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1 Introduction

In any translation-invariant medium with a net amount of charge, applying a small electric

field will result in an infinite DC conductivity, due to the fact that momentum is not

relaxed and couples to the current. From the point of view of the frequency-dependent

optical conductivity, this means that its imaginary part has a pole in 1/ω and hence from

the Kramers-Krönig relations that its real, dissipative part contains a delta function at

zero frequency. In particular, there is no Drude peak at low frequencies, as the momentum

relaxation rate is identically zero.

There are a number of ways to remedy this state of affairs. As investigated in previous

literature, the most direct approach is to couple the charge carriers to a parametrically

larger neutral bath where their momentum can relax, for instance using probe branes [1–4]

or probe fermions [5–7]. Other, more involved options are to break translation invari-

ance, either by impurities [8–10], by relaxing bulk diffeomorphism invariance [11–13], or by

turning on spatially-dependent sources [14–17].

Recently, for theories where bulk diffeomorphism invariance is broken [13], a very

elegant procedure was spelled out to calculate holographically the DC conductivity and
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was soon thereafter extended to spatially-dependent sources [16, 17]. The derivation of the

formula relies on the existence of a massless mode in the spectrum of electric perturbations,

which yields a radially conserved quantity at zero frequency whose boundary value gives

the DC conductivity. As it is conserved through radial evolution in the bulk, it can equally

well be evaluated at the horizon. This general procedure was first explained in [18].

The formula consists of two pieces, one due to pair creation in the quantum critical

sector (and already present when translation invariance is unbroken) and another, dissipa-

tive term, proportional to the net amount of charge in the system as well as to its thermal

entropy. This is a similar structure to that seen in probe branes [1–4] where in particular

the close relation with the thermal entropy of the system was pointed out in [3].

The dissipative term gives the relaxation rate of the momentum, and for holographic

lattices [15, 16] reproduces a field theory calculation in [14], where it was shown using the

memory matrix formalism that it was related to the retarded correlator of the operator

weakly breaking translation invariance.

In the AdS2 × Rp−1 near-horizon region of the black holes considered in [13, 17],

both terms in the DC conductivity scale identically with the temperature, are constant at

leading order and dictated by the ground state entropy. Therefore, to obtain more generic

behaviour, the road is clear: modify the theory to obtain non-trivial scaling solutions in

the IR. Such a first step was taken in [19] where a linear temperature dependence of the

resistivity was obtained, by coupling the massive gravity sector to a neutral scalar and thus

generating a specific semi-locally critical1 IR (also with a linear specific heat).

The main purpose of this work is to understand better how the resistivity can scale with

temperature, and which critical exponents control this scaling. We will also compare our

results to general expectations on dimensional grounds and previous predictions [14, 22].

To allow for more general scalings, we will combine the analyses of [13, 17, 19] with the

generic IR analysis of effective holographic theories which has been pursued in [3, 4, 23, 24].

In this series of works, it was argued that the most generic parameterization of translation

and rotation invariant extremal phases with a conserved electric flux could be achieved

by specifying three scaling exponents:2 a dynamical exponent z measuring the anistropy

between time and space; a hyperscaling violation exponent θ measuring departure from

scale invariance in the metric, and resulting in an effective spatial dimensionality dθ =

p−1−θ [4, 27]; and a conduction exponent, which measures departure from scale invariance

of the electric potential and controls the scaling of the zero temperature, small frequency

power tail of the optical conductivity. This leads to the following scaling behaviour for

these fields

ds2 = r
2θ
p−1

[
− dt2

r2z
+
L2dr2 + d~x2

r2

]
, A = Qrζ−zdt , (1.1)

possibly accompanied by a running scalar. Two broad classes of solutions were exhib-

ited, depending on whether the current dual to the gauge field is a marginally relevant

or irrelevant operator in the effective holographic IR theory. In the first instance, the dy-

1Which means that time scales in the IR but space does not, [20, 21].
2With a fourth, cohesion exponent for cohesive phases [23, 24]. Related work on cohesive phases also

appeared in [25, 26].
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namical exponent z can be adjusted freely, while the conduction exponent takes a fixed

value ζ = −dθ; in the second instance, Poincaré invariance is restored and z = 1, while ζ

is arbitrary.

In this work, we will generalize the setup studied in [17] to include a coupling between

the massless scalars and a dilaton (a neutral scalar with an exponential potential in the

IR), which allows to generate hyperscaling violation as well as modulate the dimension

of the dual current. The fact that the axions3 have a spatially dependent source means

momentum is dissipated, since the stress-tensor is now sourced on the right-hand side of

the Ward identity. Another important technical crutch is that choosing the axions to be

linear in the spatial coordinates retains homogeneity of the field equations. The analysis

of possible IR phases is carried out in section 2. The equations of motion are given in

appendix A while some technical details are relegated in appendix B. We leave aside the

question of finding generic finite temperature completions of the ground states we describe.

However, in appendix C, we do report a specific analytic AdS completion with both the

axions and the dilaton turned on, with either AdS2 ×Rp−1 or semi-locally critical ground

states with η = 1 (which have both an entropy and a resistivity linear in temperature),

where η is defined in (2.6).

Then, in section 3, we turn to the derivation of the finite DC conductivity in this

model. An important output of this computation is the nature of charge transport. When

the resistivity vanishes, the system behaves like a metal. Unless the thermal pair creation

contribution to the DC conductivity is parametrically larger than the dissipative term, we

expect coherent transport with a sharp Drude peak (such as were seen in [12, 14, 15] for

instance). From scale invariance, at low frequencies4

σ(ω, T ) ∼ 1

iω + T#F (ω/T )
, F (0) ∼ constant , F (x� 1) ∼ x#, (1.2)

where the two powers # are the same and positive. Note that this assumes that the effects

of momentum relaxation are weak in the IR, i.e. that the axions are irrelevant, or marginally

relevant with a weak axionic charge. Otherwise, the system is an incoherent metal, with

the low temperature behaviour dominated by the quantum critical contribution from pair

creation:

σ(ω, T ) ∼ T#G(ω/T ) , G(0) ∼ constant , G(x� 1) ∼ x#, (1.3)

where this time # < 0. On the other hand, if the resistivity blows up at zero temperature,

the system behaves like a soft-gapped insulator (earlier examples of which can be found

in [28, 29]), with # > 0 in (1.3). These last two cases are expected to correspond to strong

momentum relaxation effects in the IR. We shall see whether this is borne out when the

running scalar is included.

Finally, in section 4 we analyze the zero temperature, small frequency behaviour of

the real part of the AC conductivity. Metals are expected to develop a delta function,

3In a slight abuse of language, we will refer sometimes to the massless scalars this way, though they do

not violate parity in our model.
4We would like to thank S. Hartnoll for clarifications on the two formulæ below.
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a signal that dissipation turns off at exactly zero temperature. On top of that, a power

tail exists, which a priori can come both with a positive or negative exponent. The first

case is encountered for gapless, translation-invariant systems [3, 4, 24] and there all the

spectral weight is transfered from the Drude peak to the delta function as the tempera-

ture is lowered. If this persists after breaking translations invariance, the scale-invariant

predictions (1.2), (1.3) are necessarily violated. On the other hand, when the tail blows

up at low frequencies, some spectral weight remains which swamps out the delta function.

It should not blow up faster than 1/ω though, in order not to violate sum rules on the

conductivity. For insulators, there is no delta function (the DC conductivity vanishes) and

consequently the power tail should decay as well.

We conclude in section 5, and comment on how our model captures certain features of

random-field disorder at low temperatures.

2 IR analysis for axion-dilaton theories

Consider the following theory

S =

∫
dp+1x

√
−g
[
R− 1

2
∂φ2 − 1

4
Z(φ)F 2 + V (φ)− 1

2
Y (φ)

p−1∑
i=1

∂ψ2
i

]
. (2.1)

Translation invariance is broken by the axions acquiring a (bulk) vev on-shell. In [17],

this theory was pointed out to be not quite gauge-equivalent to massive gravity at the

linear level and nonzero momentum.5 Since we are mainly interested in zero momentum

conductivities, this will not play a role in our discussion and we expect similar results would

be obtained in the context of massive gravity.

We wish to look for possible IR geometries. To retain homogeneity, we will assume the

axions to take the form

ψi = kxi , i = 1 . . . p− 1 (2.2)

where i runs over boundary spatial coordinates and k can be taken identical for all i without

loss of generality.6 They correspond to marginal operators in the UV boundary CFT, with

a linear source.7 This means that we are not describing a lattice (there is no distinguished

lattice wavevector), but perhaps this model can capture features of quenched disorder at

low temperatures and frequencies, like holographic massive gravity [11–13, 19]. We will

come back to this interpretation in section 5.

