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1. Introduction

The simplicity of the idea of including one additional Higgs doublet to the Standard Model

(SM) and the versatility of the resulting phenomenology are the main ingredients that

have made the two-Higgs-doublet model (2HDM, see e.g. [2, 3] and references therein) so

interesting. In the most general version of the model, the fermionic couplings of the neu-

tral scalars are non-diagonal in flavour and, therefore, generate unwanted flavour-changing

neutral-current (FCNC) phenomena. Different ways to suppress FCNCs have been devel-

oped, giving rise to a variety of specific implementations of the 2HDM. The simplest and
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most common approach is to impose a Z2 symmetry forbidding all non-diagonal terms in

the Lagrangian [4]. Depending on the charge assignments under this symmetry, the model

is called type I [5, 6], II [6, 7], X and Y [8, 9, 10, 11, 12, 13, 14] or inert [15, 16, 17, 18]. In

these types of models with natural flavour conservation the Cabibbo-Kobayashi-Maskawa

(CKM) quark mixing matrix [19, 20] is the only possible source of CP violation. An-

other possibility is to assume particular Yukawa textures which force the non-diagonal

Yukawa couplings to be proportional to the geometric mean of the two fermion masses,

gij ∝ √
mimj , the so-called type III 2HDM [21, 22, 23, 24].

Our work focuses on the recent suggestion [1] to enforce the alignment in flavour space

of the Yukawa couplings of the two scalar doublets, which guarantees the absence of tree-

level FCNC interactions. The Yukawa structure of the resulting aligned two-Higgs-doublet

model (A2HDM) is fully characterized by the fermion masses, the CKM quark mixing

matrix and three complex parameters ςf (f = u, d, l), whose phases are potential new

sources of CP violation [1]. The usual models based on Z2 symmetries are recovered for

particular (real) values of these three parameters. The A2HDM provides a more general

setting to discuss the phenomenology of 2HDMs without tree-level FCNCs, leaving open

the possibility of having additional CP -violating phases in the Yukawa sector beyond the

CKM-matrix one.

The presence of a charged scalar H± is one of the most distinctive features of an

extended scalar sector. In the following we analyze its phenomenological impact in low-

energy flavour-changing processes within the A2HDM, and constrain the three complex

parameters ςf with present data on different leptonic, semileptonic and hadronic decays.

We proceed as follows: the formulation of the general 2HDM is recalled in section 2,

where the aligned condition is implemented and the resulting Yukawa structure discussed.

Section 3 explains our statistical treatment of theoretical uncertainties and compiles the

inputs used in our analysis. The phenomenological consequences of having a charged scalar

field are analyzed next, process by process, extracting the corresponding constraints on the

new-physics parameters ςf . In section 4 we discuss the constraints derived from tree-level

leptonic and semileptonic decays, while section 5 describes the information obtained from

loop-induced processes. Finally, we give our conclusions in section 6. Some technical

aspects related to ∆F = 2 transitions have been relegated to the appendix.

2. Aligned two-Higgs-doublet model

The 2HDM extends the SM with a second Higgs doublet of hypercharge Y = 1
2 . The

neutral components of the scalar doublets φa(x) (a = 1, 2) acquire vacuum expectation

values (VEVs) that are, in general, complex: 〈0|φTa (x)|0〉 = 1√
2
(0, va e

iθa). Through an

appropriate U(1)Y transformation we can enforce θ1 = 0, since only the relative phase

θ ≡ θ2−θ1 is observable. The combination v ≡
√
v21 + v22 ≃ (

√
2GF )

−1/2 = 246 GeV plays

the role of the SM VEV when generating the gauge boson masses.

A global SU(2) transformation in the scalar space (φ1, φ2) takes us to the so-called
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Higgs basis (Φ1,Φ2), where only one doublet acquires a VEV:

(
Φ1

−Φ2

)
≡ 1

v

[
v1 v2
v2 −v1

] (
φ1

e−iθφ2

)
. (2.1)

In this basis, the two doublets are parametrized as

Φ1 =

[
G+

1√
2
(v + S1 + iG0)

]
, Φ2 =

[
H+

1√
2
(S2 + iS3)

]
, (2.2)

where G± and G0 denote the Goldstone fields and 〈H+〉 = 〈G+〉 = 〈G0〉 = 〈Si〉 = 0.

The five physical scalars are given by two charged fields H±(x) and three neutral ones

ϕ0
i (x) = {h(x),H(x), A(x)}, which are related to the Si fields through an orthogonal

transformation ϕ0
i (x) = RijSj(x). The form of Rij depends on the scalar potential, which

could violate CP in its most general version; in that case the resulting mass eigenstates do

not have a definite CP parity.

The most general Yukawa Lagrangian of the 2HDM is given by

LY = −
{
Q̄′

L(Γ1φ1 + Γ2φ2) d
′
R + Q̄′

L(∆1φ̃1 +∆2φ̃2)u
′
R + L̄′

L(Π1φ1 +Π2φ2) l
′
R

}
+ h.c. ,

(2.3)

where Q̄′
L and L̄′

L are the left-handed quark and lepton doublets, respectively, and φ̃a(x) ≡
iτ2φ

∗
a(x) the charge-conjugated scalar doublets with Y = −1

2 . All fermionic fields are

written as NG-dimensional vectors and the couplings Γa, ∆a and Πa are NG×NG complex

matrices in flavour space, NG being the number of fermion generations. Moving to the

Higgs basis, the Lagrangian reads

LY = −
√
2

v

{
Q̄′

L(M
′
dΦ1 + Y ′

dΦ2) d
′
R + Q̄′

L(M
′
uΦ̃1 + Y ′

uΦ̃2)u
′
R + L̄′

L(M
′
lΦ1 + Y ′

l Φ2) l
′
R

}
+

+h.c. , (2.4)

with

M ′
d =

1√
2

(
v1Γ1 + v2Γ2e

iθ
)
, Y ′

d =
1√
2

(
v1Γ2e

iθ − v2Γ1

)
, (2.5)

M ′
u =

1√
2

(
v1∆1 + v2∆2e

−iθ
)
, Y ′

u =
1√
2

(
v1∆2e

−iθ − v2∆1

)
, (2.6)

M ′
l =

1√
2

(
v1Π1 + v2Π2e

iθ
)
, Y ′

l =
1√
2

(
v1Π2e

iθ − v2Π1

)
. (2.7)

In general, the complex matrices M ′
f and Y ′

f (f = d, u, l) cannot be simultaneously diago-

nalized. Thus, in the fermion mass-eigenstate basis, with diagonal mass matrices Mf , the

Yukawa-coupling matrices Yf remain non-diagonal giving rise to FCNC interactions.

