs 
are sufficiently general to apply to GNRs as well. 
The data in Fig. 11(a) demonstrate that the values 
obtained analytically do indeed match the results of 
numerical sample averaging. For semiconducting 
CNTs and GNRs, the behavior near the gap is 
correctly reproduced, showing a slight disorder-
induced reduction of the gap width.

As can be seen in Fig. 11(b), the expressions still 
hold for zGNRs over most of the energy spectrum, 
and even qualitatively describe the effects of the 
edge state around the Fermi energy: the extremely 
high DoS of the Fermi energy is smeared out in the 
energy range and the localization length is drastically 
reduced not only in the narrow region of the low-
dispersive edge state itself, but due to the disorder-
induced broadening in energy in an extensive 
region around the Fermi energy. However, the 
expressions fail to describe the actual shape of the 
energy-broadened peak in the DoS, as well as the 
flanks of the suppressed region in the localization 
length. These strong deviations can be traced to the 
assumption of equivalent conduction channels that is 
made in Eq. (51). Near the edge state, this assumption 
fails completely.

2.4   Edge disorder in GNRs

In contrast to two-dimensional graphene and CNTs, 
GNRs are subject to chemical passivation and 
roughness at the edges. In some cases, the nature of 
the chemical groups that passivate the edges (usually 
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H) can be determined experimentally, thus enabling 
a certain control of the ribbon. Unfortunately, spatial 
regularity of the edges is much more difficult to 
achieve and state of the art etching techniques cannot 
avoid roughness. Direct or indirect evidence of 
edge disorder has been observed in many different 
graphene samples, independently of the technique 
exploited to fabricate them.

In the literature, the edges of graphene sheets from 
highly oriented pyrolitic graphite have been directly 
investigated by scanning tunneling microscopy (STM) 
in association with scanning tunneling spectroscopy 
(STS) [129 132] and by direct contact atomic 
force microscopy (AFM) [133, 134]. Micro-Raman 
spectroscopy has also proved to be a valuable tool 
for studying the armchair or zigzag orientation of the 
ribbon edges locally [135]. In all these experiments, 
the structure of the edges turned out to be very 
irregular, with alternation and mixing of zigzag 
and armchair terminations, protrusions and dents 
or more complex structures. In general, armchair 
segments are considerably longer than zigzag 
fragments, thus evidencing a lower stability for the 
latter. The measurement of the transport properties of 
lithographically etched ribbons [18, 19] also provides 
indirect evidence of the edge roughness. In particular, 
hints of inactive edge regions and dependence of the 
maximum resistivity on the ribbon width have been 
related to a possible disorder on the edges.

Similar conclusions have been drawn for ultrathin 
epitaxial graphene grown on silicon carbide crystals 
[6, 136]. In this case, an indication of edge disorder 
(due to roughness or chemisorbed molecules) comes 
from the lower than expected number of conductive 
modes, due to inactive edge regions, and from the 
behavior of weak localization.

Innovative techniques for fabrication and etching 
of graphene ribbons have been shown to reduce the 
edge irregularities considerably, besides allowing 
the realization of ultranarrow (few nm) structures. 
The chemical technique developed by Dai and co-
workers [24] enables formation and selection of long 
and ultrasmooth nanoribbons. Despite the high 
spatial regularity, field-effect transistors based on 
these systems [137] have shown a non-negligible 
scattering related to disorder at edges. The very 

recent STM lithographic technique developed by 
Tapasztó and co-workers [138], allows the patterning 
of ultranarrow structures with the possibility of 
choosing orientation and width with almost atomic 
precision. Nevertheless, STM measurements on 
ribbons with a width of a few nm have revealed 
irregular oscillations in the electronic DoS, thus 
suggesting the possible presence of edge disorder 
and its importance for very narrow ribbons.

Several different edge disorder models for GNRs 
have been proposed in the literature. The basic idea 
is to start from a tight-binding Hamiltonian for a 
clean and regular ribbon (in general with hydrogen 
passivation on the edges), and then adding [37] or 
removing [36, 139 141] carbon atoms at the edges, or 
varying the width of the system [142] to account for 
roughness, or introducing Anderson disorder [143]. 
The most proper way of adding/removing atoms at 
the edges avoids fi nal confi gurations that might cause 
steric problems. In practice, only H C C H groups 
can be removed or added at the edges of an armchair 
ribbon, while particular care must be adopted when 
the disorder goes deeper than the fi rst row in zigzag 
ribbons. 