Solutions can be distinguished along several criteria:

• Hyperscaling solutions where φ = φ? in the IR,8 or hyperscaling violating solutions

where φ runs logarithmically. In that case, we approximate the scalar couplings in

5This can be understood from the fact that the scalar kinetic term used in (2.1) only reproduces the

Tr[K2] mass term of nonlinear massive gravity and not the accompanying Tr[K]2, necessary to have a

ghost-free combination. We thank A. Schmidt-May for discussions on this point.
6Otherwise just define k =

√∑
ki2.

7It would however be interesting to engineer a setup where they would be a relevant deformation while

retaining homogeneity. But as we will see shortly, they can be irrelevant in the IR, just like the current.
8We will not explicitly consider these in our analysis, since they give rise to AdS2 × Rp−1 in the IR,

see [17]. But it should be clear how are results reduce to this case by taking the limit z → +∞.
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the IR by9

Z(φ) ∼ eγφ, V (φ) ∼ V0e
−δφ, Y (φ) ∼ eλφ (2.3)

and γ, δ and λ will be related to the scaling exponents of the solutions: z, θ and ζ.

• (Marginally) relevant or irrelevant current, which means working out whether terms

originating from the Maxwell stress-tensor in the field equations appear at the same

order in powers of the radial coordinate as terms coming from the metric and neutral

scalar, or not.

• (Marginally) relevant or irrelevant axions, which means working out whether terms

originating from the axion stress-tensor appear at the same order in powers of the

radial coordinate as terms coming from the metric and neutral scalar, or not.

As translation invariance is not broken by the geometry, the same scaling exponents

as in [24] are sufficient to describe the possible solutions, while capturing the scaling of the

deformations also requires to introduce the scaling of the axion-dilaton coupling κλ. They

will generically take the form

ds2 = r
2θ
p−1

[
− f(r)

dt2

r2z
+
L2dr2

r2f(r)
+

d~x2

r2

]
, A = Qrζ−zdt , φ = κ ln r . (2.4)

We relegate their precise expression in appendix B. There are four classes of solutions

• Class I, (B.1): both the current and the axions are (marginally) relevant in the IR.

θ and z are not fixed, while ζ = −dθ and κλ = −2. This last condition is equivalent

to γ = (2− p)δ + (1− p)λ. It would be interesting to explore if such a condition can

be understood in terms of generalized dimensional reductions [4, 23, 30].

• Class II, (B.9): the current is irrelevant, the axions (marginally) relevant. θ, z and

ζ 6= −dθ are not fixed, while κλ = −2. This class has the remarkable property that

it can display anisotropy (z 6= 1), which is not sourced by charge density (the current

is irrelevant).

• Class III, (B.16): the current is marginally relevant, the axions irrelevant. θ, z and

κλ 6= −2 are not fixed, but ζ = −dθ.

• Class IV, (B.20): both the current and the axions are irrelevant. ζ 6= −dθ and

κλ 6= −2 are not fixed, while z = 1.

Similarly to [24], we find that the conduction exponent is fixed whenever the current is

(marginally) relevant. So is the axion-dilaton coupling when the axions are (marginally)

relevant.

In classes I and II, the axionic charge k appears explicitly in the leading solution and we

might expect the effects of momentum relaxation to be strong, leading to incoherent metals

and insulators. In classes III and IV, the axions only appear as a deformation above the

9All known supergravity truncations have couplings which are combinations of exponentials.
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Figure 1. Parameter space for classes of IR solutions, for fixed δ (left pannel: δ = 1/2; right

pannel: δ = 3), in terms of γ (horizontal axis) and λ (vertical axis). Observe that class I appears

only as a line in these plots.

solutions of [3, 4] and momentum relaxation is IR-irrelevant, so we should expect coherent

metals with sharp Drude peaks.

None of these solutions compete in the same region of the parameter space (δ, γ, λ),

cf. figure 1. We have defined the parameter space in the following way

1. the solution is real;

2. it has positive specific heat, which, through the scaling of entropy with temperature

S ∼ T
dθ
z , means dθ/z > 0;

3. it has only irrelevant deformations, except for the temperature deformation which

should be relevant.

Within this parameter space, they all obey the NEC and the tt and xixi elements of the

metric scale the same way with r, so the IR is unambiguous. We can work out the spectrum

of deformations along the lines of [23, 24]: the conjugate modes always sum to z + dθ as

expected on dimensional grounds, with a temperature deformation associated to (marginal)

time rescalings. Consequently, a blackness function can be turned on as

f(r) = 1−
(
r

rh

)z+dθ
, (2.5)

when the other deformations are turned off. The parameter spaces in appendix B always

take into account the fact that all other deformations should be irrelevant.

Whenever z 6= 1 (so for classes I, II and III), a semi-locally critical limit can be taken

(possibly also involving ζ)

θ → +∞ , z → +∞ ,
θ

z
= −η . (2.6)

For classes I and II, this imposes λ = 0, so a constant IR axion-dilaton coupling. In this

limit, the entropy scales like T η, so a linear specific heat is obtained when η = 1.
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3 Resistivity

3.1 Derivation of the formula

Let us now perturb linearly the metric and other fields by turning on a small electric field

along the x1 direction (which we call now x), at zero momentum. The only perturbations

this sources are

δAx = ax(r)eiωt, gtx = g(r)eiωt, δψ1 = χ(r)eiωt. (3.1)

The independent linearized equations read, keeping in mind the Ansatz (A.3):

0 =
ω2axB

D
+
A′
(
− gC′

C + g′
)

D
+ a′x

(
− B′

2B
+

(p− 3)C ′

2C
+
D′

2D
+ (logZ)′

)
+ a′′x

0 = −2ik2ωBg

CD
+
ω2Bχ

D
+

(
− B′

2B
+

(p− 1)C ′

2C
+
D′

2D
+ (log Y )′

)
χ′ + χ′′

0 = −ZaxA′ +
gC ′

C
− g′ − iY Dχ′

2ω
.

(3.2)

We can: substitute the constraint equation in the equation for ax; take a derivative of the

equation for χ and substitute the constraint; change variables to χ̃ = C(p−1)/2D1/2B−1/2

Y χ′/ω and substitute A′ = q(BD)1/2C−(p−1)/2/Z to get the two following second-order

differential equations:

0 =

[
ZC(p−3)/2

√
D

B
a′x

]′
+ ax

(
eγφω2

√
BC

p−3
2

√
D

− q2

√
BD

C
p+1
2

)
− 1

2
iq

√
BD

C
p+1
2

χ̃

0 =

[
Y −1C(1−p)/2

√
D

B
χ̃′
]′

+ 2ik2qax

√
BD

C
p+1
2

+

(
ω2
√
BC

1−p
2

Y
√
D

− k2

√
BD

C
p+1
2

)
χ̃ .

(3.3)

From here on we follow closely the method set up in [13, 17], and refer to these works for

more details. The determinant of the mass matrix of the system of ODEs above is zero, so

there is a massless mode. Its equation of motion reads[√
B

D
Hλ′1 +

√
B

D
C

1−p
2 Y −1λ2(ZY Cp−2)′

]′
+ ω2H

√
B

D
λ1 = 0 , (3.4)

where

H(r) = ZC
p−3
2 − h0C

1−p
2 Y −1 (3.5)

and

λ1 =
q

2ik2

(
χ̃+ 2ik2

q ZCp−2ax
)

C
p−1
2 Y H

, λ2 =
−q

2ik2

(
χ̃+ 2ik2

q h0ax
)

C
p−1
2 Y H

. (3.6)

From this, we deduce that the quantity

Π =

√
B

D
Hλ′1 +

√
B

D
C

1−p
2 Y −1λ2(ZY Cp−2)′ (3.7)
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is radially conserved at zero frequency. Thus, it can be evaluated on the horizon. Following

the same steps as [13, 17] we find that if we define

σDC(r) = lim
ω→0

(
−Π

iωλ1

)∣∣∣∣
r

, (3.8)

the DC conductivity is given by

σDC = σDC(r → +∞) (3.9)

if the boundary sits at infinity and provided we take h0 = −q2/k2.10 However (3.8) can be

shown not to depend on r, and so can equally well be evaluated at the horizon. The fields

satisfy ingoing boundary conditions (picking a radial gauge D = B−1 = f)

ax = (r − rh)−iω/f
′(rh)aHx [1 +O(r − rh)] ,

χ̃ = (r − rh)−iω/f
′(rh)χ̃H [1 +O(r − rh)] ,

(3.10)

so that when evaluated on the horizon, the term proportional to λ2 in the expression for

Π (3.7) drops out while the first proportional to λ′1 will leave a non-trivial contribution. In

the end, we find

σDC = C
p−3
2

H ZH +
q2

k2YHC
(p−1)/2
H

, (3.11)

where the subscript H means the corresponding functions are evaluated at the horizon.

This generalises the result found in [17] and is qualitatively similar to that of [13]. There

are two terms, each with their own interpretation: the first is due to pair creation in the

background (which here is not the vacuum, but rather a quantum critical medium with a

net amount of charge), and is already present in the theory without axions and momentum

relaxation; the second diverges in the limit k → 0, highlighting the role of the axions in

momentum relaxation and finite DC conductivity. So this second term is the contribution

of the mechanism responsible for momentum relaxation to the conductivity. Moreover, it

is inversely proportional to the thermal entropy as noted in [19], where here the role of

the horizon-dependent graviton mass is played by the axion-dilaton coupling Y (φ). As we

comment in the discussion below, a similar relation between the resistivity and the thermal

entropy also appears in the context of probe branes [3].