The unwanted non-diagonal neutral couplings can be eliminated requiring the align-

ment in flavour space of the Yukawa matrices [1]. It is convenient to implement this

condition in the form:

Γ2 = ξd e
−iθ Γ1 , ∆2 = ξ∗u e

iθ∆1 , Π2 = ξl e
−iθ Π1 , (2.8)
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Model (ξd, ξu, ξl) ςd ςu ςl
Type I (∞,∞,∞) cot β cot β cot β

Type II (0,∞, 0) − tan β cot β − tan β

Type X (∞,∞, 0) cot β cot β − tan β

Type Y (0,∞,∞) − tan β cot β cot β

Inert (tan β, tan β, tan β) 0 0 0

Table 1: Limits on ξf that recover the different Z2 models and corresponding ςf values.

where ξf are arbitrary complex parameters. The proportionality of the matrices Y ′
f and

M ′
f guarantees that all FCNC couplings vanish at tree level:

Yd,l = ςd,lMd,l , Yu = ς∗uMu , ςf ≡ ξf − tan β

1 + ξf tan β
, tan β ≡ v2/v1 . (2.9)

In the A2HDM the mass-eigenstate Yukawa Lagrangian reads [1]

LY =−
√
2

v
H+(x)

{
ū(x)

[
ςd VMdPR − ςuM

†
uV PL

]
d(x) + ςl ν̄(x)MlPRl(x)

}
−

− 1

v

∑

ϕ,f

y
ϕ0
i

f ϕ0
i (x) f̄(x)MfPRf(x) + h.c. , (2.10)

where V denotes the CKM matrix, PR,L ≡ 1±γ5
2 are the right-handed and left-handed

projectors and the couplings of the neutral scalar fields are given by:

y
ϕ0
i

d,l = Ri1 + (Ri2 + iRi3) ςd,l , y
ϕ0
i

u = Ri1 + (Ri2 − iRi3) ς
∗
u . (2.11)

Some conclusions can be drawn from (2.10). In the A2HDM all fermionic couplings

to scalars are proportional to the corresponding fermion masses and the neutral-current

interactions are diagonal in flavour. The only source of flavour-changing interactions is

the CKM matrix in the quark charged current, while all leptonic couplings are diagonal

in flavour because of the absence of right-handed neutrinos in our framework, which could

however easily be included. There are only three new parameters ςf , which encode all

possible freedom allowed by the alignment conditions; these couplings satisfy universality

among the different generations, i.e. all fermions with a given electric charge have the same

universal coupling ςf . The three parameters ςf are also invariant under global SU(2) trans-

formations of the scalar fields φa → φ′a = Uabφb [25], i.e. they are scalar-basis independent.

Taking the particular values shown in table 1, the different models based on Z2 symmetries

are recovered, with a single scalar doublet coupling to each type of right-handed fermions

[4]. Finally, it should be pointed out again that ςf are arbitrary complex numbers, opening

the possibility of having new sources of CP violation without tree-level FCNCs.

2.1 Quantum corrections

Quantum corrections induce some misalignment of the Yukawa coupling matrices, generat-

ing small FCNC effects suppressed by the corresponding loop factors. However, the special
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structure of the A2HDM strongly constrains the possible FCNC interactions [1]. Obvi-

ously, the alignment condition remains stable under renormalization when it is protected

by a Z2 symmetry [26], i.e. for the particular cases indicated in table 1. In the most gen-

eral case loop corrections do generate some FCNC effects, but the resulting structures are

enforced to satisfy the flavour symmetries of the model. The Lagrangian of the A2HDM is

invariant under flavour-dependent phase transformations of the fermion mass eigenstates

(f = d, u, l, ν, X = L,R, αν,L
i = αl,L

i ):

f iX(x) → eiα
f,X
i f iX(x) , Vij → eiα

u,L
i Vij e

−iαd,L
j , Mf,ij → eiα

f,L
i Mf,ij e

−iαf,R
j . (2.12)

Owing to this symmetry, lepton-flavour-violating neutral couplings are identically zero to all

orders in perturbation theory, while in the quark sector the CKMmixing matrix remains the

only possible source of flavour-changing transitions. The only allowed local FCNC struc-

tures are of the type ūLV (MdM
†
d)

nV †(MuM
†
u)mMuuR, d̄LV

†(MuM
†
u)nV (MdM

†
d)

mMddR,

or similar structures with additional factors of V , V † and quark mass matrices [1]. There-

fore, at the quantum level the A2HDM provides an explicit implementation of the popular

Minimal Flavour Violation scenarios [27, 28, 29, 30, 31, 32], but allowing at the same time

for new CP -violating phases.1 Structures of this type have been recently discussed in [33].

Using the renormalization-group equations [26, 34], one can easily check that the one-

loop gauge corrections preserve the alignment while the only FCNC structures induced by

the scalar contributions take the form [35]:

LFCNC =
C(µ)

4π2v3
(1 + ς∗uςd ) ×

×
∑

i

ϕ0
i (x)

{
(Ri2 + iRi3) (ςd − ςu)

[
d̄L V

†MuM
†
u VMd dR

]
− (2.13)

− (Ri2 − iRi3) (ς
∗
d − ς∗u)

[
ūL VMdM

†
d V

†Mu uR

]}
+ h.c.

As they should, these FCNC effects vanish identically when ςd = ςu (Z2 models of type

I, X and Inert) or ςd = −1/ς∗u (types II and Y). The leptonic coupling ςl does not induce

any FCNC interaction, independently of its value; the usually adopted Z2 symmetries are

unnecessary in the lepton sector. Assuming the alignment to be exact at some scale µ0,

i.e. C(µ0) = 0, a non-zero value for the FCNC coupling, C(µ) = − log (µ/µ0), is generated

when running to a different scale.

The numerical effect of these contributions is, in any case, suppressed bymqm
2
q′/v

3 and

quark-mixing factors. This implies an interesting hierarchy of FCNC effects, avoiding the

stringent experimental constraints for light-quark systems, while allowing at the same time

for potential interesting signals in heavy-quark transitions. Obviously, the most relevant

terms in (2.13) are the s̄LbR and c̄LtR operators. The s̄LbR term induces a calculable

contribution to B0
s–B̄

0
s mixing through ϕ0

i exchanges, which modifies the mixing phase

and could explain the like-sign dimuon charge asymmetry recently observed by D0 [36].