The transport properties of metallic aGNRs have 
been investigated in the presence of both roughness 
[36, 141] and Anderson disorder [143] on the edges. 
In the case of vacancies on the edges, the differential 
conductance of the system is considerably reduced 
and even a weak disorder on the two external rows 
induces a localization process, see Fig. 15(a). The 
localization length turns out to be particularly low 
around the neutrality point even for 5% of vacancies. 
This is attributed to a small gap opening as a result 
of the crossing of the two bands around E=0 [36] 
and whose width is inversely proportional to the 
width of the ribbon [141]. By increasing the level of 
disorder on the two most external rows, the system 
can be envisioned as a sequence of metallic and 
semiconducting fragments and the localization 
length decreases considerably within the energy 
range that corresponds to the semiconductor gap, 
see Fig. 16. Even outside this region, the conduction 
ability is seriously jeopardized, with a localization 
length of few tens of nm. Similar results have been 
also recently obtained by Evaldsson et al. [140].
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infinitely extended ribbon. From this perspective, 
it is possible to obtain an effective tight-binding 
Hamiltonian, where the eigenfunctions of the metallic 
fragment play the role of “orbitals”, with equispaced 
site energies, and the hopping energies between two 
subsequent fragments are related to the properties of 
the semiconductor fragment in between. The result 
is a one-dimensional impurity band insulator with 
conductivity  

   

where Lav＞W is the average length of the metallic 
grains, Eg is the energy gap of the semiconductor 
fragments, T is the temperature, T*≈|γ0|D/L2

av
  (with 

D the width of the ribbon) and α is a numerical 
coeffi cient of the order of 1.

In the case of weak Anderson disorder on the 
edges, the conductance of metallic aGNRs is only 
slightly affected, in particular within the energy 
region that corresponds to a single channel, see Fig. 
15(b). This result can be explained by considering 
the high kinetic energy of the states around the 
CNP [143], which are therefore scarcely affected by 
potential fl uctuations. Just to give an idea of the low 
sensitivity of these states to disorder, let us consider 
a constant potential on both edges. It turns out that 
the structures of the highest valence band and the 
lower conduction bands do not change around the 
CNP, apart from a small shift in energy and the rising 
of an energy gap whose width is always small and 
considerably suppressed for larger ribbons, see Fig. 
17. The linear energy dispersion is thus preserved 
and the gap is almost negligible because the states 
that correspond to the bands around the neutrality 
point are spread all over the section of the system 
and thus the effect of the edge potential is weakened 
by averaging over the chains.

The two types of disorder, always confi ned to the 
two outer rows of the metallic aGNRs, have different 
consequences. However, there is no inconsistency 
in this, since the nature of the perturbation is 
completely different in the two cases. Roughness 
tends to introduce semiconductor islands and then a 
gap. Weak Anderson disorder does not perturb the 
structure of the energy bands close to the neutrality 
point, and therefore the backscattering is limited, at 

Figure 15   (a) Differential conductance of a metallic armchair ribbon 

(N=53) with ~10% of vacancies on the edges. Couples of atoms 

have been removed on the most external rows over a length of 

about 1 µm. For the calculation, we adopted a simple tight-binding 

Hamiltonian with zero site energy and hopping energyγ0= 2.7 eV. (b) 

Differential conductance for the same system with Anderson disorder 

on the edges. The energy of the edge sites varies randomly in the 

range ±V with V=0.25, 0.5 and 0.75 eV over a length of about 1 µm

Figure 16   One half the amplitude of the localization length for a 

metallic aGNR with N=53 for 5% (a) and 50% (b) concentrations of 

defects at the edges. Taken from Ref. [36]

σ≈e 2   αEg/T         for  T＜T*      (52)