What are the typical behaviours one can expect at low temperatures? They fall into

two broad classes: metals, for which the resistivity vanishes at zero temperature, which

reflects the fact that momentum is no longer dissipated; and (soft-gapped) insulators, for

which the resistivity blows up at zero temperature and the system localizes. Note that

differently to [28, 29], these insulators are characterized by isotropic gravity duals, which

in particular means that lower-dimensional IR boundaries are not a necessary ingredient of

holographic insulators (as in [28]). Metals can be subdivided into two classes, those which

come accompanied by a coherent Drude peak in the AC conductivity at low frequencies,

for which the DC conductivity is set by the dissipative term in (3.11) and translation

10On a technical level, this is so the differential equation obeyed by the massive mode λ2 does not depend

on λ1 but just on λ′1. Otherwise Π does not asymptote to the DC conductivity in the zero frequency limit.
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invariance is weakly broken by an irrelevant operator (like the irrelevant lattices of [14–16]);

and incoherent metals where there is no sharp Drude peak, or when (3.11) is dominated by

the quantum critical term and translation invariance is strongly broken. Coherent metals

can thus be expected to be found in classes III and IV, incoherent metals and insulators

in classes I and II.

From (3.11), when the system behaves like a coherent metal, we can easily derive the

scattering time τ of the DC conductivity, which is given by

σDC = ZHCH
(p−3)/2 +

Q2

E + P
τ (3.12)

where Q, E and P are the charge, energy and pressure density respectively. We obtain

τ−1 =
s

4π

YH
E + P

. (3.13)

Unlike for AdS2, it will now display temperature dependence through the axion-dilaton

coupling on the horizon, similarly to the massive gravity case [13, 19]. It would be inter-

esting to derive this scattering time using hydrodynamics of the axion theory, and check

whether it coincides with (3.13), along the lines of [12, 13].

3.2 Low temperature behaviour of the resistivity

Let us now examine its behaviour amongst the four classes of solutions worked out in

section 2. Remember that we can always turn on a small temperature in each of these

solutions, which is related to the horizon radius by the scaling (which also follows by

dimensional analysis)

rh ∼ T−
1
z . (3.14)

The scaling we will obtain is then valid for temperatures low compared to the chemical

potential T � µ.

Class I: insulators and coherent metals (marginally relevant current and axion).

Here, both terms in (3.11) scale identically with the temperature, and

ρ ∼ k2T
2+dθ
z . (3.15)

Note that this recovers the result in [17] upon taking the limit z → ∞, which yields an

AdS2 × R2 geometry and a constant resistivity at low temperatures. On the other hand,

taking the semi-locally critical limit θ = −ηz, z → +∞, we recover

ρ ∼ T η, (3.16)

which can be made linear by choosing η = 1, as in [19]. If η is kept arbitrary, the parameter

space only allows for positive values, hence in this limit the system is always a metal, with

a coherent Drude peak whose width and height are controlled by k. This is confirmed by

explicit numerical calculations of the real part of the optical conductivity for AdS2 solutions

in [13, 17].

– 9 –
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Coming back to finite z, within the parameter space discussed in section B.1, the scaling

exponent of (3.15) can be both positive or negative, which means the system behaves as a

metal or as an insulator, respectively. Moreover, the insulating behaviour can be seen to

be tied to the vanishing/diverging of the gauge coupling in the IR being bounded, namely

Insulators: z < 0 ,−2 < dθ < 0 , −2
p− 3

p− 1
< κγ < 2 ⇔ 0 < ζI = −dθ < 2 (3.17)

in terms of the gauge coupling or alternatively the conduction exponent. The value of

the conduction exponent is not independent from θ here, since the current is marginally

relevant [24].

For this class of solutions, the scaling of the scattering time with the temperature

from (3.13) is identical to (3.15), where we have used that in the low-temperature quantum

critical theory, E and P are constants at extremality. Consequently, this shows explicitly

that whenever the system is metallic, the Drude peak sharpens up as the temperature is

lowered. However, when k is increased, we do expect the Drude peak to get smaller and

wider, transferring spectral weight to higher frequencies.

Class II: insulators and incoherent metals (marginally relevant axion, irrelevant

current). The DC conductivity (3.11) reads at leading order in temperature

σDC = T (ζ−2)/z +
q2

k2
T−(dθ+2)/z. (3.18)

Here, the second term decays faster than the first at T → 0, which means that the low-

temperature resistivity is dominated by pair creation in the quantum critical bath

ρ ∼ T
2−ζ
z (3.19)

set by the conduction exponent, [24]. Note that in the class I solutions, this exponent is

fixed to ζI = −dθ, and replacing ζ by this value in (3.19), we recover indeed the class I

scaling (3.15).

Within the parameter space discussed in section B.2, we also find that the exponent

in (3.19) can take both positive or negative values, leading to metallic or insulating be-

haviour. As above, the insulating behaviour is tied to the gauge coupling being bounded

from above and below

Insulators: (p− 3)

(
1− θ

p− 1

)
< κγ < 2(p− 1)− 2(p− 2)θ

p− 1
(3.20)

or similarly, in terms of the conduction exponent

Insulators: ζI = −dθ < ζ < 2 (3.21)

where the lower bound is set by the value taken for the class I solutions ζI = −dθ > 0.

As discussed at the end of section B.2, one can take a semi-locally critical limit in this

expression, upon which

ρ ∼ T−ζ̃ (3.22)

which always vanishes, hence the system is still metallic.
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As the dissipative term will be parametrically smaller than the pair creation term at

low temperatures, the metallic phases do not have a Drude peak but rather an incoherent

contribution, which is consistent with strong momentum IR relaxation in the IR (marginally

relevant axions).

Class III: insulators and coherent metals (marginally relevant current, irrel-

evant axion). These geometries are deformations of those studied in [3, 4]. The DC

conductivity (3.11) reads at leading order in temperature

σDC = T−(2+dθ)/z +
q2

k2
T (−dθ+κλ)/z. (3.23)

It is always dissipation-dominated at low temperatures, with the leading small-T behaviour

of the resistivity given by

ρ ∼ T−
κλ−dθ
z . (3.24)

As the momentum dissipation term dominates, we can naively expect to find no insulators

but metals with a coherent Drude peak. However, the parameter space allows for both

insulators or metals, i.e. the resistivity can blow up or vanish. Insulators are found when

the axion-dilaton coupling and the conduction exponent are both bounded:

Insulators: − 2 < κλ < ζI < 0 . (3.25)

The metals are all expected to be coherent, since the dissipative term is parametrically

larger than the pair creation at low temperatures. What is perhaps counter-intuitive is

that the dissipative term can actually give rise to insulating behaviour.

Class IV: coherent metals (irrelevant current and axion). The DC conductiv-

ity (3.11) reads at leading order in temperature

σDC = T ζ−2 +
q2

k2
T−dθ+κλ. (3.26)

It is dissipation-dominated so that the resistivity reads at low temperatures:

ρ ∼ T dθ−κλ (3.27)

which means that its scaling is not set by the conduction exponent but by the dilaton-axion

coupling.Within the parameter space (B.24), the resistivity vanishes, which indicates the

system always behaves as a (coherent) metal.

Discussion. In this section, we have seen how the DC conductivity could be dominated

either by the pair creation term or the dissipation term. Their generic contribution is

given by

σDC,pc ∼ T (ζ−2)/z, σDC,diss ∼ T (κλ−dθ)/z (3.28)

which reduce to the correct values for each of the classes.

On physical grounds, we might expect to find coherent metallic behaviour when the

two terms are of the same order, or when the dissipation term dominates. This is the case
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for the solutions in class III and IV, which is perhaps not suprising since the effects of

momentum dissipation are irrelevant in the IR (like in [14–16]). Remarkably, insulators

can be found in class III in a certain range where both the conduction exponent and the

axion-dilaton coupling are bounded by the other scaling exponents.

When the effects of momentum dissipation are strong, one may expect to find incoher-

ent metals and insulators. This is partly verified by the solutions in class I, and fully in class

II. In class I however, the two terms in the resistivity have the same temperature scaling,

and thus they can be of the same magnitude temperature-wise and generate a sharp Drude

peak for small enough k, similarly to what happens in [12, 13, 17]. When k increases, the

peak should shrink down and broaden out, effectively transferring spectral weight to higher

frequencies. In class I and II, insulators also appear whenever the conduction exponent is

bounded by a certain range.

How does this compare to previous scaling arguments given to predict the behaviour

of the conductivity [22] when momentum dissipation is relevant? The real part of the

conductivity is given by the retarded current-current correlator

σDC,I(T ) ∼ lim
ω→0

1

ω
=
[
GRJ xJ x(ω, T )

]
∼ T 2∆Jx−1−(z+dθ)/z (3.29)

where ∆J x is the real space dual dimension of the dual current J x and the scaling takes

into account the Fourier transform to frequency space in dθ = p− 1− θ spatial dimensions.

The scaling dimension of J x is related by the current conservation equation to that of the

density operator J t, which can be worked out from the mode analysis in appendix B:

∆J x = ∆J t + 1− 1

z
, (3.30)

where

∆J t =
dθ + ζ

2z
, (3.31)

keeping in mind that the modes are quadratic in the irrelevant current/axion and that the

above expressions are in units of frequency. From (3.31), it is clear that ζ characterizes

deviation from the dimension of a conserved current in a scale invariant theory in dθ spatial

dimensions. Plugging (3.30) and (3.31) in (3.29), we recover the pair creation term of the

DC conductivity (3.28). As we have already commented in the main text, for classes I and

II where momentum dissipation is relevant, pair creation is always dominant and sets the

scaling of the resistivity at low temperatures.

On the other hand, when translation breaking and momentum dissipation are irrele-

vant, [14] predicted that the relaxation rate Γ (and hence the contribution to the resistivity)

should be given by

ρdiss ∼ Γ =
g2k2

L

χ~P ~P
lim
ω→0

1

ω
=
[
GROO(ω, T )

]
∼ T 2∆+ 2

z
−1− z+dθ

z (3.32)

where g is the coupling constant of the translation-breaking deformation, kL is the lattice

wavevector, χ~P ~P the static susceptibility of the momentum operator ~P , O the operator

dual to the lattice deformation and ∆ its scaling dimension in real space and units of
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frequency. The term +2/z comes from the dimension of k2
L in units of frequency, and the

last term from the Fourier transform to frequency space in dθ spatial dimensions to take

into account hyperscaling violation. We do not have a lattice in this work, but we can

still work out the scaling dimension of the irrelevant operator dual to the axion in the IR,

for classes III and IV. From our analysis in appendix B, a deformation ψ = kx of the

translation-invariant ground states generates a mode (at quadratic order) 1 + #k2r2+κλ

where # is a dimensionless number. So we can identify (in dθ spatial dimensions)

∆ =
z + dθ
z
− 2 + κλ

2z
(3.33)

which yields a relaxation rate consistent with σDC,diss in (3.28). This confirms the prediction

in [14] (see also [16] for irrelevant lattice deformations).

It is also instructive to compare our results with the case of probe brane charge carriers

studied in [3, 4], where the DBI action is used to model the dynamics of the charge carriers.

This gives rise to a finite DC conductivity since there is a parametrically small number of

charge carriers diluted in a neutral bath: this allows them to dissipate their momentum.

The following expression was obtained

σDC,DBI =
e−kφ?

C?

√
q2 + Cp−1

? Z2
?e

2kφ? (3.34)

where all quantities are evaluated at the turning point of the brane r = r? and here k

labels the frame dependence of the metric as well as the origin of the neutral scalar (see [3]

for details). The important point to note is that (3.34) also displays two terms: the first

is the contribution of the charge carriers to the DC conductivity, while the second is the

pair creation term. The first is expected to dominate at high densities for massive carriers,

while the other does for massless carriers. When the electric field on the boundary is

small, the turning point r? is well approximated by the horizon rh. This means that the

resistivity obtained from (3.34) bears a close relation to the thermal entropy, [3], just as in

the formula (3.11). We can now compare the temperature dependence of the pair creation

term with that of (3.11):

Relevant current: σDC,DBI ∼ T−(2+dθ)/z

Irrelevant current: σDC,DBI ∼ T ζ−2
(3.35)

where the relevant solutions are the class III and class IV solutions without axions, studied

in [3, 4]. This precisely matches the scaling of (3.28), hinting that there is some universality

behind how the pair creation contribution to the DC conductivity scales with temperature

in various setups. The charge contribution in (3.34) is however quite different from (3.11),

but this should not surprise us as the two terms have very different origins. We antici-

pate similar scalings would be found in massive gravity [13] if the same IR analysis were

performed.
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4 Optical conductivity

Let us now turn our attention to the optical conductivity at nonzero frequencies. We recall

the perturbation equations we obtained in the previous section

0 =

[
ZC(p−3)/2

√
D

B
a′x

]′
+ ax

(
eγφω2

√
BC

p−3
2

√
D

− q2

√
BD

C
p+1
2

)
− 1

2
iq

√
BD

C
p+1
2

χ̃

0 =

[
Y −1C(1−p)/2

√
D

B
χ̃′
]′

+ 2ik2qax

√
BD

C
p+1
2

+

(
ω2
√
BC

1−p
2

Y
√
D

− k2

√
BD

C
p+1
2

)
χ̃

(4.1)

We will not decouple them here for the generic case, but instead show that at zero temper-

ature, these equations can be decoupled in the IR geometries of section 2: more precisely,

we are considering the region ω, T � µ, where µ is the chemical potential setting the scale

of UV physics. Then, we can apply the matching argument of [22], which relates the IR

Green’s functions to the UV current-current Green’s function

=
[
GRJ xJ x(ω, T )

]
=
∑
I

dI=
[
GROIOI (ω, T )

]
, (4.2)

where the index I runs over all the irrelevant operators OI coupling to the current J x. In

our case, those operators are the current itself, and the scalar operator dual to the axion

fields, as given by the two perturbations ax and χ. So if we can diagonalize (4.1) in the

IR geometries, we can work out the most relevant operator which will give the dominant

contribution to the UV Green’s function. This will yield the optical conductivity at zero

temperature, and small frequency ω � µ.

Actually, this needs only to be done explicitly for the class I solutions. For the other

classes, since the coupling between the perturbations is only through a mass term, one

can show that in the IR the non-diagonal mass term in each of the equations (4.1) is

subleading and so can be neglected. Then, the two equations can be reformulated as

Schrödinger equations using the change of variables

a = ax

√
Z̃(φ) , Z̃ = C

p−3
2 Z , χ̃ = χ̄

√
Ỹ (φ) , Ỹ = Y C

p−1
2 (4.3)

supplemented by a radial change of coordinate

dρ

dr
=

√
B(r)

D(r)
(4.4)

to the so-called Schrödinger coordinate. Inserting the scaling forms of the metric functions

in terms of θ and z, on finds that

ρ = rz. (4.5)

If we combine this with the fact that the IR is defined by the vanishing of the scale factor of

the spatial part of the metric, C(r) ∼ r
2θ
p−1
−2

, and the condition for local thermodynamic

stability (p−1−θ)z > 0, then we find that the IR in the Schrödinger coordinate ρ is always

located at ρ→ +∞. The various Schrödinger potentials we will find will always scale like
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1/ρ2 in the IR, and so will vanish there, indicating a gapless spectrum irrespective of the

UV behaviour.

So generically we obtain a Schrödinger equation for a generic perturbation ΨI with a

dual operator OI

Ψ′′I (ρ) + ω2ΨI(ρ)− VI(ρ)ΨI(ρ) = 0 , VI(ρ) =
cI
ρ2

+ · · · (4.6)

where the dots denote subleading contributions to the Schrödinger potential in the IR.

From this, we can extract the scaling of the imaginary part of the Green’s function of ΨI

=
[
GROIOI (ω � µ, T = 0)

]
∼ ω

√
4cI+1. (4.7)

We then have to compare the various contributions from the different perturbations at

small ω in (4.2), from which the real part of the optical conductivity reads

<
[
σ(ω � µ, T = 0)

]
=

1

ω
=
[
GRJ xJ x(ω � µ, T = 0)

]
. (4.8)

Class I (marginally relevant current and axion). The two equations (4.1) can be

decoupled using the linear combinations

λ1 = a− iqχ̄

2k2
, λ2 = a− i(k2 + 2q2)χ̄

2k2q
(4.9)

and take the form of two Schrödinger equations (4.6), from which we can extract the

scalings11

=
[
GRλ1λ1

]
∼ ω|1−(2+dθ)/z|, =

[
GRλ2λ2

]
∼ ω|3+(dθ−2)/z| ∼ ω3+(dθ−2)/z. (4.10)

Within the allowed parameter space, λ1 is always the most relevant of the two in the IR,

so that the optical conductivity scales like

<[σ] ∼ ω|1−(2+dθ)/z|−1. (4.11)

The next question is the sign of the exponent, as well as the sign of the expression within

the absolute value. We find that the expression in the absolute value is positive whenever

the gauge coupling is bounded12 by

−(p− 3)

p− 1
+

(p− 2)

p− 1
z <

κγ

2
< 1 , z < 0 ,

or 1 <
κγ

2
< −(p− 3)

p− 1
+

(p− 2)

p− 1
z , z > 2 .

(4.12)

This range contains both insulating solutions (3.17) as well as metallic ones. Then, the

scaling of the optical conductivity in (4.11) agrees with the scaling of the resisitivity we

derived in (3.15), as expected from the scaling argument in [22].

