
Vol.:(0123456789)1 3

Appl. Phys. A (2017) 123:681 

DOI 10.1007/s00339-017-1287-5

Charge transport studies on Si nanopillars for photodetectors 

fabricated using vapor phase metal-assisted chemical etching

Prajith Karadan1,3 · Santanu Parida2 · Arvind Kumar1 · Aji A. Anappara3 · 

Sandip Dhara2 · Harish C. Barshilia1 

Received: 10 May 2017 / Accepted: 23 September 2017 / Published online: 14 October 2017 

© Springer-Verlag GmbH Germany 2017

region 250–800 nm with a minimum reflectance of 2.13% 

for the optimized sample. The superior light absorption of 

the SiNPLs induced fast response in the I–V characteristics 

under UV light and white light. The work function of the 

SiNPLs in dark and under illumination has been also studied 

using Kelvin probe to confirm the light sensitivity.

1 Introduction

One dimensional semiconductor nanostructures including 

nanopillars, nanowires, nanotubes, nanorods have emerged 

as one of the most promising materials for the applications 

in various fields such as optoelectronics, nanoelectronics, 

energy storage, chemical and biosensors [1–4]. Specifi-

cally, the nanopillar- or nanowire-based devices are pre-

cisely adapted for electronic and photonic applications due 

to their enhanced subwavelength optical coupling, ability 

to integrate with electronic devices, very high surface-to-

volume ratio, etc. [5–7]. Various substrates, such as single 

crystalline semiconductor wafers, glass, metal foils, quartz, 

have been used for nanowire-based devices in variety of 

ways. Chueh et al. have reported Ge nanoneedles grown 

on low temperature substrates such as plastic and rubber 

[8–10]. An UV–visible photodetector with high responsiv-

ity using GaN nanowires on Si substrates was demonstrated 

by Bugallo et al. GaInAs/InP nanopillar arrays have been 

utilized by Gin et al. for the infrared photodetectors along 

with theoretical investigation [11]. Among the semiconduc-

tor nanowire devices, the electronic and photonic applica-

tions of Si nanowires/pillars are particularly important due 

to their properties such as the ability of miniaturization in 

microelectronics, compatibility with currently existing semi-

conductor technology and enhanced light matter interaction 

[12–14].

Abstract Si nanopillars (SiNPLs) were fabricated using a 

novel vapor phase metal-assisted chemical etching (V-Mace) 

and nanosphere lithography. The temperature dependent cur-

rent–voltage (I–V) characteristics have been studied over a 

broad temperature range 170–360 K. The SiNPLs show a 

Schottky diode-like behavior at a temperature below 300 K 

and the rectification (about two orders of magnitude) is more 

prominent at temperature < 210 K. The electrical properties 

are discussed in detail using Cheung’s and Norde methods, 

and the Schottky diode parameters, such as barrier height, 

ideality factor, series resistance, are carefully figured out and 

compared with different methods. Moreover, the light sensi-

tivity of the SiNPLs has been studied using I–V characteris-

tics in dark and under the illumination of white light and UV 

light. The SiNPLs show fast response to the white light and 

UV light (response time of 0.18 and 0.26 s) under reverse 

bias condition and the mechanism explained using band dia-

gram. The ratio of photo-to-dark current shows a peak value 

of 9.8 and 6.9 for white light and UV light, respectively. The 

Si nanopillars exhibit reflectance < 4% over the wavelength 
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Recently, Grego et al. have reported waveguide integrated 