The effect of sequences of large conducting 
and semiconductor armchair fragments has been 
investigated in detail by Martin et al. [142]. The 
length of each metallic fragment is such as to 
preserve the band structure of the corresponding 
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least for wide ribbons.
In the case of roughness for semiconductor 

aGNRs, the system goes toward a strong localization 
regime, as in the case of metallic ribbons. However, 
the disorder induces states in the region of the energy 
gap [37, 139], thus allowing current tunneling for not 
very long systems. Therefore, a compromise between 
the width and the length of the ribbon must be found 
in order to retain the semiconductor behavior of the 
strip. In particular, the ribbon must be short enough 
to preserve the extension of the states just outside the 
gap all over its length and long enough to prevent 
tunneling through the states induced within the 
energy gap. As reported at the end of the section, 
this can considerably affect the Ion/Ioff ratio for GNR-
based fi eld-effect transistors [144 146].

In the case of  zigzag ribbons,  the almost 
dispersionless edge states around the neutrality 
point play a key role in determining the properties 
of the disordered system. In the literature, different 
behaviors have been observed depending on the 
specific model of edge disorder, with results not 
always consistent. Areshkin and co-workers [36] 
have found that zGNRs are much less sensitive to 
edge disorder than aGNRs, especially in the energy 
region where only one conductive mode is active. 
For reasonably wide strips and for an erosion of 50% 
C atoms on the eight outer rows, the localization 
length turns out to be of the order of 10 μm (at 

least ten times the value for an aGNR with a much 
weaker disorder). To explain this, they consider that 
the states within the first conductive channel can 
be divided into two groups: almost dispersionless 
edge states within a very small energy range 
around the neutrality point E=0 and bulk states 
with energy outside this range. The width of the 
range is determined by the transverse width of the 
ribbons. The effect of roughness is mostly on the edge 
states, and this explains why the bulk states are not 
signifi cantly affected by disorder. On the other hand, 
the conductance is expected to be much depressed 
around the neutrality point, where the effect of 
disorder is larger. This is only partially observed in 
the simulations [36], where the conductance seems to 
have a strong resistance to roughness compared with 
to the armchair case.

A rather different conclusion was obtained by 
Querlioz and co-workers [139], who evaluated and 
analyzed the wavefunction and the DoS of zigzag 
ribbons. From these data, the mobility edge was 
extracted. Their conclusion was that no ribbon 
has zero mobility edge and that the resistance 
to edge disorder for zGNRs vanishes as soon as 
more than one edge row is eroded. In this case, 
the roughness induces an Anderson insulator 
behavior independently of the zigzag or armchair 
orientation of the ribbon. This result, in agreement 
with other recent calculations [141], seems to be in 
striking contrast with the simulations in Ref. [36]. 
More detailed analysis focusing on specifi c disorder 
models could unravel this ambiguity. Another 
very important issue, which might lead to different 
results, is the inclusion of hopping between second 
nearest neighbors in the tight-binding Hamiltonian. 
This would entail a coupling between carbon atoms 
belonging to the same sublattice and thus a current 
along the edges of the zGNR [147].

Weak Anderson disorder on the edges leads to 
the opening of a gap in the conductance of zigzag 
ribbons [143]. Some results are reported in Fig. 18. 
A weak potential on the edges has a deep impact on 
the electronic spectrum and then on the transport 
properties around the CNP. The states corresponding 
to the two almost flat bands at E=0 at the borders 
of the first Brillouin zone (k=±π/a) are completely 

Figure 17   Gap between the highest valence band and the lowest 

conduction band in the presence of a constant potential W on the 

two edges of the armchair ribbon for N=14, 35, 56, 77, 98, 119, and 

140. The larger is the strip, the smaller is the gap
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Figure 18   Differential conductance of a zigzag ribbon (N=32) with 

Anderson disorder on the edges. The energy of the edge sites varies 

randomly in the range ±V with V=0.25, 0.5, and 0.75 eV over a 

length of about 1 µm

localized on the edges of the ribbon. Therefore, a 
potential on the edges moves (upward or downward) 
the energy of these states. As a consequence, the 
electrons are subject to backscattering, especially in 
the region where most of the onsite disorder energies 
are concentrated, i.e., around the CNP. This induces a 
gap in the conductance, whose width increases with 
the strength of the potential.

We conclude this section by giving a look to the 
possible effects of edge roughness on the behavior of 
graphene-based (fi eld-effect or Schottky-barrier fi eld-
effect) transistors [144 146, 148, 149]. These systems 
are usually investigated with the help of Schrödinger
Poisson solvers, which allow the self-consistent 

evaluation of the electrostatic potential. The results 
presented in the literature agree that edge disorder 
reduces the Ion current and increases the Ioff current, 
thus making their ratio worse. The decreasing of 
Ion is due to quantum transport effects, as seen 
before, and to self-consistent electrostatic effects that 
compensate the vacancies with an accumulation 
of charge on the atoms close to it. The increasing 
of the leakage current is due to the tunneling of 
electrons through the states induced in the band gap 
region or through conducting zigzag fragments. The 
degrading of the Ion/Ioff ratio is thus a serious issue 
for the efficiency of transistors based on very small 
ribbons. On the other hand, larger ribbons would 
reduce the gap tremendously. A recent theoretical 
analysis by Ouyang et al. [149] showed, in agreement 

with experiment [137], that the presence of optical 
phonons (OPs) considerably reduces the effect of 
edge irregularities. In fact, electrons lose a large 
amount of energy by emitting an OP and they can 
hardly return to the source after being reflected by 
the edges. As a consequence, elastic backscattering 
is only relevant when occurring close to the source, 
where electrons retain their energy before phonon 
emission.

2.5   Minimum conductivity and charge mobility in 

graphene-based systems

In semiconducting materials (such as silicon 
nanowires [121]), charge mobility is a very important 
quantity to assess the transport efficiency of the 
system and the corresponding device performance. 
By defi nition, the charge mobility is

   μ(E)=σsc(E)/en(E)                           (53)
where 
              σsc=e2ρ(E)v(E)lel                                   (54)
is the semi-classical conductivity deduced from the 
Einstein formula, with ρ(E) the DoS, n(E) the charge 
density at energy E, lel  the elastic mean free path, and   
the elementary charge. Close to the charge neutrality 
(or Dirac) point,  the measured experimental 
conductivity of various samples was found to be in 
the range ~2 5 e2/h, although the charge mobility was 
changing by almost one order of magnitude [5 14]. 
This effect has been attributed to the change of charge 
density due to the doping from the substrate and/or 
contacts.

On the theoretical side, the calculation of the 
Kubo conductivity for 2-D graphene with short 
range disorder, and within the self-consistent Born 
approximation, yields σmin

xx =4e2/(πh)(h is the Planck 
constant) for the two Dirac nodes [150], which is 
typically 1/π smaller than all the experimental data. 
Numerical calculations using the Kubo formula 
confirm such a prediction [151, 153]. Amazingly, as 
discussed in Section 1.5.1, this value also comes out 
in a completely ballistic transport regime, as a contact 
effect.

In contrast, by assuming that the Dirac fermion 
scattering is dominated by Coulomb scattering from 
ionized impurities near the graphene plane, Nomura 
and MacDonald [151] could numerically reproduce 
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the low-energy dependence of the measured charge 
conductivity, and found that σmin

xx ≈e2/h close to 
the Dirac point, in better agreement with most 
experiments. In Ref. [151], the authors used the full 
quantum approach of the Kubo formula, describing 
the long range disorder effects via a screened 
Coulomb potential, and performing a finite size 
scaling analysis.

Other calculations within the semi-classical 
Boltzmann approach or the Landauer approach 
have also reported the effect of screened Coulomb 
potentials on charge conductivity [82, 154, 155] with 
similar conclusions, and although the existence of 
a true universal minimum conductivity could not 
be rigorously answered, an interpretation in terms 
of saturation of the conductivity due to charged 
impurity induced inhomogeneities, occurring at low 
densities, was proposed [154].

These results suggest that the intrinsic disorder 
in graphene could be of electrostatic (Coulomb 
scattering) nature, likely due to charges trapped in the 
oxide. We also note that the effect of graphene plane 
deformation modes (known as ripples), frozen when 
the exfoliated layer is deposited onto an oxide layer, 
has been investigated by introducing an effective 
random gauge potential [97, 156, 157]. The authors 
found that a temperature independent minimal 
conductivity will take place, with full suppression 
of localization effects owing to the absence of 
intervalley scattering processes, in agreement with 
temperature dependent experiments [21].

Concerning the contr ibution of  quantum 
interference effects and the transition to an Anderson-
type localized regime, the issue is still controversial. 
In presence of strong intervalley scattering processes, 
which is best realized for short range disorder 
potential, conventional weak localization phenomena 
have been predicted [95, 158] and observed [123]. 
The preservation of the pseudospin symmetry 
also allows for the manifestation of a spectacular 
symmetry dependent anti-localization effect [95, 
123, 158]. The transition to a localized Anderson-
type regime is more debated [99, 100], with no 
experimental evidence to date in such materials. The 
question is how quantum interference effects and 
localization phenomena for Dirac fermions depend 

on the underlying disorder potential characteristics, 
and whether the conventional 2-D scaling theory of 
localization [104, 105] is applicable or not in today's 
graphene materials.

Several authors have challenged the single para-
meter scaling theory of Anderson localization by 
studying the so-called beta function β(g)=d ln g/d ln L, 
with g the dimensionless conductance and the system 
size. By computing the scaling behavior of β(g), the 
localization versus delocalization nature of electronic 
states can be analyzed. In conventional 2-D systems, 
the theory predicts that all states are localized, 
independently of the disorder characteristics, provided 
time reversal symmetry is preserved [104, 105].

Recent numerical studies claim that in the presence 
of short range disorder (Anderson-type potential) 
and intervalley scattering, all states are indeed 
localized even for Dirac fermions [152]. However, 
it is interesting to note the typical values obtained 
for transport length scales. By varying the disorder 
strength from W≈3.4 eV to W≈2 eV, the elastic mean 
free path was found to range from a few nm to 
several tens of nm close to the Dirac point (Fig. 19(a) 
inset), whereas the localization length ξ given by 
ξ=le exp(πσsc/G0) increased from 20 nm to 10 μm (not 
shown here, see Ref. [152]). The energy dependence 
of ξ was also shown to be strongly driven by that 
of the semi-classical conductivity with a minimum 
localization length at the Dirac point [152].

In case of long range disorder, the situation is 
more complex. Indeed, in the absence of intervalley 
scattering, Dirac fermions cannot be trapped by a 
potential well, irrespective of the well depth. This 
suggests the robustness of states against an insulating 
tendency. A different kind of scaling behavior of the 
conductance at the Dirac point was first proposed 
in Ref. [159]. The key result was the occurrence 
of a quantum critical point at half filling giving a 
universal value of the conductivity of the order of 
e2/h, in contradiction with a localized nature which 
gives a zero conductivity in the thermodynamic limit. 
Other numerical studies [101, 160] found a different 
scaling fl ow for the beta function of the Dirac model, 
thus indicating that all states remain delocalized 
whatever the strength of the underlying disorder, 
but with a conductivity increasing with length up 
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to infinity. The situation changes in the presence of 
ripples, which can be described by random vector 
potentials. Nomura and co-workers [156] further 
deepened the scaling behavior of both transport 
coefficients σxx and σxy and found that massless 
Dirac fermions exhibit a critical behavior similar to 
that of the quantum Hall transition point, but in the 
absence of uniform magnetic fi eld.

An important observation is that to date, the 
theoretical description of disorder in graphene 
layers (either deposited on a substrate or suspended 
between contacts) has been mostly achieved at a 
phenomenological level. Usually, short range and 
long range scattering potentials are described by some 
onsite potential fl uctuations (Anderson-type) and by 
Gaussian correlated potentials, respectively. Although 
the study of deformation modes known as ripples 
is at the origin of predictions of peculiar transport 
phenomena [101, 161], a realistic description of 
Coulomb scatterers is however needed to allow a true 
experimental exploration of localization phenomena 
in massless Dirac fermions. Novikov [162] first 
discussed the possible asymmetry in the transport 
cross section for a Dirac electron scattered by a 
positively or negatively charged Coulomb impurity. 
Self consistent RPA-Boltzmann theory also found 
Coulomb scattering induced conductivity asymmetry 
[163], without the possibility however to tackle 
this with localization effects. A recent theoretical 

study investigated quantum coherent transport and 
transport scaling lengths for intentionally chemically 
doped (and disordered) 2-D graphene layers 
with a realistic and self consistent description of 
impurity scattering potentials [164]. By incorporating 
substitutional boron (or nitrogen) impurities, 
elastic mean free paths, as well as the semi-classical 
conductivity and charge mobilities were numerically 
estimated by the Kubo approach. Some onset of 
quantum interference effects was also observed, even 
at the Dirac point, but this contribution was found 
to be too small to explore the possible underlying 
scaling behavior of the beta function, even in the case 
of strong doping (such as 4%).

Finally, although conductivity is a well defined 
quantity, 2-D graphene manifests specifi c properties 
that make the use of Eq. (53) somehow ill-defined. 
Indeed,  when the energy of  charge carriers 
approaches the Dirac point, the semi-classical 
conductivity remains finite, whereas μ→∞ as the 
charge density n→0.

In Fig. 19, we show the result of a numerical 
calculation using the Kubo approach (see Ref. 
[152] for details). The evolution of μ is shown as a 
function of the Anderson disorder strength W. The 
energy-dependence of μ(E) and lel(E) are found to be 
similar. In the close vicinity of the Dirac point, the 
downscaling of μ with W follows the Fermi Golden 
Rule prediction, while it diverges when approaching 

Figure 19   (a) Charge mobility as a function of carrier density and mean free path (inset) for W=1, 1.5, 2, 2.5 (from top to 

bottom), from Ref. [152]. (b) Experimental mobility, from Ref. [165]

（a） （b）
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the Dirac point. Experimental data from Ref. [165] are 
also shown in Fig. 19 (b) for comparison. Different 
samples with varying quality show a similar trend, 
although patterns from different samples can 
substantially differ in shape indicating fl uctuations in 
the disorder characteristics.

It is clear that by further reducing the dimen-
sionality of the graphene material, charge mobilities 
will be reduced. Recent transport measurements 
on nanoribbon-based field-effect transistors show 
mobilities in order of μ≈100 300 cm2/(V·s) [137], 
which are thus reduced in comparison with the 2-D 
graphene measurements (reported values can be as 
large as 100.00 cm2/(V·s) [7 14]). However, the lateral 
size reduction allows for a larger energy gap, which 
ensures more effi cient fi eld-effect effi ciency.

3. Conclusions

To conclude, in this review we have reported on 
the basics of electronic and transport properties in 
low dimensional carbon-based materials including 
2-D graphene, graphene nanoribbons and carbon 
nanotubes.  It  has been shown that although 
nanotubes and nanoribbons share similar electronic 
confi nement properties due to their nanoscale lateral 
sizes, the effects of boundary conditions in the 
perpendicular direction with respect to the system 
axis trigger very different transport features when 
disorder is included. Close to the charge neutrality 
point, the robustness of armchair nanotubes against 
disorder is absent in armchair nanoribbons, which 
cannot be classified in the family of 1-D massless 
fermions, owing to edge-induced gap openings. 
Nanoribbons with zigzag symmetries are even more 
spectacularly sensitive to disorder owing to the 
edge state-driven lower transport dimensionality. 
In contrast, for charge carrier energies lying in the 
higher energy subbands, the properties of nanotubes 
and ribbons present similar features, with strong 
energy dependence of elastic mean free paths and 
localization phenomena.

Additionally, the transition from a quasi-1-D 
to a true 2-D system results in strong damping of 
disorder effects, with enhanced elastic mean free 
paths together with strong damping of quantum 

interferences. In particular, the study with Anderson 
disorder demonstrates that even in the strongest case 
of short range scattering potential (with possible 
short range potential fluctuations as large as 1 eV), 
the computed 2-D localization lengths remain in the 
range of several hundred nanometers to microns. 
One can thus conclude that to observe weak and 
strong localization regimes, the presence of edges as 
well as a reduced lateral size are essential factors.

Finally, the possibility to produce and control 
defect densities either through intentional doping or 
by irradiation techniques (that produce vacancy-type 
defects) could open spectacular avenues to explore 
quantum transport phenomena (including quantum 
Hall effects [166]) in low dimensional materials, 
for which a realistic description of both underlying 
electronic structures as well as superimposed 
disorder potentials would be theoretically possible, 
allowing unprecedented exploration of experimental 
data at a quantitative level.
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