11We have simplified an absolute value in the λ2 scaling which always encloses a positive expression within

the parameter space.
12We thank A. Donos for pointing this out to us.
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There is however a region of the allowed parameter space, where the gauge coupling is

not bounded and the resistivity vanishes at zero temperatures, such that the absolute value

takes the opposite sign. In this case, we generically have a metal (vanishing resistivity)

with a positive power tail in the optical conductivity, which always differs from the DC

scaling. We will come back to this in the discussion.

In the semi-locally critical limit θ = −ηz, ζ → +∞, the optical conductivity becomes

<[σ] ∼ ω|1−η|−1, (4.13)

which associates a 1/ω power tail to the linear resistivity case η = 1, in agreement with

the argument of [22]. It is worth noting that in this limit, the resistivity vanishes at zero

temperature and the system always describes a metal.

Class II (irrelevant current, marginally relevant axion). As mentioned above, the

two perturbations a and χ̄ decouple in the IR and can be shown to obey Schrödinger

equations. From this, we derive the scalings

=
[
GRaa
]
∼ ω|1+(ζ−2)/z|, =

[
GRχ̃χ̃

]
∼ ω|3+(dθ−2)/z| ∼ ω3+(dθ−2)/z. (4.14)

The χ̄ scaling13 is identical to the λ2 perturbation of class I, while the a scaling reduces

to the λ1 one upon taking ζ = −dθ. The a perturbation is the most IR-relevant if the

conduction exponent is bounded by

Min[4(1− z), 0] < ζ − ζI < Max[4(1− z), 0] . (4.15)

This range has to be further restricted to

Min[2− z,−dθ] < ζ + dθ < Max[2− z,−dθ] (4.16)

in order for the expression within the absolute value to have the right sign to match the

resistivity scaling (3.19). Outside of that range, the optical conductivity scaling differs

from the resistivity scaling (3.19).

When the optical conductivity is given by the a perturbation, then the system can

behave both as a metal or as an insulator. When it is metallic, the power tail can decay

or blow up towards ω → 0, while it always decays for insulators.

When the optical conductivity scaling is given by the χ̄ perturbation, it reads

σχ̄ ∼ ω2+(dθ−2)/z (4.17)

and the exponent is always positive, so this power tail decays towards ω → 0. The resisi-

tivity (3.19) always vanishes, so we have a metal. This is consistent with the fact that the

conduction exponent is not bounded, so the system does not localize.

13We have simplified an absolute value which always encloses a positive expression within the parameter

space.
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Class III (marginally relevant current, irrelevant axion). We find the two follow-

ing contributions to the imaginary part of the UV Green’s function:

=
[
GRaa
]
∼ ω|3+(dθ−2)/z| ∼ ω3+(dθ−2)/z, =

[
GRχ̃χ̃

]
∼ ω|1+(κλ−dθ)/z|. (4.18)

Both can dominate the low-frequency behaviour. When the a contribution does, the system

is always metallic and the frequency-dependent power tail at zero temperature is always

decaying.

When the χ̃ contribution dominates, the system can be both metallic and insulating.

The frequency-dependent power tail at zero temperature can both vanish or blow up at

zero frequency in the metallic case, and it always vanishes in the insulating case. Moreover,

the expression in the absolute value matches the resistivity scaling (3.24) when the axion-

dilaton coupling is bounded

Min(−2, dθ − z) < κλ < Max(−2, dθ − z) (4.19)

in terms of the conduction exponent.

Class IV (irrelevant current, irrelevant axion). We find the two following contri-

butions to the imaginary part of the UV Green’s function:

=
[
GRaa
]
∼ ω|ζ−1| ∼ ωζ−1, =

[
GRχ̃χ̃

]
∼ ω|1−dθ+κλ| ∼ ω−(1−dθ+κλ). (4.20)

In both cases we have removed the absolute value, as allowed by the parameter space (B.24).

Both can dominate the low-frequency behaviour. The χ̃ perturbation dominates when

− ζ + dθ < κλ < −2 (4.21)

in terms of the conduction exponent. Irrespectively of which perturbation is the most

relevant at low frequencies, the power tails always decay. Because of the sign inversion

of the χ̃ perturbation, the scaling of the optical conductivity at low frequencies can never

match that of the resistivity (3.27).

Discussion. In [24], we found that there was a single operator in the IR, giving rise to

the following scaling of the optical conductivity at zero temperature and low frequency

Relevant current: <
[
σ(ω � µ, T = 0)

]
∼ δ(ω) + ω|3+(dθ−2)/z|−1

Irrelevant current: <
[
σ(ω � µ, T = 0)

]
∼ δ(ω) + ω|1−ζ|−1.

(4.22)

Moreover, in the allowed parameter space, the expression within the absolute value was

always positive and could be simplified.

In the setup of this paper, the analysis above shows that there is now an extra propa-

gating mode due to the presence of the axions. The scalings of (4.22) are most obviously

compared to those of the class III and IV solutions (4.18) and (4.20), from which it is clear

that indeed the same mode is still present (the a mode). This is because in these classes

the axions are treated as irrelevant IR operators. Remarkably however, a mode with the
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same IR dimension is still present in class I and II, where the IR operators mix the a and

χ̃ perturbations.

Generically, we find that the expression under the square root in (4.7) is always a

perfect square, hence it simplifies into an absolute value. The fact that this absolute

value can change sign can be understood in the following way: the procedure we have just

described amounts to taking the ratio of the normalisable over the non-normalisable piece

of the IR perturbation, which then gives the imaginary part of the IR Green’s function.

These two pieces now typically come accompanied by a power of the radial coordinate which

depends on the set of scaling exponents of the solution. Depending on their value, the two

pieces can actually exchange roles, the non-normalisable piece becoming normalisable and

vice-versa. This explains the absolute value, which accounts for the uncertainty over which

piece is which.

This has a dramatic consequence: only one sign for the absolute value (the positive

sign in our covention) for only one of the IR perturbations can match the resistivity scalings

of the previous section. It turns out that the scaling of the optical conductivity at zero

temperature and low frequencies can differ from the scaling of the resistivity, either because

the absolute value has the wrong sign, or because the ‘wrong’ perturbation is the most

relevant. Ultimately, this can be traced back to the presence of the running scalar and

to the violation of scaling symmetries (1.2), (1.3). This is confirmed by the fact that the

scaling symmetries are violated when the gauge or axion-dilaton couplings are unbounded

by other scaling exponents, so that the dilaton running is ‘strong’.

At the transition point where the expression in the absolute value changes sign and

scale invariance (1.2), (1.3) is violated, the resistivity is automatically linear in temperature

with a 1/ω tail in the optical conductivity, which is reminescent of the mechanism pointed

out in [22].

We do however find consistent behaviours. Whenever the system is insulating (so

there is no delta function at zero temperature and zero frequency), the diverging of the

resistivity at small temperatures is matched with a vanishing of the optical conductivity at

zero temperature and small frequencies. On the other hand, when the system is metallic

and the resistivity vanishes at low temperatures, one may expect the Drude peak to sharpen

into a delta function at exactly zero frequency, that is

<
[
σ(ω � µ, T = 0)

]
∼ δ(ω) + ω|n|−1. (4.23)

However, |n| − 1 can actually be positive or negative. If it is positive, we have a vanish-

ing power law and a diverging DC conductivity, so all the low energy spectral weight is

transferred to the delta function. If it is negative, there is a diverging power tail which

seems to wash out the delta function and signals that some spectral weight does remain

at non zero energies. It would be interesting to verify this by numerical computations,

in particular whether a delta function is still present when there is a negative power tail,

which cannot be inferred from the analytical calculations above (but could be on inspection

of the imaginary part of the conductivity from the presence of a 1/ω pole).
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5 Conclusion and outlook

In this work, we have examined how momentum can be relaxed in holographic theories

containing axions with a source linear in one of the spatial coordinates. By aligning each

axion along a different spatial direction, homogeneity and isotropy of the system is retained,

which means that the framework set up in [24] for the analysis of translation-invariant

phases still applies.

Doing so, we have performed an analysis of the possible phases with hyperscaling

violation (which naturally encompasses hyperscaling cases) and showed how it could be

split up in four classes of solutions, depending on whether the current and the axions are

(marginally) relevant operators in the IR or not. Each solution is captured by a set of four

scaling exponents: the dynamical exponent z, the hyperscaling violation exponent θ and

the conduction exponent ζ introduced in [24]; as well as the axion-dilaton coupling. If the

axions are marginally relevant, the axion-dilaton coupling is fixed κλ = −2, while if the

current is marginally relevant, it is the conduction exponent ζ = θ − p+ 1 = −dθ.
Since momentum is relaxed, the theory gives rise to a finite DC conductivity and hence,

resistivity. We have derived a generic formula (3.11), which generalizes that of [17] and is

qualitatively similar to previous results in holographic massive gravity [13] or probe charge

carriers [3, 4]. It contains two terms, one from pair creation in the vacuum and another

dissipative term proportional to the charge density, which generically scale as

σDC,pc ∼ T (ζ−2)/z, σDC,diss ∼ T (κλ−dθ)/z. (5.1)

Along these lines, the conduction exponent ζ should then really be thought as controlling

the quantum critical, pair creation contribution to the DC conductivity. This term turns

out to have the same scaling as that obtained from probe branes in [3], pointing to some

universality.