Tree-level scalar exchanges from FCNC vertices have been already suggested as a possible

1Minimal flavour violation within the context of the Type II 2HDM has been discussed in [27]. This

reference didn’t consider the possibility of incorporating new CP -violating phases.
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explanation of the D0 measurement [37]. We defer the phenomenological analysis of the

FCNC operator (2.13) to a future publication [35], where the neutral sector of the A2HDM

will be studied in detail. In the present paper we will concentrate in the phenomenology

of the charged-scalar Yukawa Lagrangian (2.10).

3. Inputs and statistical treatment

In the following sections we will analyze the most important flavour-changing processes that

are sensitive to charged-scalar exchange and will try to constrain from them the new-physics

parameters ςf . Most of these observables have been discussed in recent phenomenological

analyses, usually in the framework of the type II 2HDM [38, 39, 40, 41], but also in the

type III 2HDM [42].

For that purpose, a good control of the hadronic decay parameters is necessary. These

usually involve large theoretical uncertainties whose treatment is not well defined. In

our work we use the statistical approach RFit [43], which has been implemented in the

CKMfitter package [44]. The new-physics parameter space is explored, assigning to each

point the maximal relative likelihood under variation of the theoretical parameters which

are not shown. Theoretical uncertainties are treated by defining allowed ranges within

which the contribution of the corresponding theoretical quantity to the ∆χ2 is set to zero,

while it is set to infinity outside. This treatment implies that uncertainties of this kind

should be chosen conservatively and added linearly.

Another related problem is the combination of different theoretical determinations of a

hadronic quantity, which is even less well defined. We follow the prescription given in [44].

However, unless commented explicitly, we only take lattice results coming from numerical

simulations with 2+1 flavours. For quantities concerning the light hadrons, we consider the

determinations recommended by the Flavour Lattice Averaging Group (FLAG) [45, 46].

The obtained values are collected in table 2.

For fKπ
+ (0) the only published value with 2+1 dynamical quarks is the one from

RBC/UKQCD [47, 48], which however fails to fulfill the FLAG standards. On the other

hand, there is one 2-flavour result, which fulfills the FLAG criteria [49]. Although consis-

tent with the old Leutwyler-Roos estimate [50], based on O(p4) Chiral Perturbation Theory

(χPT), these lattice determinations are somewhat smaller than the O(p6) analytical cal-

culations [51, 52, 53, 54]. We take this into account and adopt the conservative range

fKπ
+ (0) = 0.965 ± 0.010.

To fix the values of the relevant CKM entries we only use determinations [64, 79, 80]

which are not sensitive to the new-physics contributions. Thus, we use the Vud value

extracted from superallowed (0+ → 0+) nuclear β decays and CKM unitarity to determine

Vus ≡ λ. The values of Vub and Vcb = Aλ2 are determined from exclusive and inclusive

b → ulν̄l and b → clν̄l transitions, respectively, with l = e, µ. The apex (ρ̄, η̄) of the

unitarity triangle has been determined from |Vub/Vcb|, λ and the ratio ∆mB0
s
/∆mB0

d
(see

section 5.2). For the top quark mass we have adopted the usual assumption that the

Tevatron value [67] corresponds to the pole mass, but increasing its systematic error by

1 GeV to account for the intrinsic ambiguity in the mt definition; i.e. we have taken
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Parameter Value Comment

fBs (0.242 ± 0.003 ± 0.022) GeV Our average [55, 56, 57]

fBs/fBd
1.232 ± 0.016 ± 0.033 Our average [56, 57]

fDs (0.2417 ± 0.0012 ± 0.0053) GeV Our average [55, 58, 57]

fDs/fDd
1.171 ± 0.005 ± 0.02 Our average [58, 57]

fK/fπ 1.192 ± 0.002 ± 0.013 Our average [58, 59, 60]

fBs

√
B̂B0

s
(0.266 ± 0.007 ± 0.032) GeV [56]

fBd

√
B̂B0

s
/(fBs

√
B̂B0

s
) 1.258 ± 0.025 ± 0.043 [56]

B̂K 0.732 ± 0.006 ± 0.043 [61, 62]

|Vud| 0.97425 ± 0.00022 [63]

λ 0.2255 ± 0.0010
(
1− |Vud|2

)1/2

|Vub| (3.8 ± 0.1± 0.4) · 10−3 b→ ulν (excl. + incl.) [64, 65]

A 0.80± 0.01 ± 0.01 b→ clν (excl. + incl.) [64, 65]

ρ̄ 0.15± 0.02 ± 0.05 Our fit

η̄ 0.38± 0.01 ± 0.06 Our fit

m̄u(2 GeV) (0.00255+ 0.00075
− 0.00105) GeV [66]

m̄d(2 GeV) (0.00504+ 0.00096
− 0.00154) GeV [66]

m̄s(2 GeV) (0.105+ 0.025
− 0.035) GeV [66]

m̄c(2 GeV) (1.27+ 0.07
− 0.11) GeV [66]

m̄b(mb) (4.20+ 0.17
− 0.07) GeV [66]

m̄t(mt) (165.1 ± 0.6 ± 2.1) GeV [67]

δ
Kℓ2/πℓ2
em −0.0070 ± 0.0018 [68, 69, 70, 71]

δ
τK2/Kℓ2
em 0.0090 ± 0.0022 [72, 73, 74]

δ
τπ2/πℓ2
em 0.0016 ± 0.0014 [72, 73, 74]

ρ2|B→Dlν 1.18± 0.04 ± 0.04 [65]

∆|B→Dlν 0.46 ± 0.02 [75]

fKπ
+ (0) 0.965 ± 0.010 [47, 48, 49, 51, 52, 53, 54]

ḡLb,SM −0.42112+ 0.00035
− 0.00018 [76, 77]

κǫ 0.94 ± 0.02 [78]

ḡRb,SM 0.07744+ 0.00006
− 0.00008 [76, 77]

Table 2: Input values for the hadronic parameters, obtained as described in the text. The first

error denotes statistical uncertainty, the second systematic/theoretical.

mpole
t = (173.1 ± 0.6± 2.1) GeV and have converted this value into the running MS mass.

The measurements used in our analysis are listed in table 3.

Concerning the charged-scalar mass, we will use the LEP lower boundMH± > 78.6 GeV

(95% CL), which does not refer to any specific Yukawa structure [1, 81]. This limit assumes

only that H+ decays dominantly into uid̄j and l+νl. Obviously, the bound is avoided by

a fermiophobic (inert) A2HDM with ςf ≪ 1, but all our constraints would also disap-

pear in this case. The charged scalar could still be detected through the decay mode

H± → W±A, provided it is kinematically allowed. Assuming a CP -conserving scalar po-
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Observable Value Comment

|gSRR|τ→µ < 0.72 (95% CL) [66]

Br(τ → µντ ν̄µ) (17.36 ± 0.05) × 10−2 [66]

Br(τ → eντ ν̄e) (17.85 ± 0.05) × 10−2 [66]

Br(τ → µντ ν̄µ)/Br(τ → eντ ν̄e) 0.9796 ± 0.0039 [83]

Br(B → τν) (1.73 ± 0.35) × 10−4 [80]

Br(D → µν) (3.82 ± 0.33) × 10−4 [84]

Br(D → τν) ≤ 1.3× 10−3 (95% CL) [84]

Br(Ds → τν) (5.58 ± 0.35) × 10−2 [85, 86, 87, 88, 89]

Br(Ds → µν) (5.80 ± 0.43) × 10−3 [85, 89, 90]

Γ(K → µν)/Γ(π → µν) 1.334 ± 0.004 [71]

Γ(τ → Kν)/Γ(τ → πν) (6.50 ± 0.10) × 10−2 [66, 83]

logC 0.194 ± 0.011 [91, 92]

Br(B → Dτν)/BR(B → Dℓν) 0.392 ± 0.079 [93, 94, 95]

Γ(Z → bb̄)/Γ(Z → hadrons) 0.21629 ± 0.00066 [96]

Br(B̄ → Xsγ)Eγ>1.6GeV (3.55 ± 0.26) × 10−4 [65]

Br(B̄ → Xceν̄e) (10.74 ± 0.16) × 10−2 [65]

∆mB0
d

(0.507 ± 0.005) ps−1 [65]

∆mB0
s

(17.77 ± 0.12) ps−1 [65]

|ǫK | (2.228 ± 0.011) × 10−3 [66]

Table 3: Measurements used in the analysis. Masses and lifetimes are taken from the PDG [66].

tential, OPAL finds the 95% CL constraints MH± > 56.5 (64.8) GeV, for 12 (15) GeV <

MA < MH± −MW± [82].

4. Tree-level decays

4.1 Lepton decays

The pure leptonic decays l → l′ν̄l′νl provide accurate tests of the universality of the leptonic

W couplings and of their left-handed current structure [66, 97, 98]. The exchange of a

charged scalar induces an additional amplitude mediating the decay of a right-handed

initial lepton into a right-handed final charged lepton; in standard notation [98, 99], this

scalar contribution gets parametrized through the effective low-energy coupling gSRR =

−mlml′

M2
H±

|ςl|2. Its phenomenological effects can be isolated through the Michel parameters

governing the decay distribution,

ρ− 3

4
= 0 , η =

1

2N
Re(gSRR) , ξ − 1 = − 1

2N
|gSRR|2 , ξδ − 3

4
= − 3

8N
|gSRR|2 , (4.1)

and in the total decay width

Γ(l → l′ ν̄l′ νl) =
G2

F

192π3
m5

l N

[
f

(
m2

l′

m2
l

)
+ 4 η

ml′

ml
g

(
m2

l′

m2
l

)]
rRC , (4.2)
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where f(x) = 1 − 8x + 8x3 − x4 − 12x2 log x, g(x) = 1 + 9x − 9x2 − x3 + 6x(1 + x) log x,

N = 1 + 1
4 |gSRR|2 and [100]

rRC =

[
1 +

α(ml)

2π

(
25

4
− π2

)] [
1 +

3

5

m2
l

M2
W

− 2
m2

l′

M2
W

]
. (4.3)

Since the scalar couplings are proportional to lepton masses, the decay τ → µν̄µντ is the

most sensitive one to the scalar-exchange contribution. The present bound |gSRR|τ→µ < 0.72

(95% CL) [66] translates into |ςl|/MH± ≤ 1.96 GeV−1 (95% CL). A better limit can be

obtained from the ratio of the total τ decay widths into the muon and electron modes.

The universality test |gµ/ge|2 ≡ |Br(τ → µ)/Br(τ → e)||f(m2
e/m

2
τ )/f(m

2
µ/m

2
τ )| = 1.0036±

0.0029 [66, 83] implies:

|ςl|
MH±

≤ 0.40 GeV−1 (95%CL). (4.4)

4.2 Leptonic decays of pseudoscalar mesons

Information about new-physics parameters can be also extracted from leptonic decays of

pseudoscalar mesons, P+ → l+νl, which are very sensitive to H+ exchange due to the

helicity suppression of the SM amplitude. The total decay width is given by2

Γ(P+
ij → l+νl) = G2

Fm
2
l f

2
P |Vij |2

mP+
ij

8π


1− m2

l

m2
P+
ij




2

(1 + δMℓ2
em ) |1−∆ij|2 , (4.5)

where i, j represent the valence quarks of the meson under consideration. The correction

∆ij =

(mP±

ij

MH±

)2

ς∗l
ςumui

+ ςdmdj

mui
+mdj

(4.6)

encodes the new-physics information and δMℓ2
em denotes the electromagnetic radiative con-

tributions. These corrections are relevant because the additional photon lifts the helicity

suppression of the two-body decay, thereby compensating in part for the additional elec-

tromagnetic coupling, and the two processes are not distinguishable experimentally for

low photon energies. Their relative importance therefore increases for decreasing lepton

masses.

The correction ∆ij is predicted to be positive in model I, negative in model X and

can have either sign in the models II and Y, depending on the decaying meson, while it

is of course absent in the inert scenario. In the more general A2HDM it is a complex

number with a real part of either sign. To determine its size one needs to know |Vij | and
a theoretical determination of the meson decay constant.

The SM as well as the 2HDM contribution to this class of decays start at tree level.

Therefore they can be assumed to remain the dominant contributions, relatively indepen-

dent of a possible high-energy completion of the theory. Electroweak loop corrections are

of course expected and they could be sizeable in some cases, for example in supersymmetry

at large values of tan β [101, 102].

2The normalization of the meson decay constant corresponds to fπ =
√

2Fπ = 131 MeV.
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4.2.1 Heavy pseudoscalar mesons
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Figure 1: Constraints in the complex ς∗l ςu,d/M
2
H± planes from B → τν (left) and D → µν (right),

in units of GeV −2. The colour code indicates confidence levels (1− CL).

The leptonic decays of heavy pseudoscalar mesons that have been measured up to now

are B → τν, Ds → µν, Ds → τν and D → µν. The radiative corrections for the leptonic

decays of heavy mesons have been estimated in [103], and are already taken into account

in the experimental values given in table 3; therefore the electromagnetic correction is set

to zero in Eq. (4.5).

InB andD decays the function ∆ij can be approximated by neglecting the contribution

proportional to the light quark mass, because mu/mb . md/mc ∼ O(10−3). Therefore the

relations

∆ub ≈
m2

B

M2
H±

ς∗l ςd , ∆cd ≈
m2

D

M2
H±

ς∗l ςu (4.7)

hold, leading to a direct constraint on these combinations. While for D(s) → τν the helicity

suppression is absent, the corresponding phase space is small and there are two neutrinos

in the final state, which is why D → τν has not been measured up to now. Nevertheless,

the upper limit set by CLEO [84] starts to become relevant in constraining our parameters:

|1−∆cd| < 1.19 (95% CL). The present experimental limit on B → µν gives |1−∆ub| < 2.04

(95% CL). The information obtained from the decays B → τν and D → µν is shown

in figure 1. The broad dark red (black) ring in the middle reflects the fact, that the

systematic error is dominant in these constraints, leading to a large amount of degeneracy

for the ‘best fit value’. To infer a limit at a certain confidence level, the corresponding

number of rings has to be included, for example for 95% up to the yellow (light grey)

corresponding to 1 − CL = 0.05. The resulting 95% CL constraints, |1 −∆ub| ∈ [0.8, 2.0]

and |1−∆cd| ∈ [0.87, 1.12], translate into allowed circular bands in the ς∗l ςu,d/M
2
H± complex

planes. For real Yukawa couplings there is a two-fold sign ambiguity generating two possible
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Figure 2: 95% CL constraints in the complex ς∗l ςu/M
2
H± plane from Ds → (τ, µ)ν, in units of

GeV −2, using B → τν to constrain ς∗l ςd/M
2
H± .
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Figure 3: Constraints from Ds → τντ (left) and Ds → µνµ (right), in units of GeV −2, under the

assumption of real parameters ςf . The grey bands correspond to 95% CL. Also shown are the cuts

for the 2HDM of type I/X (dashed line) and II (lighter grey area, tanβ ∈ [0.1, 60]). Finally, the

four black regions are the possible allowed areas considering the information coming from B → τντ .

solutions, the expected one around ∆ij = 0 (the SM amplitude dominates) and its mirror

around ∆ij = 2, corresponding to a new-physics contribution twice as large as the SM

one and of opposite sign. The real solutions are ς∗l ςd/M
2
H± ∈ [−0.036, 0.008] GeV−2 and

[0.064, 0.108] GeV−2, and ς∗l ςu/M
2
H± ∈ [−0.037, 0.037] GeV−2 and [0.535, 0.609] GeV−2.

In Ds decays we get |1−∆cs| ∈ [0.97, 1.18] from Ds → µν and |1 −∆cs| ∈ [0.98, 1.16]

from Ds → τν. Here the situation is a bit more complex, because ms/mc ≈ 10% and

the light-quark term in the ∆cs function cannot be neglected since this suppression could

be compensated by the different ςf . Therefore there is no direct constraint, neither on

ς∗l ςu/M
2
H± nor on ς∗l ςd/M

2
H± , only a correlation among them. For that reason, we use the

additional information from B → τν to constrain the parameters which are not shown.
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This suffices to render the influence of the mass-suppressed term subdominant.

If CP symmetry were only broken by the CKM phase, the parameters ςf would be

real. In this case, the constraints from Ds → τντ and Ds → µνµ can be visualized as

shown in figure 3, plotting the correlation between the two real parameters. The two grey

bands are associated with the two possible solutions around ∆cs = 0 and ∆cs = 2. The

different models with Z2-symmetry correspond to cuts in these plots. The plots show the

small influence of the term proportional to the strange quark mass, as long as the couplings

are of the same order. Using the constraints on ς∗l ςd/M
2
H± from B → τν, one finds for

the other coupling combination the two real solutions ς∗l ςu/M
2
H± ∈ [−0.005, 0.041] GeV−2

and [0.511, 0.557] GeV−2, at 95% CL, which agree with the corresponding constraints from

D → µν. Putting together all the information from leptonic B, D and Ds decays, the real

solutions are:

ς∗l ςd
M2

H±

∈
{
[−0.036, 0.008] GeV−2 ,

[0.064, 0.108] GeV−2 ,

ς∗l ςu
M2

H±

∈
{
[−0.006, 0.037] GeV−2 ,

[0.511, 0.535] GeV−2 .
(4.8)

4.2.2 Light pseudoscalar mesons
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Figure 4: Constraints in the complex plane (ς∗l ςd)/M
2
H± , in units of GeV −2. Left: Full regions

allowed at 95% CL for K/π → µν (upper plot) and τ → K/πν (lower plot). Right: 95% CL

constraints in the interesting region (from the global fit) for both constraints, using D → µν to

constrain ς∗l ςu/M
2
H± .

Due to the cancellation of common uncertainties, lattice calculations of the ratio fK/fπ
are more precise than the determinations of the individual decay constants. This ratio can
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be extracted experimentally from two different ratios of decay widths:

Γ(K → µν)

Γ(π → µν)
=
mK

mπ

(
1−m2

µ/m
2
K

1−m2
µ/m

2
π

)2 ∣∣∣∣
Vus
Vud

∣∣∣∣
2(fK

fπ

)2

(1 + δKl2/πl2
em )

∣∣∣∣
1−∆us

1−∆ud

∣∣∣∣
2

, (4.9)

Γ(τ → Kν)

Γ(τ → πν)
=

(
1−m2

K/m
2
τ

1−m2
π/m

2
τ

)2 ∣∣∣∣
Vus
Vud

∣∣∣∣
2(fK

fπ

)2

(1 + δτK2/τπ2
em )

∣∣∣∣
1−∆us

1−∆ud

∣∣∣∣
2

, (4.10)

where δ
Kl2/πl2
em is given in table 2 and δ

τK2/τπ2
em = δ

(τK2/Kℓ2)
em +δ

Kℓ2/πℓ2
em −δτπ2/πℓ2em = 0.0004±

0.0054.

The new-physics corrections are dominated by ∆us ≃ ς∗l ςdm
2
K/M

2
H± . As m2

K/m
2
B ∼

1%, the scalar contributions to these decays are much smaller than for the heavy mesons.

However, the good experimental precision achieved provides interesting constraints, as

shown in figure 4, which are dominated by the Kµ2/πµ2 ratio. At 95% CL, one finds

|1 −∆us| ∈ [0.984, 1.017] from Kµ2/πµ2 and |1 −∆us| ∈ [0.965, 1.025] from the ratio τ →
νK/π. The real solutions are then, ς∗l ςd/M

2
H± ∈ [−0.07, 0.07] GeV−2 or [8.14, 8.28] GeV−2.

The larger real solution is already excluded by the B → τν data.

4.3 Semileptonic decays of pseudoscalar mesons

Semileptonic decays receive contributions from a charged scalar as well, but in this case the

leading SM amplitude is not helicity suppressed, therefore the relative influence is smaller.

In addition, there are momentum-dependent form factors involved. The decay amplitude

M → M ′lν̄l is characterized by two form factors, f+(t) and f0(t) associated with the

P-wave and S-wave projections of the crossed-channel matrix element 〈0|ūiγµdj |MM̄ ′〉.
The scalar-exchange amplitude only contributes to the scalar form factor; it amounts to a

multiplicative correction

f̃0(t) = f0(t) (1 + δij t) , (4.11)

where

δij ≡ − ς∗l
M2

H±

ςumui
− ςdmdj

mui
−mdj

. (4.12)

The determination of the CKM matrix element |Vij | is not contaminated by the new-

physics contribution, because it is governed by the vector form factor. One measures

the electron mode M →M ′eν̄e, where the scalar contribution is heavily suppressed by the

electron mass, determining the product |Vij | |f+(t0)|, with t0 = 0 for light-quark transitions

and t0 = (mM − mM ′)2 for heavy quarks. A theoretical calculation of |f+(t0)| is then

needed to extract |Vij |. The sensitivity to the scalar contribution can only be achieved

in semileptonic decays into heavier leptons. Whenever available, one can make use of

the differential decay distribution to separate the scalar and vector amplitudes. In any

case, theoretical determinations of the scalar and vector form factors are needed to extract

information on δij .

4.3.1 B → Dτντ

To reduce the uncertainty from the vector form factor, let us consider the ratio

Br(B → Dτντ )

Br(B → Deνe)
= a0 + a1

(
m2

B −m2
D

)
Re(δcb) + a2

(
m2

B −m2
D

)2 |δcb|2 . (4.13)
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The coefficients ai, which contain the dependence on the strong-interaction dynamics, have

been studied recently and parametrized in terms of the vector form-factor slope ρ2 and the

scalar density ∆(vB · vD) ≡ ∆, assumed to be constant [39, 104]. We make use of these

parametrizations, taking for the two parameters the values indicated in table 2. The

function ∆(vB · vD) ∝ f0(t)/f+(t) has been studied in the lattice, in the range vB · vD = 1–

1.2, and found to be consistent with a constant value ∆ = 0.46 ± 0.02, very close to its

static-limit approximation (mB −mD)/(mB +mD) [75].
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Figure 5: Constraints from B → Dτντ , in units of GeV −2, plotted in the complex plane for

ς∗l ςd/M
2
H± (left) and ς∗l ςu/M

2
H± (right), using D → µν and B → τν to constrain the combination

not shown, respectively. The colours indicate 1 − CL, the red lines the constraint (95% CL) for

ς∗l ςu,d/M
2
H± → 0.

We obtain once more a correlation between ς∗l ςu/M
2
H± and ς∗l ςd/M

2
H± , where the term

proportional to the charm quark mass is in general potentially more important than in the

type II model. The results are shown in figure 5 for both parameter combinations. As can

be seen there, the constraint on ςdς
∗
l /M

2
H± is consistent with the information coming from

B → τν and the leptonic decays of light mesons, but does not constrain this combination

further as long as only the information of B → Dτντ is used. The red lines indicating the

constraint for ς∗l ςu → 0, however, show that the semileptonic decay can exclude a small

region around (0.08, 0), once that combination is bound to be small. We will use this to

exclude the second real solution for ς∗l ςd/M
2
H± with aid of the processes ǫK , Z → bb̄ and

τ → µνν (see figure 8). Also, when plotted in the complex ς∗l ςu/M
2
H± plane, it becomes

apparent that this constraint is important to exclude the second real solution allowed by

D(s) → ℓν decays, already using only the information from leptonic decays in addition (see

again figure 8).

Considering the limit of real ςf ’s, the correlation between the real parts is visualized in

figure 6, together with the cuts corresponding to the different models with Z2 symmetries.

The plot shows that the mb and mc terms have potentially similar influence in this case.

It has been pointed out in [105] that measuring the spectrum instead of just the

branching ratio will increase the sensitivity of this channel. This, however, has not been
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done up to now, due to lack of statistics.
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Figure 6: Allowed regions for Re(ς∗l ςd)/M
2
H± and Re(ς∗l ςu)/M

2
H± from the process B → Dτν at

95% CL (grey), in units of GeV −2, assuming that their imaginary parts are zero. The projections

for the 2HDMs of types I/X (dashed line) and II (lighter grey area, tanβ ∈ [0.1, 60]) are also shown.

4.3.2 K → πℓν

In semileptonic kaon decays the Callan-Treiman theorem [106, 107] allows to relate the

scalar form factor at the kinematic point t
CT

= m2
K −m2

π to the ratio of kaon and pion

decay constants: C ≡ f0(tCT
)/f+(0) =

fK
fπ

1
f+(0) +∆

CT
, where ∆

CT
= (−3.5± 8) · 10−3 is a

small χPT correction of O[m2
π/(4πfπ)

2] [108, 54, 109]. Using a twice-subtracted dispersion

relation for f0(t) [110], the constant C has been determined from the Kµ3 data by KLOE

[91], KTeV [92] and NA48 [111]. In the average quoted in table 3 the NA48 result has been

excluded because it disagrees with the other two measurements by more than 2σ.

In the presence of charged-scalar contributions, the scalar form factor gets modified

as indicated in Eq. (4.11), inducing a corresponding change in C. Taking into account

that the analyzed experimental distribution is only sensitive to |f̃0(t)|2, to first order in

the new-physics correction δus, the measured value of C corresponds to

logC = log

(
fK
fπ

1

f+(0)
+ ∆CT

)
+Re

[
δus(m

2
K −m2

π)
]
. (4.14)

The resulting constraint on the real part of ςdς
∗
l /M

2
H± is shown in figure 7, leading to

Re

(
ς∗l ςd
M2

H±

)
∈ [−0.16, 0.30] GeV−2 (95% CL) , (4.15)

which is in agreement with the previous constraints, but with larger uncertainties. This

might change in the near future, due to improved lattice determinations of f+(0) and

fK/fπ, as well as improved experimental precision, e.g. from NA62 or KLOE-2.

4.4 Global fit to leptonic and semileptonic decays

Combining the information from all leptonic and semileptonic decays discussed before,

one gets the constraints shown in figure 8. |ςdς∗l /M2
H± | is bounded to be smaller than
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Figure 7: Constraint from the direct measurement of logC, in units of GeV −2.

∼ 0.1 GeV−2 (95% CL) from these decays alone, while for ςuς
∗
l /M

2
H± the constraints are

relatively weak, due to the similar masses of the mesons in the leptonic decays. Note

that in both cases there are two real solutions. For the combination ςuς
∗
l /M

2
H± , one real

solution is excluded in the global fit at 95% CL, while the other, including the SM point

of vanishing couplings remains allowed. As mentioned before, this exclusion is due to

B → Dτν in combination with the constraint on ςdς
∗
l /M

2
H± . For the latter, the situation

is more complicated. The second solution remains allowed, due to the overlapping of the

two main constraints in both regions and the weak constraint on ςuς
∗
l /M

2
H± derived from

semileptonic decays. However, using in addition the information coming from leptonic τ

decays in (4.4), the lower Higgs mass bound from LEP and the constraint from ǫK , Z → b̄b

(see section 5.1) in a conservative way, |ςuς∗l |/M2
H± . 0.01 GeV−2, the second real solution

for ςdς
∗
l /M

2
H± is excluded as well by B → Dτν.
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Figure 8: ςdς
∗

l /M
2
H± (left) and ςuς

∗

l /M
2
H± (right) in the complex plane, in units of GeV −2, con-

strained by leptonic and semileptonic decays. The inner yellow area shows the allowed region at

95% CL, in the case of ςdς
∗

l /M
2
H± using additional information (see text).
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5. Loop-induced processes

For processes where new-physics contributions appear only through quantum loop effects,

the situation becomes obviously more difficult, regarding not only the calculation but also

the interpretation of the results. If the SM amplitude is also mediated only by loops, the

relative importance of the charged-scalar contributions is expected to be higher, but this

implies also a higher sensitivity to the framework in which the A2HDM is eventually to

be embedded in. In the following we make the assumption that for the observables under

discussion the dominant new-physics corrections are those generated by the charged scalar.

Moreover, since no significant signal for new physics has been found up to now in flavour

observables, we assume these effects to be subleading with respect to the SM contribution.

5.1 Z → bb̄

The high-precision data collected at LEP and SLD has made it possible to accurately test

the SM electroweak loop corrections at the Z scale, providing information on the Higgs mass

and useful constraints on many new-physics scenarios. While most Z-peak observables

are only sensitive to the gauge-boson selfenergies, the decay Z → bb̄ provides valuable

information on fermionic vertex corrections induced by charged-current exchanges. Since

Vtb ≈ 1, those loop diagrams involving virtual top quarks generate quantum corrections

to the Zbb̄ vertex, which are absent in the Zdd̄ and Zss̄ vertices. These corrections are

enhanced by a factor m2
t , allowing for a quite accurate determination of the top quark

mass [112, 113]. The same arguments apply to the charged-scalar contributions present

in the A2HDM, providing a sensitive probe of the corresponding H+t̄b coupling. For very

large values of |ςd| this decay would also be sensitive to contributions from neutral scalars

[114]; we don’t consider this possibility here. However, given a not too small value for ςl,

(semi-)leptonic decays can be used to exclude that possibility.

Therefore, we assume the dominance of charged-scalar effects in the following, allowing

only for |ςd| ≤ 50. We disregard the information coming from the forward-backward polar-

ization asymmetry Ab, because the scalar-exchange contributions to Ab are small compared

to the present uncertainties.

It is convenient to normalize the Z → bb̄ decay width to the total hadronic width of

the Z, because many QCD and electroweak corrections cancel in the ratio, amplifying the

sensitivity to the wanted vertex contribution [113]. Within the A2HDM, this ratio can be

written as [114, 115, 77]

Rb ≡
Γ(Z → b̄b)

Γ(Z → hadrons)
=

[
1 +

Sb
sb
CQCD
b

]−1

, (5.1)

where

sq =
[
(ḡLb − ḡRb )

2 + (ḡLb + ḡRb )
2
] (

1 +
3α

4π
Q2

q

)
, Sb ≡

∑

q 6=b,t

sq , (5.2)
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Figure 9: Constraint from Rb in the |ςu|−MH± plane (MH± in GeV units), allowing for |ςd| ≤ 50.

with CQCD
b = 1.0086 being a factor including QCD corrections [116]. The A2HDM contri-

butions are encoded through the effective left- and right-handed Zbb̄-couplings:

ḡLb = ḡLb,SM +

√
2GFM

2
W

16π2
m2

t

M2
W

|ςu|2
[
f1(th) +

αs

3π
f2(th)

]
, (5.3)

ḡRb = ḡRb,SM −
√
2GFM

2
W

16π2
m2

b

M2
W

|ςd|2
[
f1(th) +

αs

3π
f2(th)

]
, (5.4)

where th ≡ m2
t/M

2
H± , f1(th) = [t2h−th−th log th]/(1−th)2 and the function f2(th) governing

the NLO correction is given in [77]. If running quark masses m̄t(MZ) and m̄b(MZ) are used,

this NLO QCD correction is small. The light-quark coupling contribution Sb = 1.3214

[76, 77] is not sensitive to the new-physics effects. The SM values of the couplings ḡL,Rb,SM ,

given in table 2, have been computed removing the Z → bb̄ information from the standard

electroweak fit [76, 77].

In contrast to the leptonic and semileptonic constraints discussed before, here the

parameters |ςu,d| enter directly, allowing to bound them without information on |ςl|. The

constraint resulting from the input values in tables 2 and 3 is shown in figure 9. The

constraint is plotted in the |ςu| −MH± plane, as obviously it is much weaker for |ςd|, due
to the relative factor mb/mt. For large scalar masses, the constraint weakens as the effects

start to decouple, reflected in limth→0 f1,2(th) = 0. In the range of scalar masses considered,

it leads to a 95% CL upper bound |ςu| ≤ 0.91 (1.91), for MH± = 80 (500) GeV. The upper

bound increases linearly with MH± , implying

|ςu|
MH±

< 0.0024 GeV−1 +
0.72

MH±

< 0.011 GeV−1 , (5.5)

where we have used the lower bound on the charged-scalar mass from LEP searches,MH± >

78.6 GeV (95% CL) [1, 81]. Combined with the limit on |ςl/MH± | from leptonic τ decays,
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this already constrains the combination |ςuς∗l |/M2
H± much stronger than the global fit to

(semi)leptonic decays, leading to

|ςuς∗l |
M2

H±

< 0.005 GeV−2 , (5.6)

however only with the additional assumptions of |ςd| ≤ 50 and charged-scalar effects dom-

inating the new-physics contributions to Rb. The range allowed for |ςd| in the fit does not

influence the upper bound on |ςu|, apart from the exclusion of neutral-scalar effects, since

both contributions can only lower the value for Rb and both are allowed to vanish in the

fit. Therefore the upper limit stems from points with |ςd| = 0.

5.2 B0-B̄0 mixing

The mixing of neutral B mesons is very sensitive to charged-scalar effects, as the leading

contribution stems from top-quark loops, rendering the new-physics and SM contributions

comparable. Besides the high precision of the measurement for the mass difference ∆mB0 ,

the B0
s mixing is especially interesting due to the observed tension in its phase [36, 65].

In the usual 2HDMs with a Z2 symmetry the scalar couplings are necessarily real, leading

to a vanishing contribution to this phase. However, the complex Yukawa couplings ςu,d
of the A2HDM provide a potential new-physics contribution, which could account for the

experimentally observed phase.

In the SM, the calculation is simplified by the fact that only one operator contributes,

denoted OVLL below. In the presence of a charged scalar, an enlarged effective Hamiltonian

H∆B=2
eff =

G2
FM

2
W

16π2
(V ∗

tdVtb)
2
∑

i

Ci(µ)Oi (5.7)

has to be considered, involving a basis of eight operators [117, 118, 119, 120]:

OVLL,VRR =
(
d̄αγµPL,Rb

α
) (
d̄βγµPL,Rb

β
)
,

OLR
1 =

(
d̄αγµPLb

α
) (
d̄βγµPRb

β
)
,

OLR
2 =

(
d̄αPLb

α
) (
d̄βPRb

β
)
, (5.8)

OSLL,SRR
1 =

(
d̄αPL,Rb

α
) (
d̄βPL,Rb

β
)
,

OSLL,SRR
2 =

(
d̄ασµνPL,Rb

α
) (
d̄βσµνPL,Rb

β
)
,

with α, β being colour indices and σµν = 1
2 [γ

µ, γν ]. We have written the effective Hamil-

tonian relevant for B0
d-B̄

0
d mixing; the mixing of B0

s mesons is described by the analogous

expression, changing the label d to s everywhere.

We have performed the matching of the underlying A2HDM and the low-energy effec-

tive Hamiltonian at the scale µtW ∼ MW ,mt. The resulting Wilson coefficients, given in

the appendix, reproduce the SM result as well as the matching for the 2HDM in the limit

md → 0, given in [121]. As noted above, the contribution of the A2HDM to CVLL(µtW )
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is an O(1) effect. For that reason, we calculate this contribution at NLO, implementing

the results of [121] within the A2HDM.3 Owing to their chirality structure, the remaining

Wilson coefficients are all suppressed by powers of the light-quark mass md (ms in the

B0
s case), except C1

SRR which is proportional to m2
b . Restricting the parameter ranges to

|ςu| ∈ [0, 5] and |ςd| ∈ [0, 50], the ratio |Ci(µtW )/CVLL(µtW )| is then below two percent for

all operators apart from OSRR
1 . Since the matrix elements for the B0 mixing do not contain

the large (chiral) enhancement factors present in the kaon system, this allows us to restrict

ourselves to two operators only. Moreover, the ratio C1
SRR/CVLL is a small quantity (10%

at most for |ςd| ≤ 25, still below 40% for |ςd| = 50) and therefore a leading-order estimate of

the OSRR
1 contribution is enough for our purposes, while the dominant OVLL contribution

is included at NLO.

The strong (ms − md)/MW suppression of SU(3)-breaking effects implies that, for

the parameter ranges considered, the ratio ∆mB0
s
/∆mB0

d
is unaffected by charged-scalar

contributions and can be used in the CKM fit. Note, however, that in the limit |ςd| ≫
50, |ςu| ≪ 1, which corresponds to the large–tan β scenario in the type II model, the

contribution from OVRR might become the dominant new-physics correction to B0
s mixing,

but remains small compared to the SM one.

We use the ratio ∆mB0
s
/∆mB0

d
to determine the apex (ρ̄, η̄) of the unitarity triangle,

and bound the charged-scalar parameters with the B0
s mixing information. The resulting

constraint from ∆mB0
s
in the MH±– |ςu| plane is shown in figure 10, using the scales

µtW = mt and µb = 4.2 GeV. The error includes the variations in the CKM parameters,

fB0
s
, B̂B0

s
and the experimental uncertainty. The leading OVLL contribution depends on

|ςu|2 only, while C1
SRR is proportional to ς∗uςd = |ςu||ςd|eiϕ, ϕ being the relative phase

between the two Yukawa couplings. To determine the allowed region shown in figure 10,

we have varied ςd in the range |ςd| < 50 and ϕ ∈ [0, 2π].

Interestingly, the dominant contribution to a possible phase shift in the mixing is

also the one from OSRR
1 . The factor M4

WD0(mt,MH±) (see appendix) varies between zero

and ∼ −3% for scalar masses between 50 and 500 GeV, while 4m2
bm

4
t/M

6
W ∼ 10%. For

relatively large values of the product |ς∗uςd | (& 20) this factor can contribute sizeably to

the B0 mixing phase, as long as MH± is relatively small. The sign of the shift is obviously

not fixed, but depends on the sign of the relative Yukawa phase ϕ. As long as |ςd| is not

too large, the effect is the same in B0
d and B0

s .

The D0 experiment has measured very recently [36] a like-sign dimuon charge asym-

metry leading to Ab
sl = −0.00957± 0.00251± 0.00146, which differs by over three standard

deviations from the SM prediction [122, 123]. The measurement includes contributions

from B0
d and B0

s mesons, corresponding to Ab
sl = (0.506 ± 0.043) adsl + (0.494 ± 0.043) assl,

with (q = d, s)

aqsl = Im

(
Γq
12

M q
12

)
=

|Γq
12|

|M q
12|

sinφq =
∆ΓB0

q

∆MB0
q

tanφq , (5.9)

where M q
12 − i

2 Γ
q
12 ≡ 〈B0

q |H∆B=2
eff |B̄0

q 〉. While this result needs certainly confirmation, we

will explore some of its consequences for the parameters of the A2HDM in the follow-
3Note, that there are several smaller errors in that paper, most of which have been pointed out in [38].
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Figure 10: The 95% CL constraint coming from ∆mB0
s
in the MH±– |ςu| plane for |ςd| ∈ [0, 50],

varying in addition the relative phase ϕ in [0, 2π]. The excluded area lies above the dark (red) region

only. In yellow the allowed area for ςd = 0 is shown.

ing. