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ABSTRACT OF THESIS 

 

CHARGE TRANSPORT IN ELECTRONIC-IONIC COMPOSITES 

 

The goal of this thesis is to generate fundamental understandings of charge transport 
behaviors of composites consisting of garnet structured Al substituted Li7La3Zr2O12 (LLZO) 
electrolyte and LiCoO2 electrode. In order to take full advantage of all-solid-state batteries, 
bulk type composite electrodes should be introduced to increase energy and power density. 
However, the charge utilization of bulk type composite electrodes is quite low. Understanding 
ionic conduction behavior is, therefore, important for improving the performance of all-solid-
state batteries, because ion conduction within solids depends on effective pathways. Electronic 
conductivity can be easily compensated by adding carbon black, but ionic conductivity can 
only depend on composites electrode itself. Here, we show that electronic and ionic 
conductivities of composites consisting of LiCoO2 and Al doped LLZO can be achieved 
separately. 3D reconstructed image obtained from focused ion beam-scanning electron 
microscope (FIB-SEM) demonstrates that porosity, percolation, and grain boundaries often 
play antagonistic roles in controlling the charge transport behaviors in the composite 
electrodes, resulting in an overall conductivity dominated by electrons. This work suggests an 
approach to optimize electronic and ionic conductivities for bulk type composite electrodes, 
which may eventually be utilized in all-solid-state batteries. 

 

KEYWORDS: solid electrolyte, composites, charge transport, conductivity, percolation 
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Chapter 1   Introduction 

Liquid electrolyte based lithium ion batteries (LIBs) have, in the past decades, been 

comprehensively used as power sources for portable electronic devices due to their high 

energy and power density. However, liquid electrolytes can cause leakage, fire, and explosion 

of LIBs. Replacing flammable organic liquid electrolytes with nonflammable inorganic solids 

is highly desirable because it holds the promise of significantly improving safety, offering 

higher volumetric and gravimetric energy densities, and potentially lowering the cost of 

batteries by increasing battery life, decreasing dead space, and simplifying battery packaging. 

The solid electrolyte is the most critical component in solid-state batteries.1-8 In recent years, 

there have been extensive efforts in finding solid materials with high lithium-ion conductivities. 

As a result, a number of promising compounds with significantly high lithium-ion 

conductivities comparable to that of liquid electrolytes have been introduced. For example, a 

new lithium super ionic conductor Li10GeP2S12 (LGPS) phase, which was first reported in 2011, 

reached a relatively high ionic conductivity up to 1.2 × 10−2 S/cm.9 In 2017, lithium amide-

borohydride Li(BH4)1/3(NH2)2/3 is reported that ionic conductivity can reach up to 6.4× 10−3 

S/cm at 40℃.10 In the garnet family of Li7La3Zr2O12 (LLZO), Ga and Sc doped 

Li6.65Ga0.15La3Zr1.90Sc0.10O12 exhibits the highest ionic conductivity of 1.8×10-3 S/cm at room 

temperature.11 In particular, LLZO has recently been widely studied because, unlike 

Li1.3Al0.3Ti1.7(PO4)3 (LATP, NASICON) and Li3xLa2/3-xTiO3 (LLTO, perovskite), LLZO has 

both high ionic conductivity and chemical stability against Li metal.  

Despite significant improvements, challenges remain in developing practical solid-

state batteries. Composite electrodes consisting of cathode particles and an ion-

conducting phase can, in theory, overcome the problem of limited electrode 



2 
 

accessibility in high-energy all-solid-state lithium batteries. The solid electrolyte, unlike 

liquids, cannot penetrate through the pores inside the porous cathode. The limited 

contact area between the cathode and the solid electrolyte thus reduces the accessibility 

of ions to the active sites in the cathode, resulting in low utilization of the electrode 

material. To enhance the ion accessibility of the cathode in high-energy all-solid-state 

batteries, the number of studies of bulk-type compact composite electrodes has 

significantly increased in the past few years. The composite electrodes are often a 

mixture of the cathode (typically an electron conducting phase), conductive carbon (if 

cathode phase is not highly conductive), and the electrolyte (i.e., an ion conducting 

phase).12-15 The composite microstructure is expected to provide sufficient electron and 

ion transport, however, the design principles of these electronic-ionic composites are 

largely unknown and need to be determined. 

In this thesis, we discuss the microstructure-conductivity relationship in an 

electronic-ionic composite with a focus on lithium ion conductivity. This study is the 

first step toward further understanding of conduction behavior of electronic-ionic 

composites and electrochemical reactions in all-solid multiphase systems. 

  



3 
 

Chapter 2   Experimental Section 

2.1 Synthesis of Al doped LLZO 

Al doped LLZO was synthesized by conventional solid-state process using lithium 

carbonate (purum, ≥99%, SIGMA-Aldrich), lanthanum (III) hydroxide (99.95% trace rare 

earth metals basis, BEATOWN CHEMICAL), zirconium(IV) oxide (99% trace metals basis, 

SIGMA- Aldrich) and aluminum oxide (99.5% trace metals basis, SIGMA- Aldrich) as raw 

materials. The molar ratio of Li, La, Zr and Al is 7.2:3:2:0.3. Extra 3% Li was added to 

compensate Li loss during calcination and sintering process. The precursors were mixed and 

calcined in an alumina crucible at 800 °C for 12 h to get rid of residual moisture. The mixture 

was ball milled in a zirconia jar at 300 rpm for 12 h, and the acetone was removed overnight 

at 70 °C. Subsequently, the powder was pressed into pellets via cold uniaxial press following 

calcination at 1000 °C for 12 h. The powder mixture was reground at 300 rpm for 12 h then 

were dried at 70 °C. Finally, powders were isostatically pressed into pellets. The pressed pellet 

was then buried in scarifying powder and sintered at 1100 °C for 12 h.  

2.2 Preparation of conductivity measurement samples 

LiCoO2 (obtained from MTI Cooperation) and as prepared Al doped LLZO were 

individually milled to fine particles and were then mixed with different weight ratios (1:3, 1:1 

and 3:1). Mixed powders were pressed into pellets via uniaxial press, holding at 250 °C for 1 

h. The pellets were then sintered at 700 °C for 6 h to enhance the connection between the 

particles. After heating treatment, the pellets were dry polished to remove the surface 

impurities.  

2.3 Measurements 
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The microstructure of the materials was characterized by X-ray diffraction (XRD, D500, 

Siemens, Germany) with copper Kα radiation. FIB-SEM measurement was carried out on a 

Helios Nanolab 660 (FEI). Reconstruction of 3D FIB-SEM image was finished by using 

software Avizo.  

Two types of configurations were employed to derive the transport properties. For 

the measurements with blocking electrodes, a gold layer was applied to both sides of 

the pellet, Pt foils and wires were attached as current collectors. AC impedance 

measurements were obtained on dense pellets using impedance analyzer (Solartron 

1260), at a frequency range of 107-1 Hz at AC amplitude of 50 mV. DC tests were 

established on digital sourcemeter (KEITHLEY 2400). For measuring ionic 

conductivity, DC test using electron-blocking cell LiAl/LiI/composite/LiI/LiAl was 

employed. LiI (99%, Sigma Aldrich) and LiAl alloy (Sigma Aldrich) are served as 

electron-blocking layer and current collector, respectively. The contact resistance was 

minimized by heat treatment at 200 °C for 20 h inside glovebox antechamber under 

vacuum. 
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Chapter 3   Discussions 

Fig. 1 shows the X-ray diffraction (XRD) patterns of LiCoO2 and Al-LLZO powders. 

The measurement conditions were at room temperature, a wavelength of 1.540562 

Å, and a 2θ step-size of 0.02 ° from 10 ° to 60 °. The patterns and lattice parameters 

match well with the LiCoO2 (PDF#50-0653) and cubic garnet phase Li5La3Nb2O12 

(PDF#45-0109). XRD patterns were analyzed using a full pattern fitting technique using 

the General Structure Analysis System (GSAS) with the EXPGUI interface.16-17 For 

refinement result, χ2=3.04, wRp=0.16, and Rp=0.12. Lattice parameter of Al-LLZO is 

calculated to be 12.964 Å, which is close to the reported values from other literature 

reports.18-19  

 

Fig. 1. XRD patterns of (a) LiCoO2, and (b) Al doped LLZO powders. 

Cluster size distributions of LiCoO2 and Al-LLZO are presented in Fig.2. We use 

the term cluster size distribution here, since it is difficult to confirm if in our SEM 

images we see single particles or agglomerates of smaller particles. The average cluster 
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sizes are approximately 2.91 µm and 2.53 µm for LiCoO2 and Al-LLZO, respectively. 

These values show that the two phases before mixing and preparation of composite 

samples exhibit similar size distributions, and LiCoO2 clusters are slightly larger.  

 

Fig. 2. Size distributions of (a) LiCoO2, and (b) Al-LLZO, respectively. 

Because the theoretical density of the two phases is similar (~5.1 g/cm3), the 

volumetric and the gravimetric ratio are very close. 

Because a thin Li2CO3 layer forms on the surface of the as-prepared composite 

pellets (see XPS and FIB-SEM in Fig. 3), pellets were polished before the application 

of current collectors and conductivity measurements. 

 

Fig. 3. (a) 2D slice image of air exposed sample, and (b) XPS of C 1s. 

Fig. 4a shows the AC impedance spectrum of the LiCoO2/Al-LLZO 1:1 composite 

sample measured in a symmetrical Au/composite/Au configuration. Because no low-

frequency polarization process is observed, the electronic conduction is predominant. 
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A recent study20 shows that when charge transfer between the two phases of a 

composite sample is negligible, the AC impedance spectrum does not include the 

parasitic resistance that originates from the ionic phase, and therefore the impedance 

at zero frequency is equal to the electronic resistance (Re) of the sample. This 

conclusion was further confirmed by the step-like behavior of the DC 

polarization/depolarization voltage curve (KEITHLEY 2400 SourceMeter) measured 

in an ion-blocking Au/Composite/Au configuration (Fig. 4b). Fig. 4b,c presents a well-

defined linear ohmic behavior for the LiCoO2/Al-LLZO 1:1 composite sample, 

suggesting that the conductivity is dominated by electron transport. LiCoO2/Al-LLZO 

3:1 and 1:3 samples also show similar behavior as that of 1:1 sample, as presented in 

Fig. S1 and S2. Resistance values derived from AC impedance spectra and the DC 

polarization/depolarization curves are very close and correspond to the electronic 

conductivity of 1.2×10-3, 6.5×10-4, and 2.2×10-5 S/cm for 3:1, 1:1, and 1:3 samples, 

respectively.  

In order to derive the ionic conductivity of the composite samples, DC polarization 

measurements were performed using an electron-blocking cell.21-23 Cell assembly and 

measurements were entirely performed inside an Argon filled glovebox. Fig. 4d shows 

the time dependent behavior of the polarization voltage for the LiCoO2/Al-LLZO (1:1) 

sample. The potential gradually increases due to slow diffusion of lithium ions and 

eventually reaches a steady state value corresponding to ionic conductivity.24 The 

chemical diffusion coefficient DLi
+ is extracted based on 

𝐷Li+ = 𝐿2𝜋2𝜏𝛿 

and 
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𝑈𝑖𝑜𝑛 = 𝐼𝐿𝜎 + 𝐼𝐿𝜎𝑖𝑜𝑛 𝜎𝑒𝑜𝑛𝜎 [1 − 8𝜋2 exp (− 𝑡𝜏𝛿)], 
where I is the applied current, L the sample thickness, σ the total conductivity, and 

τδ the relaxation time.25-28 Accordingly, a plot of ln|U(t)-U(t=∞)| versus time is a 

straight line with a slope of τδ (Fig. 4d, inset).  

 

Fig. 4. (a) Impedance spectrum of LiCoO2/Al-LLZO 1:1 composite sample, (b) DC polarization of the 
LiCoO2/Al-LLZO 1:1 composite sample measured with Au/Composites/Au configuration, (c) I-V 
relationship extracted from (b), and (d) DC polarization measurement of LiCoO2/Al-LLZO 1:1, and 
composite sample with LiAl/LiI/Composites/LiI/LiAl configuration. 

Fig. 5 summarizes the electronic and ionic conductivities of the composite samples 

with varying amount of Al-LLZO, and shows regularities of the 1:3 and 3:1 composite 

samples. The LiCoO2/Al-LLZO (3:1) sample exhibits an electronic conductivity of 

~10-3 S/cm and decreases to 10-4 and 10-5 S/cm for the 1:1 and 1:3 samples, 

respectively. Ionic conductivity of all three composites, when compared to pure Al-

LLZO pellet (~10-4 S/cm, see Fig. S3), is very low (~10-11 S/cm), and no obvious 

change is observed. On the basis of Fig. 5, the variation of electronic and ionic 

conductivities shows very different characteristics. Variation of electronic conductivity 
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indicates that electron conduction behavior is related to the ratio of electron conducting 

phase, and the changes are approximately linear. One the contrary, ionic conductivity 

was attenuated sharply in composites compared with sintered LLZO pellets, even in 

the composite sample with more than 75% of the Li-ion conducting LLZO phase. 

 

Fig. 5. Variation tendencies of electronic and ionic conductivities with the increasing amount of solid 
electrolyte. Electronic conductivity of LiCoO2 is shown in Fig. S4. 

2D and 3D reconstructed FIB-SEM images (Fig. 6) of LiCoO2/Al-LLZO 

composites (1:1 weight ratio) were acquired from an FEI Helios NanoLab 660 

DualBeam system using a gallium ion source. The light gray and dark gray particles in 

the BSE images correspond to Al-LLZO and LiCoO2, respectively. The composite is 

not fully dense thus pores in black are observed (see SE images and EDS map in Fig. 

S5).  

The 3D image of LiCoO2/Al-LLZO composite was reconstructed from 280 2D 

slices (~30 nm for a single slice), as shown in Fig. 6b. Fig. 6a,b shows different 
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distributions of LiCoO2 and Al-LLZO. Seemingly, Al-LLZO particles tend to 

agglomerate and form isolated areas, while LiCoO2 forms a continuous network. This 

phenomenon could originate from their different surface energies. In particular 

LiCoO2, in comparison with most oxides, exhibits a very low surface energy.29 Overall, 

Al-LLZO particles/clusters form isolated regions surrounded by a continuous LiCoO2 

matrix. The distribution of Al-LLZO phase in composites (1:1 weight ratio) is 

presented in Fig. 6c, which is derived from Fig. 6b by the tuning grayness of the 

reconstructed 3D image. Fig. 6c further verifies that Al-LLZO is disconnected within 

the inspected volume.  

 

Fig. 6. (a) 2D slice of composites (1:1 ratio), (b) reconstructed 3D microstructures of composites, and 
(c) distribution of Al-LLZO phase in (b). 

Fig. 7 provides additional evidence for the distribution of LiCoO2 and Al-LLZO 

phases in the composite sample. We reconstructed a partial view of the 3D FIB-SEM 

image, with fixed xy and xz surfaces while the yz face is moving toward the x-axis. 

These images confirm that there is sufficient connectivity between the LiCoO2 particles 

to pass electronic current, while the Al-LLZO particles form isolated regions that are 

ineffective in supporting charge-transfer and ion conduction.  
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Fig. 7. Partial view of reconstructed 3D FIB-SEM. 

Percolation theory has often been used in solid oxide fuel cells (SOFCs) to evaluate 

the effective conductivity of SOFC porous composite cathodes. On the basis of 

percolation theory of multiphase mixtures,30 we assume that each particle, in a randomly 

packed mixture of particles, could belong to one of three types of clusters: Type (A), 

particles form a percolated cluster that extend throughout the entire thickness of the 

composite; Type (B), particles form a short network that is connected only to one side 

of the composite; Type (C), particles form a completely isolated cluster. Chen et al.31 

proposed that in a binary system the probability (P) of each particle 𝑖 belonging to Type 

A clusters can be estimated by: 
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𝑃𝑖 = [1 − (3.764−Zi,i2 )2.5]0.4, 

where 𝑍𝑖,𝑖 is the number of contacts between an 𝑖 particle and all of its neighboring 𝑖 particles. They suggested that there is a threshold in the volume concentration of the 

particles below which the particles form only B and C clusters (P is 0 at 𝑍𝑖,𝑖 =�̅� 𝜓𝑖𝑐/𝑟𝑖𝜓𝑖𝑐/𝑟𝑖+𝜓𝑒/𝑟𝑒=1.764, 𝑍𝑒,𝑒 = �̅� 𝜓𝑒𝑐/𝑟𝑒𝜓𝑒𝑐/𝑟𝑒+𝜓𝑖/𝑟𝑖 =1.764). Above the percolation threshold, 

the composite still contains B and C clusters, but A clusters are the majority. This 

threshold depends on the volume fraction, radii, and average coordination number of 

the particles. A detailed analysis of composites with nonuniform distribution of 

particles is necessary to precisely predict the behavior of our samples. Above the 

percolation threshold, a very rough estimation of the effective electronic conductivity 

relative to the intrinsic conductivity of the pure phase can be expressed as  𝜎𝑒𝑓𝑓 = 𝜎𝑖𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐((1 − Φ)ψP)µ, 

where the Bruggeman factor µ (the effects of tortuous conduction paths) is widely taken 

as 1.5 in composites.  

It means that when sufficient percolation pathways are present, the electronic 

conductivity should be at least one or two magnitude lower than intrinsic conductivity. 

This is in good agreement with the measured electronic conductivity of our 1:1 

composite sample (shown in Fig. 5), and therefore reasonable percolation pathways are 

obtained for the electron conducting component in this composite sample. This is also 

in agreement with the FIB-SEM images.  

The ionic conductivity of the composite sample with 50% Al-LLZO phase is very 

low because of the presence of isolated areas of Al-LLZO and the absence of 
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percolation paths, meaning that Li-ions need to travel through poorly conducting Al-

LLZO/LiCoO2 interfaces and/or bulk LiCoO2.  

It should be noted that besides insufficient percolation, the presence of pores, 

blocking grain boundaries/interfaces,32 and poor contact between the Al-LLZO 

particles could contribute to the poor ionic conductivity of the composite. It also 

implies that the effective conductivity equation might not be applicable to calculating 

ionic conductivity after taking these extra complexities into consideration. 
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Chapter 4   Conclusions 

In summary, we have experimentally investigated the transport properties of an 

electronic-ionic composite. It shows that formation of percolation paths is necessary 

to achieve the expected ionic and electronic charge transport, and can be obtained by 

tuning the particle/pore size distribution and volume fraction of the components. 

However, the compositional characteristics of each phase, e.g., the surface energy of 

the particles and growth behavior at the annealing temperature may hinder access to 

the theoretically predicted percolation paths and the necessary connectivity between 

the particles. Therefore, improving the processing conditions of the composite 

cathodes in order to obtain uniform particle distribution is of pivotal importance. This 

study is the first step towards understanding electrical behavior of composites 

consisting of ion and electron conducting phases. It also hints that ion conduction 

behavior is more complicated than electron conduction behavior in electronic-ionic 

composites. Thus, we suggest the use of other Li-ion conducting compounds, such as 

amorphous sulfides or conducting polymers, to enhance the ion transport and therefore 

the utilization of composite cathodes for bulk-type all-solid-state batteries.  
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Chapter 5   Supplementary Information 

 

Fig. S1. (a) Impedance spectrum of LiCoO2/Al-LLZO 3:1 composite sample, (b) DC polarization of the 
LiCoO2/Al-LLZO 3:1 composite sample measured with Au/Composites/Au configuration, (c) I-V 
relationship extracted from (b), and (d) DC polarization measurement of LiCoO2/Al-LLZO 3:1, and 
composite sample with LiAl/LiI/Composites/LiI/LiAl configuration. 
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Fig. S2. (a) Impedance spectrum of LiCoO2/Al-LLZO 1:3 composite sample, (b) DC polarization of the 
LiCoO2/Al-LLZO 1:3 composite sample measured with Au/Composites/Au configuration, (c) I-V 
relationship extracted from (b), and (d) DC polarization measurement of LiCoO2/Al-LLZO 1:3, and 
composite sample with LiAl/LiI/Composites/LiI/LiAl configuration. 
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Figure S3 shows the AC impedance spectrum of the Al-LLZO pellet sample measured in 

a symmetrical Au/composite/Au configuration using a Solartron 1260, at frequency range of 

107-1 Hz, and AC amplitude of 50 mV. The fitting was performed using Zview software 

(Scribner Associates Inc.) to obtain the electrical properties. Bulk and grain boundary 

resistance values are 2057 Ω and 1357 Ω, respectively. 

 

Fig. S3. (a) Impedance spectrum of Al-LLZO sintered pellet measured in air and at room temperature. 
Sample dimension: thickness 2.4 mm, diameter 8.2 mm.  
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Fig. S4. (a) DC polarization measurement of the pure LiCoO2 using the Au/Composites/Au 
configuration. (b) I-V relationship extracted from (a). Sample dimension: thickness 0.7 mm, diameter 10 
mm. 
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Fig. S5. (a) SEM image and (b) EDS map of LiCoO2/Al-LLZO 1:1 sample. 
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