If the resistivity vanishes at low temperatures, the system behaves like a metal: without

a coherent Drude peak if the first term is parametrically larger than the second or for large

enough axionic charge, with a coherent Drude peak otherwise. If the resistivity diverges at

low temperatures, we find soft-gapped insulators, which have a translation-invariant metric

and no anisotropy contrarily to those of [28, 29].

Turning to the optical conductivity, its scaling at low frequencies and zero tempera-

tures can be determined. For insulating phases, we always find a decaying power tail. For

metals however, we either find a superposition of a delta function and a decaying power

tail, indicating that all the spectral weight is transferred to the delta function; or a di-

verging power tail broadening out the delta function. It would be interesting to work out

(numerically) the frequency-dependence of the optical conductivity in more detail.

Intriguingly, these power tails do not necessarily agree with the resistivity scaling and

can violate scale invariant expectations (1.2)–(1.3), contrarily to hyperscaling cases [14,

22, 28]: this is a side effect of a strong running of the dilaton, happening in regions of the

parameter space where the exponents ζ and κλ (or alternatively, the gauge- and axion-

dilaton couplings) governing the AC conductivity are unbounded. The scaling violation can

manifest itself in two ways. The first is that there are generically two modes propagating in
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the IR and contributing to the UV retarded Green’s function of the current. Only one of the

two can possibly match the resistivity scaling but either can be the most relevant depending

on the parameter space. Even when the correct mode is the most relevant, its contribution

to the conductivity scales like ω|n|−1, where it only agrees with the resistivity for n > 0,

which again is not necessarily guaranteed by the parameter space. This reflects the fact

that in the IR region, the ‘source’ and the ‘vev’ (i.e. the non-normalisable and normalisable

pieces) can be exchanged depending on the values of the scaling exponents. However,

when the violation of scale invariance is realised in this way, the resistivity becomes linear

in temperature at this transition point n = 0, which is reminescent of the mechanism

described in [22] (albeit at zero momentum).

One interesting consequence of our analysis is the following: whenever the resistivity

is linear (like for instance in the semi-locally critical case analogous to [19]), the power tail

in the optical conductivity goes like 1/ω (as was also pointed out in [22]). It would be

desirable to understand what consequences this has on the calculation of the sum rule on

the real part of the conductivity, which is not integrable at ω = 0, and whether these two

features can be decoupled.

In this work, we have considered spatially-dependent but linear sources for the axions,

which are marginal deformations of the UV CFT. It would be very interesting to make

these deformations relevant while retaining homogeneity, like in [29], and investigate how

and if these results change, particularly the various scaling behaviours. This also opens the

way for an analysis of phases which are spatially anisotropic. Another interesting setup

could involve helical (Bianchi VII) symmetries, [28]. There, some extra scaling exponents

are needed to parameterize the spatial anisotropy, but the conductivity displays similar

scaling properties, in particular with negative, frequency-dependent power tails as well as

insulating behaviour, [32, 33]. Of course, efficient, power-law momentum relaxation will

not always occur in this setup: lattices at finite z relaxing momentum at the lattice scale

should result in Boltzmann-suppressed resistivities [14, 20, 21].

In [19], it was shown that for a specific η = 1 semi-locally critical geometry in holo-

graphic massive gravity, the resistivity scaled linearly like the entropy ρ ∼ s: the ex-

planation put forward was that if the late-time behaviour of the system is controlled by

hydrodynamics,14 the momentum relaxation rate associated to quenched disorder is set by

the shear viscosity, which is famously related to the entropy density via a universal ratio.

Hence [19] concluded that massive gravity captures leading effects of quenched disorder,

while subleading corrections in 1/ log T have to be worked out for instance using the mem-

ory matrix formalism. When it dominates, the dissipative term in (5.1) generates a leading

contribution to the resistivity

ρ ∼ s T−
κλ
z , s ∼ T

dθ
z . (5.2)

Obviously, it reproduces the result of [19] in the semi-locally critical limit z → +∞. In the

presence of spatially-dependent axions, the universality of the shear viscosity to entropy

14Assuming a hydrodynamic state can form, which means Umklapp scattering should occur on much

longer timescales.
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ratio will be violated, but will only generate subleading corrections [31] so we can expect

the previous result to still hold. It would be interesting to understand if there is some

universality behind the temperature prefactor.

At finite z, [10] analyzed the effects of random-field disorder on a generic hyperscal-

ing violating but scale invariant theory. They found that for relevant disorder with UV

scaling dimension ∆, the contribution to the resistivity was ρ ∼ T 2(1+∆−z)/z, which upon

saturation of the Harris criterion (meaning that disorder becomes marginally relevant and

perturbation theory breaks down), turned into ρ ∼ s T 2/z. Remarkably, this scaling coin-

cides with (5.2) when the axions are marginally relevant in the IR and κλ = −2 (classes I

and II), bringing further evidence that the axions capture some of the IR physics associated

with random-field disorder and can relax momentum efficiently at finite z. We have worked

at zero momentum throughout this paper: indeed the disorder calculations [10, 19] are also

dominated by low momenta modes. [34] has shown that (UV) marginal disorder gave rise

to Lifshitz IR geometries with z finite: our results for class II solutions, which have IR

marginally relevant axions and finite z backgrounds, seem to resonate with the interpreta-

tion that our massless scalars capture random disorder physics at low temperatures.

Note added. [35] appeared simultaneously where a subset of class II solutions as well as

anisotropic phases analogous to class I are discussed in four bulk dimensions. The formula

for the DC conductivity is also obtained for D = 4 as well as qualitatively similar results

for the scaling of the conductivity.
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A Equations of motion

The equations of motion derived from the action

S =

∫
dp+1x

√
−g
[
R− 1

2
∂φ2 − 1

4
Z(φ)F 2 + V (φ)− 1

2
Y (φ)

p−1∑
i=1

∂ψ2
i

]
(A.1)

read

Rµν =
1

2
∂µφ∂νφ+

Y (φ)

2

p−1∑
i=1

∂µψi∂νψi +
Z(φ)

2
Fµ

ρFνρ −
Z(φ)F 2

4(p− 1)
gµν −

V (φ)

p− 1
gµν

0 = ∇µ
(
Z(φ)Fµν

)
0 = ∇µ

(
Y (φ)∇µψi

)
, i = 1 . . . p− 1

0 = 2φ+ V ′(φ)− 1

4
Z ′(φ)F 2 − 1

2
Y ′(φ)

p−1∑
i=1

∂(ψi)
2.

(A.2)
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Plugging in the Ansatz

ds2 = −D(r)dt2+B(r)dr2+C(r)d~x2, φ = φ(r) , A = A(r)dt , ψi = kxi ,

(A.3)

the equations of motion are

0 =
2BV

p− 1
+
Z(p− 2)A′2

(p− 1)D
+
B′D′

2BD
− (p− 1)C ′D′

2CD
+
D′2

2D2
− D′′

D

0 =

[
ZC

1
2

(p−1)

√
BD

A′
]′

0 =
B′D′

2BD
− (p−1)C ′2

2C2
− (p−1)C ′D′

2CD
− B′

2B

(
(p−1)C ′

C
+
D′

D

)
+ φ′2 +

(p− 1)C ′′

C

0 =
Y k2B

C
− 2BV

p− 1
+

ZA′2

(p− 1)D
+

(p− 3)C ′2

2C2
+
C ′

2C

(
D′

D
− B′

B

)
+
C ′′

C

0 = −
Y,φ k

2(p− 1)B

2C
+
Z,φA

′2

2D
+BV,φ −

B′φ′

2B
+

(p− 1)C ′φ′

2C
+
D′φ′

2D
+ φ′′,

(A.4)

where we have suppressed the dependence of all functions on r or φ for brevity, primes de-

note derivatives w.r.t. r and the axion equations are automatically satisfied by our Ansatz.