photodetectors based on Si nanowires. These types of struc-

tures can act as a building block for the CMOS compatible 

chip because of their waveguiding and light detection prop-

erties [15]. The Si nanowires/pillars play a dominant role in 

developing Si based technology due to their enhanced light 

absorption and emission characteristics, which arise from 

the manipulation of Si into nanostructures [16]. These Si 

nanopillars-based devices outperform the other compound 

semiconductors because of the evolution of Si technology 

in device processing, packaging, quality control, etc. [13, 

14, 17]. These subwavelength structures on the Si substrate 

can reduce the very high reflectance of bulk Si in the visible 

region. Other materials such as II–VI and III–V compound 

semiconductors also have applications in the optoelectronic 

industry [3, 18–20]. However, these materials are still under 

research since they are not established for practical applica-

tions. Further, one of the disadvantages of these materials 

is the low absorption coefficient in the visible region, which 

hinders the application in solar cell. Studies about electrical 

properties of Si nanopillars have gained a lot of research 

attention since the Si nanostructure-based heterojunctions 

such as Si/graphene and Si/MoS2 are reported for photode-

tectors and photovoltaic applications [21–24].

The fabrication of Si nanopillars (SiNPLs) includes dif-

ferent methods such as chemical vapor deposition, electro-

chemical etching, vapor–liquid–solid growth, dry etching 

and metal-assisted chemical etching [25–28]. Out of various 

fabrication methods, metal-assisted chemical etching is the 

most commonly used, simple and low cost technique for 

the fabrication of SiNPLs [29–31]. However,  H2 gas bub-

bles generated during liquid phase metal-assisted chemical 

etching process (L-Mace) can produce local differences in 

the etching rate, which leads to non-uniformly etched sur-

faces [32]. Another difficulty is the fluid flow, which alters 

the catalyst morphology during the metal-assisted chemical 

etching. Recently, Hildreth and Schmidt [32] have reported 

vapor phase metal-assisted chemical etching (V-Mace) that 

overcomes all the above mentioned difficulties. The V-Mace 

provides many advantages over the L-Mace to control the 

nanostructure effectively during the growth process [32–34]. 

The process parameters such as substrate temperature, tem-

perature of the etchant, distance between the etchant and 

substrate can be varied to get the nanostructure in a con-

trolled manner. The substrate temperature is used to adjust 

the adsorption/desorption rate of the etchant vapors on the 

substrate. Since the V-Mace is completely a dry process, 

the gaseous by-products formed during the etching diffuse 

out from the substrate [32]. This ensures uniform etching 

throughout the Si surfaces. Moreover, catalyst morphology 

remains unaltered in V-Mace as there is no direct contact 

between the substrate and etchant. Nanosphere lithography 

is one of the most effective tools that can be used with the 

V-Mace to produce the Si nanostructures with controlled 

size and periodicity [35, 36].

Herein, for the first time, we report the fabrication of 

SiNPLs utilizing V-Mace and nanosphere lithography. The 

temperature-dependent current–voltage (I–V) characteris-

tics have been discussed over a wide range of temperature 

170–360 K. The SiNPLs exhibit Schottky diode-like behav-

ior especially at temperature < 210 K. The temperature-

dependent Schottky diode parameters such as barrier height, 

ideality factor and series resistance were calculated using 

Cheung’s and Norde methods. Moreover, the SiNPLs exhibit 

ultra-low reflectance in the visible region with a minimum 

reflectance of 2.2%. This superior light absorption leads to 

the very good sensitivity of light and the sensitivity is more 

prominent under reverse bias. The mechanism behind the 

optical sensing properties is explained using the energy band 

diagram.

2  Experimental details

Si wafer with (100) orientation was ultrasonicated with iso-

propyl alcohol (IPA) followed by acetone for 15 min each 

to remove the contamination. The wafers were treated with 

boiling piranha (4:1 (v/v)  H2SO4:H2O2) and RCA solution 

(1:1:5(v/v/v)  NH4OH:H2O2:H2O) at 80 °C for 1 h. Poly-

styrene nanosphere lithography was used to get a nanopo-

rous gold template on the Si wafers. PS spheres of diameter 

90 nm, as 10% by weight in solution, were used in this fabri-

cation process. The PS nanospheres were diluted in ethanol 

by volume ratio 1:1 and a volume of 20 µL was dropped on 

the Si substrates placed on a spin coater. Spin coating of PS 

nanosphere has been conducted in three steps: (1) 200 rpm 

for 20 s, (2) 1000 rpm for 20 s and (3) 8000 rpm for 60 s. 

To reduce the size and increase the separation between the 

PS spheres,  O2 plasma etching was performed using mag-

netron sputtering system. The gold film is deposited with an 

optimum chamber pressure of 5.1 × 10−3 mbar and target 

power density of 0.58 W/cm2 for 10 s. The PS spheres were 

then removed by sonication in dichloromethane. Si substrate 

with porous Au film was loaded in an etching set up for 

vapor phase metal-assisted chemical etching (V-Mace), as 

shown in Supplementary Fig. S1. An optimum temperature 

of 45 °C was used to control the adsorption and desorption 

rate of the etchant vapors on the substrate.

The etching solution contains HF (40%),  H2O2 (30%) and 

ethanol with volume ratio 3:1:1. The etchant vapors from the 

etching solution were transferred to the substrate and it got 

adsorbed on the substrate surface in a condensed form. The 

schematic diagram showing the mechanism of vapor phase 

etching is illustrated in Fig. 1. The etching mechanism of 

V-Mace can be written as:

At the cathode (on the metal surface), 
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At the anode (on the Si substrate), 

It should be noted that unlike L-Mace, the end product 

in V-Mace is  SiF4. Finally, the samples were rinsed with DI 

water several times and the Au film was removed in aqua 

regia (3:1 (v/v) HCl:HNO3). Subsequently, the samples were 

cleaned in DI water and IPA.

The surface roughness of the SiNPLs, fabricated by 

V-Mace, is very less in comparison to the L-Mace. The RMS 

roughness values of the V-Mace-etched samples are 4–12 nm 

for the samples etched for 10–25 min as shown in Supple-

mentary Fig. S2. Moreover, the RMS roughness of the liquid 

phase etched samples is in micron range (0.5–2 μm). The 

reduced RMS roughness in V-Mace etching helps to make 

uniform electrical contact to the substrate. To achieve good 

electrical contact In balls of diameter 1 mm were used. The 

electrical contacts were made in top–bottom geometry and 

the schematic is also shown in Supplementary Fig. S3. The 

temperature-dependant I–V measurements were carried out 

by keeping the sample in a temperature-controlled stage 

(Linkam; THMS600) with the help of a source measurement 

unit (Agilent B2911A). The work function of SiNPLs and In 

were measured by Kelvin probe technique (SKP 5050, KP 

Technology Ltd. UK) with gold tip having diameter 2 mm 

(2 meV resolution). The reflectance properties of etched Si 

were observed by UV–Vis–NIR spectroscopy (PerkinElmer, 

Lambda 950).

3  Results and discussion

The FESEM images corresponding to the sequential steps 

for the fabrication of SiNPLs are shown in Fig. 2. The mor-

phology of the monolayer of polystyrene (PS) nanospheres 

on Si wafer is presented in Fig. 2a. Figure 2b represents the 
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separated PS nanospheres by oxygen plasma etching. The 

top view and cross-sectional FESEM images of the SiNPLs 

fabricated by V-MACE are shown in Fig. 2c, d, respectively. 

The cross-sectional FESEM images of the SiNPLs with dif-

ferent etching durations and the etching time versus pillar 

height plot are given in Supplementary Fig. S4. The Raman 

spectra of the SiNPLs in comparison with the bare Si are 

shown in Fig. 3. For the Raman experiment, the laser beam 

is illuminated parallel to the axis of the SiNPLs, and then the 

laser is pointed to the tip of the SiNPLs. The intensity of the 

Raman spectrum of the SiNPLs is found to be increased with 

respect to the bare Si due to the increased light tapping. The 

Raman peak for the crystalline Si is located at 521 cm−1. At 

the same time, the Raman peak for the SiNPLs is shifted to 

518 cm−1 with an asymmetric broadening in comparison to 

the bare Si, which is clearly visible in the inset of Fig. 3. The 

peak shift and broadening in the SiNPLs are attributed to 

the phonon confinement in the porous Si nanocrystallites on 

the top of the SiNPLs, which arises from the metal-assisted 

chemical etching as a by-product [37].

The semi-logarithmic plot for temperature-dependent I–V 

characteristics of an array of SiNPLs fabricated by V-MACE 

is shown in Fig. 4a. The I–V characteristics exhibit Ohmic 

behavior at temperatures greater than 300 K. At room tem-

perature 300 K, the I–V characteristics starts showing rec-

tifying behavior and the Schottky behavior is more promi-

nent at temperatures less than 210 K. The room temperature 

Schottky barrier height can be calculated directly from the 

work function of SiNPLs and In, measured using Kelvin 

probe. The work function of the sample can be calculated 

from the contact potential difference (VCPD) between the tip 

and the sample, and is given by [29] 

Φtip and Φsample are the work functions of tip and the sam-

ple, respectively. The work functions of the SiNPLs and In, 

calculated using Eq. (1) are 4.52 and 4.07, respectively as 

shown in Fig. 4b. The barrier height at room temperature 

is ~ 0.45 eV, according to Kelvin probe measurement. The 

origin of the measured barrier height and low temperature 

characteristics of the SiNPLs can be analyzed in detail using 

thermionic emission (TE) model. The current–voltage rela-

tion in TE model is given by [38] 

where Io = AA∗T2 exp
(

−qΦb

kBT

)

 is the saturation current. V is 

the applied voltage, q is charge of electron, T is absolute 

temperature, kB is Boltzmann’s constant, A* Richardson’s 

constant (32 A cm−2 K−2 for p-type Si), A is the contact area, 

n is the ideality factor and Фb is the Schottky barrier height. 

(1)VCPD =
ΔΦ

e
, ΔΦ = Φtip − Φsample,

(2)I = Io exp

(

qV

nkBT

)[

1 − exp

(

−qV

kBT

)]

,

Fig. 1  Schematic diagram for the mechanism of V-Mace
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The saturation current Io can be determined from the I/

(exp(qV/kBT) − 1) versus V plot as shown in Fig. 5a. The 

intercept of the straight line at V = 0 gives the saturation 

current and the Schottky barrier height is defined as [39]

The ideality factor can also be calculated from the slope 

of the linear forward bias region of ln I versus V plot using 

TE theory using the following equation [40]: 

The ideality factor and the Schottky barrier height at tem-

perature ranging from 300 to 170 K calculated by Eqs. (3) and 

(4) are given in Table 1. The room temperature barrier height 

calculated by Eq. (3) is 0.48 eV, which is in good agreement 

with the barrier height measured using Kelvin probe. The bar-

rier height is found to be raised from 0.299 to 0.482 eV and 

the ideality factor decreases from 7.74 to 2.93 with tempera-

ture varying from 170 to 300 K. In general, the barrier height 

decreases with increase in temperature for most of the II–IV 

semiconductors [41]. But the increase in barrier height with 

temperature is also reported for GaAs [42, 43] and Si Schottky 

contacts [44]. Werner and Guttler have reported that the tem-

perature dependence on barrier height arises from the Schottky 

(3)Φ
b
=

k
B

T

q
ln

(

AA∗T2

I
o

)

.

(4)n =
q

kT

(

dV

d(ln I)

)

.

Fig. 2  FESEM images for: a monolayer of PS nanospheres on the Si substrate, b PS nanosphere separated by oxygen plasma etching, c top view 

of the SiNPLs fabricated by V-Mace, d cross-sectional image of SiNPLs

Fig. 3  Raman spectra of SiNPLs and bare Si



Charge transport studies on Si nanopillars for photodetectors fabricated using vapor phase…

1 3

Page 5 of 10 681

Fig. 4  a Current–voltage characteristics of the SiNPLs over a temperature range 170–360 K. b Work function of the SiNPLs and indium meas-

ured by Kelvin probe

Fig. 5  a I/(exp(qV/kT)  −  1) versus voltage plot for the SiNPLs in 

the temperature range 170–300 K. b dV/d(ln I) versus current plot in 

the temperature range 170–300  K. c H(V) versus current plot using 

Cheung’s function. d F(V) versus voltage plot in the temperature 

range 170–300 K using Norde function
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barrier inhomogeinity [44]. In our case, also the possible rea-

son for the increase in barrier height with temperature could be 

ascribed to Schottky barrier inhomogeinity. The poor quality 

of the interface, which mainly depends on the surface defects, 

surface treatments such as cleaning and etching, deposition 

process, is known to affect the Schottky barrier height [45–50]. 

In the present case, this inhomogeinity may arise as the Si 

wafer was treated with boiling Piranha and RCA solution for 

the cleaning of Si wafer. The formation of a thin surface oxide 

layer on Si nanopillars also affects the quality of interface. In 

addition, for the present work, ideality factor is n > 1, which 

is again the indicative of the presence of barrier inhomogein-

ity at the interface [44]. It could be inferred from Fig. 2a that 

the Schottky diode behavior of the I–V characteristics disap-

pears at temperature greater than 300 K and becomes purely 

Ohmic at high temperature. We deduce the existence of series 

resistance RS, which is another important parameter as it can 

affect the ideality factor and barrier height at low tempera-

tures. Therefore, at present, the task is to determine the series 

resistance by making use of Cheung’s and Norde functions. 

The series resistance, barrier height and ideality factor can be 

calculated by Cheung’s method using the following equations 

[51]: 

and 

The dV/d(ln I) versus I derived from the downward cur-

vature in forward bias I–V characteristics of the SiNPLs 

is plotted in Fig. 5b. According to Eq. (5), the slope of 

the straight line from the dV/d(ln I) versus I plot corre-

sponds to series resistance RS and the ideality factor can 

be calculated from the intercept. The series resistance and 

(5)
dV

d(ln I)
= IRS + n

kBT

q
,

(6)H(I) = V − n
kBT

q
ln

(

I

AA∗T2

)

,

(7)H(I) = IR
S
+ nΦ

b
.

the ideality factor of the SiNPLs are 1.50 MΩ, 7.91 at 

170 K and 0.38 MΩ, 1.86 at 300 K. The consistency of 

the Cheung’s method has been checked through the sec-

ond determination of series resistance using H(I) versus 

I plot by giving the value of ideality factor obtained from 

the dV/d(ln I) versus I, as shown in Fig. 5c. The slope of 

the straight line directly gives the series resistance RS and 

the intercept points out the barrier height of the SiNPLs. 

The series resistance and the barrier height are 1.26 MΩ, 

0.297 at 170 K and 0.34 MΩ, 0.479 at 300 K. The calcu-

lated RS from dV/d(ln I) versus I and H(I) versus I are in 

good agreement with each other, implying the validity of 

Cheung’s function.

The high series resistance associated with the Schottky 

diode causes a voltage drop across the junction. Thus, for a 

diode with high series resistance, Norde proposed empiri-

cal function for the determination of series resistance RS 

and barrier height Фb, and the modified Norde function is 

given by [52] 

where γ is the dimensionless integer greater than ideality 

factor. � =

q

kBT
, and I(V) is the current estimated from the 

I–V curve. The effective barrier height and the series resist-

ance can be defined as [52] 

where F(V0) is the minimum value of F(V) and V0 is 

the voltage corresponds to F(V0). Imin is the current corre-

sponding to the voltage minimum in F(V) versus V plot. The 

Norde function F(V) plotted against voltage V for the SiN-

PLs Schottky diode is shown in Fig. 5d. The barrier height 

(8)F(V) =
V

�
−

1

�
ln

[

I(V)

AA∗T2

)

,

(9)Φb = F(V0) +
V0

�
−

kBT

q
,

(10)RS = kBT
� − n

qImin

,

Table 1  Schottky diode parameters of the SiNPLs obtained using different methods

Temperature 

(K)

Schottky bar-

rier height

From I–V 

(eV)

Ideality 

factor 

From I–V

n

Cheung’s function Norde

dV/d(ln I) vs I H(I) vs I

RS (MΩ) N Фb

(eV)

RS

(MΩ)

Фb

(eV)

Rs

(MΩ)

170 0.299 7.74 1.50 7.91 0.297 1.26 0.295 1.23

190 0.334 6.80 1.07 6.10 0.326 0.94 0.332 1.17

210 0.370 6.16 0.92 5.20 0.350 0.91 0.372 0.76

230 0.400 5.47 0.86 4.20 0.405 0.81 0.409 0.67

250 0.430 4.84 0.71 3.10 0.452 0.68 0.452 0.63

270 0.460 3.81 0.58 2.52 0.462 0.56 0.478 0.55

300 0.482 2.93 0.38 1.86 0.479 0.34 0.482 0.45
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and the series resistance values by Norde analysis are 0.295, 

1.23 MΩ at 170 K and 0.482 and 0.45 at 300 K. The varia-

tions of barrier height, rectification ratio, and ideality factor 

and series resistance and with temperature in all the models 

are shown in Fig. 6a–d.

To study the physics underlying the charge transport 

mechanism, we have recorded the I–V characteristics in dark 

and with illumination of UV and white LEDs of power den-

sity 2 mW/cm2 as shown in Fig. 7a. It could be seen from 

Fig. 7a that the photocurrent under reverse bias increases 

drastically in comparison to the dark current. On the con-

trary, the change in the current with and without illumination 

is lesser in scope at forward bias. The ratio of photo-to-dark 

current is ~ 9.8 and 6.9 for white light and UV light, respec-

tively, in reverse bias at −2 V. At the same time, the ratio is 

only 1.6 and 1.9 in forward bias at 2 V. The responsivity at 

reverse bias is defined as R =

Iph

Popt

, [53] shows maximum of 

1.3 mA/W and 0.82 mA/W for white light and UV light, 

respectively. The responsivity is less in comparison to the 

heterojunction photodetectors but higher than the recently 

reported Si nanowire based metal–semiconductor–metal 

photodetectors [54]. The high response of light at reverse 

bias than the forward bias can be explained using the band 

diagram. The work functions of indium and SiNPLs (ФIn and 

ФSiNPLs) measured using Kelvin probe are already shown in 

Fig. 4b. The band diagrams of indium and SiNPLs before 

making contact are shown in Fig. 7b. Since Фin < ФSiNPLs, 

the electrons flow from indium to SiNPLs to equalize the 

Fermi level and the corresponding band bending is shown 

in Fig. 7c. The majority carrier faces high potential barrier, 

which results in less current under reverse bias condition. 

Now, with illumination, the electron–hole pairs are produced 

due to the absorption of photons. The photo-generated elec-

trons in the valence band of SiNPLs are excited to the con-

duction band and collected by the positive electrode imme-

diately [55]. In the same way, the holes in the valence band 

are collected by the negative electrode, which reduces the 

probability of recombination. Thus, the barrier height 

between the metal and semiconductor decreases, which 

Fig. 6  a Variation of barrier height with temperature obtained by different methods. b Ideality factor variation with temperature in different 

methods. c Plot for the variation of series resistance with temperature using different methods. d Rectification ratio versus temperature plot
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results a huge increase in the free carrier density. As a result, 

upon the illumination of light, the current remains much 

higher than the dark current in reverse bias mode. The band 

diagram after illumination is presented in Fig. 7d. At the 

same time, for the forward bias, the additional charge carri-

ers generated by the photons are only contributing to 

increase the current. Therefore, the photo-to-dark current 

ratio is found to be less in forward bias.

The light sensing properties of the SiNPLs were further 

investigated by taking the time-dependent photo-response 

of UV light and white light at room temperature under 

reverse bias of −2 V. The increase in photocurrent is clearly 

observed with four cycles as presented in Fig. 8a. The SiN-

PLs shows very fast response to the light with response time 

0.18 and 0.26 s for white light and UV light, respectively. 

The enhanced photo–dark current ratio in the SiNPLs is 

ascribed to the reduction in the reflectance, which arises 

from the antireflecting property of the SiNPLs. The genera-

tion of electron–hole pair in the SiNPLs is directly related to 

the absorption of light through the relation [56]: 

where gopt is the optical generation rate, A is the illumi-

nated area of photodiode, Pin is the incident optical power, α 

(11)gopt =
�Pin

AE
,

is the absorption coefficient and E = hν is the photon energy. 

The photocurrent is related to the optical generation rate by 

the equation [56] 

where d is the thickness of undoped region. For the p-type 

semiconductor, the integral can be reduced to [56] 

where R is the reflection at the SiNPLs surface and 

Pin is the incident power. Since the SiNPLs are grown 

on 500 μm substrate, the transmittance of the sample is 

zero. Therefore, (1 − R) gives absorption of the sample. 

According to Eq. (13), the increase in absorption of light 

increases the photocurrent. The reflectance of the SiNPLs 

is compared with the bare Si in Fig. 8b. The reflectance of 

the SiNPLs stays less than 4% in the visible region with 

a minimum reflectance of 2.13% for a sample etched for 

25 min. The effective absorption of light > 95% ensures the 

photocurrent enhancement and fast photo-response to the 

light. The effect of illumination on the SiNPLs is further 

(12)Iph = −qA∫
Xn+d

−Xp

gopt dx,

(13)Iph =
−q(1 − R)Pin

h�
(1 − e−�d),

Fig. 7  a I–V characteristics of SiNPLs in dark and under UV, white light illuminations, b band diagram of the SiNPLs and indium before mak-

ing contact, c band bending after making contact, d band diagram after illumination of light
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verified by measuring the work function in dark and under 

illumination using Kelvin probe. The changes in the work 

function observed in dark and under light are shown in the 

inset of Fig. 8b.

4  Conclusion

Vapor phase metal-assisted chemical etching (V-Mace) was 

employed along with nanosphere lithography to fabricate 

uniform arrays of Si nanopillars (SiNPLs) in a controlled 

manner, and the mechanism of V-Mace has been discussed 

in detail. The current–voltage characteristics were studied 

over a wide temperature range of 170–360 K. The SiNPLs 

exhibit Schottky diode behavior for a temperature < 300 K 

and the Schottky diode parameters, such as barrier height, 

ideality factor, series resistance, were extracted using 

Cheung’s and Norde method. The Schottky diode param-

eters calculated directly from I–V characteristics match with 

Cheung’s as well as Norde methods. Moreover, the light 

sensing properties of the SiNPLs have been studied by meas-

uring the I–V characteristics in dark and under illumination 

of UV light and white light. The SiNPLs exhibited good 

and fast response to the white and UV light, especially in 

reverse bias region. In reverse bias region, along with the 

photo-generated charge carriers, the carriers transferred to 

the conduction band due to the reduction in barrier width 

also contribute for the conduction. Moreover, in forward 

bias, the photo-generated carriers only contribute to the 

increase in current under illumination. Further, the SiNPLs 

showed superior light trapping properties with a reflectance 

less than 4% over a wavelength region 300–800 nm. This 

ultra-high absorption of light in UV–visible region has led 

to light sensing properties of the SiNPLs. The light sensing 

properties are further confirmed by work function measure-

ment in dark and under illumination.
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