B Details on the IR analysis

B.1 Class I: marginally relevant current, marginally relevant axion

We start by considering that both the current and the axions are marginally relevant in

the IR. It is easy to find a scaling solution of the form

ds2 = r
2θ
p−1

[
− dt2

r2z
+
L2dr2+d~x2

r2

]
, L2 =

2(p−2+z−θ)(p−1+z−θ)
2V0−k2(p−2)

A =

√
2
(
2V0(1−z)+k2(pz−z−θ)

)(
k2(p−2)−2V0

)
(p−1+z−θ)

r1−p−z+θdt ,

eφ = rκ, κ2 =
2(p−1−θ)

(
1+p(z−1)−z−θ

)
p−1

γ = (2−p)δ + (1−p)λ , κδ =
2θ

p− 1
, κλ = −2

(B.1)

which differs from the scaling solutions when translation invariance is not broken [3, 4]. If

one desires, a blackness function can be turned on exactly and is written

f(r) = 1−
(
r

rh

)p−1+z−θ
. (B.2)

Let us now run the usual mode analysis. What we get are conjugate modes, summing

to p− 1 + z− θ. Two pairs are degenerate, with a zero mode and a universal, temperature
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mode equal to p− 1 + z − θ (as expected). The last pair is more interesting and reads

β± =
p−1+z−θ

2
±

√
−1+p+z−θ

4(1−p−z+pz−θ)

(
X − 4

k2

V1
(p−2)(p−1− θ)(p−2+z−θ)

)
X = 9p2(z−1)−17−9z2−8θ+θ2+z(26+8θ)+p

(
26+9z2+8θ−z(35+9θ)

)
V1 = −k2(−2 + p)/2 + V0 .

(B.3)

β+ will have the same sign as the temperature deformation and so is always relevant, but it

is however possible to check that β− is always irrelevant given the parameter space defined

by: real solution, relevant temperature deformation and positive specific heat.

Moreover, one can check that the tt element of the metric scales like the spatial direc-

tions, that is blows up or vanishes when they do. The Null Energy Condition is always

satisfied.

The allowed parameter space is

V0 > 0 , k2V0 <
−2 + 2z

−z + pz − θ
, and

z < 0 , θ > p− 1 or 1 < z ≤ 2 , θ < (z − 1)(p− 1) or z > 2 , θ < p− 1

(B.4)

with a maximum value for k2.

Semi-locally critical limit. In the limit,

θ → +∞ , z → +∞ ,
θ

z
= −η (B.5)

the solution (B.1) becomes conformal to AdS2 ×Rp−1:

ds2 = r
− 2η
p−1

[
L2dr2 − dt2

r2
+ d~x2

]
, L2 =

2(1 + η)2

2V0 − k2(p− 2)

A =

√
2
(
2V0 + k2(p− 1 + η)

)(
k2(p− 2)− 2V0

)
(1 + η)

r−1−ηdt ,

eφ = rκ κ2 =
2η(p− 1 + η)

p− 1

γ = (2− p)δ , λ = 0 , κδ =
−2η

p− 1
,

(B.6)

with blackness function

f(r) = 1−
(
r

rh

)1+η

. (B.7)

The allowed parameter space is

V0 > 0 , k2V0 <
2

−1 + p+ η
, η > 0 . (B.8)
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B.2 Class II: irrelevant current, marginally relevant axion

An irrelevant current means that it backreacts as a mode on the background solution. As

a consequence, the background is a solution of the equations of motion with the gauge field

turned off: it will be turned on at linear order in deformations, and backreact at quadratic

order on the other fields. The background in that case is a hyperscaling violating solution,

characterized by a set of three scaling exponents: z, θ and ζ, the conduction exponent.

It reads

ds2 = r
2θ
p−1

[
− dt2

r2z
+
L2dr2 + L̃2d~x2

r2

]
, L2 =

(p− 2 + z − θ)(p− 1 + z − θ)
V0

eφ = rκ, L̃2 =
k2
(
(p− 1)z − θ

)
2(z − 1)V0

κδ =
2θ

p− 1
, κλ = −2 , κ2 =

2(p− 1− θ)
(
1 + p(z − 1)− z − θ

)
p− 1

.

(B.9)

A blackness function can be turned on and reads as previously

f(r) = 1−
(
r

rh

)p−1+z−θ
. (B.10)

Note that we can still engineer z 6= 1, i.e. IR violation of relativistic symmetry, with

an irrelevant current. This is different from the backgrounds studied in [3, 4, 23, 24],

where non-relativistic IR backgrounds could only be obtained through a marginally relevant

current.

The mode analysis reveals pairs of conjugate modes summing to p − 1 + z − θ. One

pair is simply the marginal mode and its conjugate temperature mode. Another pair does

not involve the gauge field and reads

β± =
p− 1 + z − θ

2
±
√

X

4
(
1 + p(−1 + z)− z − θ

)2
X = 8(z−1)

(
1+p(z−1)−z−θ

)(
(p−1)z2+θ(1−p+θ)+z

(
1+p2−p(2+θ)

))
+
(
p2(z − 1)− 1 + 2z − z2 + θ2 + p

(
2 + z2 − z(3 + θ)

))2
.

(B.11)

β+ is always relevant, β− irrelevant. Turning to the gauge field modes, they can be param-

eterized as

A = Qrβ
±
a , β−a = 0 , β−a = ζ − z , κγ = p− 1− ζ − p− 3

p− 1
θ . (B.12)

The first is a zero mode which is just a reflection of the global U(1) inside the gauge

symmetry. The second generates a constant electric flux proportional to Q. These modes

backreact on the other fields (metric and φ) at quadratic order, which allows to determine

the dual dimension of the current as

β− =
1

2
(p− 1 + 2z − ζ − θ) + βa− =

1

2
(p− 1 + ζ − θ) . (B.13)
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The conjugate to β− is absent when the flux is conserved, simply because a constant shift in

the gauge field does not backreact on the other fields. If the flux was not conserved, we could

work out what β+ is and find that it sums to the correct value with β−, β++β− = p−1+z−θ.
The allowed parameter space is

V0 > 0 , θ ≤ 0 , z > 1 , ζ < 1− p+ θ or

0 < θ < −1 + p , z >
−1 + p+ θ

−1 + p
, ζ < 1− p+ θ or

θ > −1 + p , z < 0 , ζ > 1− p+ θ .

(B.14)

Once all these constraints are taken into account, the Null Energy Condition holds and the

tt element of the metric scales together with the spatial elements.

Semi-locally critical limit. A semi-locally critical limit can be taken as well, upon

which the axion-dilaton coupling goes to a constant in the IR λ = 0. However, here the

limit should also include the conduction exponent ζ = ζ̃z, z → +∞, in order to allow for

full generality in the scaling of the electric potential.

The allowed parameter space is

V0 > 0 , η > 0 , ζ̃ < −η . (B.15)

B.3 Class III: marginally relevant current, irrelevant axion

Let us now consider the following possibility: the current is marginally relevant, but the

axion is not. This generates a background characterized by z and θ, with a mode turning

on the axion:

ds2 = r
2θ
p−1

[
− dt2

r2z
+
L2dr2 + d~x2

r2

]
, L2 =

(p− 2 + z − θ)(p− 1 + z − θ)
2V0

A =

√
2(−1 + z)

−1 + p+ z − θ
r1−p−z+θdt ,

eφ = rκ κ2 =
2(p− 1− θ)

(
1 + p(z − 1)− z − θ

)
p− 1

κγ = 2(p− 1)− 2(p− 2)

p− 1
θ , κδ =

2θ

p− 1
.

(B.16)

This background is exactly identical to those discussed in [3, 4], where the axion fields

where not turned on. This is because in this case they behave as deformations.

The same remarks as before regarding the blackness function and the semi-locally

critical limit apply. Turning to the mode analysis, we find three pairs of modes summing

to p− 1 + z− θ: two are degenerate, with a marginal mode and a temperature mode equal

to p− 1 + z − θ. Another pair reads

β± =
1

2
(p− 1 + z − θ)±

√
X

4
(
2p(−1 + z)− 2(−1 + z + θ)

)
X = 8(p− 1)(z − 1)

(
2 + p2 + z2 + p(2z − 3− 2θ) + 3θ + θ2 − z(3 + 2θ)

)
+

(
− 1 + p2(−1 + z) + 2z − z2 + θ2 + p

(
2 + z2 − z(3 + θ)

))2(
1 + p(z − 1)− z − θ

)
(B.17)
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where always one among β+ or β− is irrelevant, depending on the region of the parameter

space determined by: real solution, relevant temperature deformation and positive specific

heat. Moreover, the Null Energy Condition always holds, and the tt and spatial metric

elements always scale together.

Turning to the axion, it generates a mode

β = κ

(
γ + (p− 2)δ

p− 1
+ λ

)
= 2 + κλ (B.18)

which becomes marginal precisely when the axion cannot be considered as irrelevant, and

yields the solutions found previously. However, there are non-trivial constraints on the value

of λ, it is not always consistent to deform the geometries of [3, 4] by axions not coupled to

the dilaton. The deformation can be relevant and lead to the geometries discussed above.

The parameter space implies V0 > 0 as well as:

z < 0 , θ > −1 + p , κλ > −2

1 < z ≤ 2 , θ < 1− p− z + pz , κλ < −2

z > 2 , θ < −1 + p , κλ < −2

(B.19)

B.4 Class IV: irrelevant current, irrelevant axion

We finally turn to the last possibility, which is that both the current and the axion are

irrelevant. Then we find a hyperscaling violating solution with z = 1

ds2 = r
2θ
p−1
−2

[−dt2 + L2dr2 + d~x2] , L2 =
(p− 1− θ)(p− θ)

V0

eφ = rκ,

κδ =
2θ

p− 1
, κ2 =

2θ(1 + θ − p)
p− 1

(B.20)

It has two degenerate pairs of conjugate modes, one marginal and the other a temperature

mode, which sum to p− θ. Then, there are two gauge field modes

βa− = 0 , βa+ = ζ − 1 , κγ = p− 1− ζ − p− 3

p− 1
θ (B.21)

which backreact on the metric (for the non-constant mode as):

β− = p− 1 + ζ − θ . (B.22)

Finally, the axion mode reads

β = 2 + κλ . (B.23)

Note that it would impose a non-trivial constraint on the location of the IR if λ = 0. The

consistent parameter space is simple

θ < 0 , ζ < θ + 1− p , κλ < −2 (B.24)

and of course since z = 1, the tt element of the metric always scales in concert with the

spatial ones. The Null Energy Condition always holds.
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C Analytic asymptotically AdS family

Consider the following theory

S =

∫
dp+1x

√
−g
[
R− 1

2
∂φ2 − 1

4
Z(φ)F 2 + V (φ)

]
. (C.1)

When

Z(φ) = e−(p−2)δφ, V (φ) = V1e
((p−2)(p−1)δ2−2)φ

2(p−1)δ + V2e
2φ
δ−pδ + V3e

(p−2)δφ, (C.2)

with

V1 =
8(p− 2)(p− 1)2V0δ

2

p
(
2 + (p− 2)(p− 1)δ2

)2 ,
V2 =

(p− 2)2(p− 1)V0δ
2
(
p(p− 1)δ2 − 2

)
p
(
2 + (p− 2)(p− 1)δ2

)2
V3 = −

2V0

(
(p− 2)2(p− 1)δ2 − 2p

)
p
(
2 + (p− 2)(p− 1)δ2

)2
(C.3)

then there is an analytic black hole solution, [4, 36]

ds2 = −f(r)h(r)
−4

2+(p−2)(p−1)δ2 dt2 + h(r)
4

(p−2)(2+(p−2)(p−1)δ2)

[
dr2

f(r)
+ r2dΣ2

κ,p−1

]
f(r) = r2

(
h(r)

4(p−1)

(p−2)(2+(p−2)(p−1)δ2)−
(
rh
r

)p
h(rh)

4(p−1)

(p−2)(2+(p−2)(p−1)δ2)

)
+κ

(
1−
(
rh
r

)p−2
)

eφ = h(r)
−2(p−1)δ

2+(p−2)(p−1)δ2 , h(r) = 1 +
Q

rp−2

A(r) = 2

√
(p− 1)Q

p− 2

√
r2+p
h h(rh)

2(2−(p−2)2(p−1)δ2)
(p−2)(2+(p−1)(p−2)δ2) + rphκh(rh)−1

rp−1
h h(r)

√
2 + (p− 2)(p− 1)δ2

(
1−

rp−2
h

rp−2

)
.

(C.4)

Here the horizon can be flat κ = 0, positively or negatively curved.

We are interested in generalising the above, for the flat case, to include axions aligned

along horizon directions. The metric (with κ = 0) looks the same, while the functions

which are modified read:

f(r) = r2

(
h(r)

4(p−1)

(p−2)(2+(p−1)(p−2)δ2) −
rph
rp
h(rh)

4(p−1)

(p−2)(2+(p−1)(p−2)δ2)

)
+
k2
(

1− rp−2
h
rp−2

)
p− 2

A(r) = 2
√

(p− 1)Q

√
(p− 2)r2+p

h h(rh)
2(2−(p−2)2(p−1)δ2)

(p−2)(2+(p−1)(p−2)δ2) − rphk
2

2h(rh)

(p− 2)rp−1
h h(r)

√
2 + (p− 2)(p− 1)δ2

(
1−

rp−2
h

rp−2

)
ψi = kxi

(C.5)
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where xi are the boundary spatial directions. The similarity between the role of the axionic

charge and the horizon curvature in the two metrics is striking. This family of solutions

with the dilaton turned off was studied recently in [17], and earlier in [37] (see also [38, 39]

for families of axion-dilaton solutions with non-minimal couplings between the gravity and

dilaton sectors).

The chemical potential can be read off from the asymptotic value of the electric po-

tential:

µ = 2
√

(p− 1)Q

√
(p− 2)r2+p

h h(rh)
2(2−(p−2)2(p−1)δ2)

(p−2)(2+(p−1)(p−2)δ2) − rphk
2

2h(rh)

(p− 2)rp−1
h

√
2 + (p− 2)(p− 1)δ2

(C.6)

and defines a maximum value for k at fixed Q and rh:

k2
max = 2(p− 2)h(rh)

−1+
4(p−1)

(p−2)(2+(p−2)(p−1)δ2) r2
h . (C.7)

This is similar to what we have seen in the class I solutions in section 2.

The temperature reads:

4πT = r−1
h h(rh)

−2(p−1)

(p−2)(2+(p−2)(p−1)δ2)

∣∣∣∣∣k2 −
r2
h

(
4(p−1) + h(rh)(p−2)

(
p(p−1)δ2 − 2

))
(
2 + (p−2)(p−1)δ2

)
h(rh)

1− 4(p−1)

(p−2)(2+(p−2)(p−1)δ2)

∣∣∣∣∣ .
(C.8)

Depending on the value of δ, one may check that the near-horizon geometry can be

either AdS2 × R2, or conformal to AdS2 for δ =
√

2/p(p− 1). In this case, it has η = 1

and displays both a linear resistivity and a linear entropy in temperature.

It would be very interesting to search for other analytic AdS completions, perhaps

along the lines of [40].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[24] B. Goutéraux, Universal scaling properties of extremal cohesive holographic phases,

JHEP 01 (2014) 080 [arXiv:1308.2084] [INSPIRE].

– 29 –

http://arxiv.org/abs/1003.1728
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.1728
http://dx.doi.org/10.1103/PhysRevD.88.045016
http://arxiv.org/abs/1306.6396
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6396
http://dx.doi.org/10.1103/PhysRevB.76.144502
http://arxiv.org/abs/0706.3215
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3215
http://dx.doi.org/10.1103/PhysRevD.77.106009
http://arxiv.org/abs/0801.1693
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1693
http://dx.doi.org/10.1103/PhysRevD.89.066018
http://arxiv.org/abs/1401.7993
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.7993
http://arxiv.org/abs/1301.0537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
http://dx.doi.org/10.1103/PhysRevD.88.086003
http://arxiv.org/abs/1306.5792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.5792
http://dx.doi.org/10.1103/PhysRevD.88.106004
http://arxiv.org/abs/1308.4970
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.4970
http://dx.doi.org/10.1103/PhysRevLett.108.241601
http://arxiv.org/abs/1201.3917
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3917
http://dx.doi.org/10.1007/JHEP07(2012)168
http://arxiv.org/abs/1204.0519
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0519
http://dx.doi.org/10.1103/PhysRevLett.112.071602
http://arxiv.org/abs/1310.3832
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.3832
http://arxiv.org/abs/1311.5157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5157
http://dx.doi.org/10.1103/PhysRevD.79.025023
http://arxiv.org/abs/0809.3808
http://inspirehep.net/search?p=find+EPRINT+arXiv:0809.3808
http://arxiv.org/abs/1311.2451
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2451
http://dx.doi.org/10.1007/JHEP07(2012)078
http://arxiv.org/abs/1203.4236
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4236
http://dx.doi.org/10.1007/JHEP03(2013)104
http://arxiv.org/abs/1210.1590
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.1590
http://dx.doi.org/10.1103/PhysRevD.86.124046
http://arxiv.org/abs/1208.4102
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4102
http://dx.doi.org/10.1007/JHEP04(2013)053
http://arxiv.org/abs/1212.2625
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.2625
http://dx.doi.org/10.1007/JHEP01(2014)080
http://arxiv.org/abs/1308.2084
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2084


J
H
E
P
0
4
(
2
0
1
4
)
1
8
1

[25] N. Iizuka et al., Extremal horizons with reduced symmetry: hyperscaling violation, stripes and

a classification for the homogeneous case, JHEP 03 (2013) 126 [arXiv:1212.1948] [INSPIRE].

[26] J. Gath, J. Hartong, R. Monteiro and N.A. Obers, Holographic models for theories with

hyperscaling violation, JHEP 04 (2013) 159 [arXiv:1212.3263] [INSPIRE].

[27] L. Huijse, S. Sachdev and B. Swingle, Hidden Fermi surfaces in compressible states of

gauge-gravity duality, Phys. Rev. B 85 (2012) 035121 [arXiv:1112.0573] [INSPIRE].

[28] A. Donos and S.A. Hartnoll, Interaction-driven localization in holography,

Nature Phys. 9 (2013) 649 [arXiv:1212.2998] [INSPIRE].

[29] A. Donos and J.P. Gauntlett, Holographic Q-lattices, JHEP 04 (2014) 040

[arXiv:1311.3292] [INSPIRE].
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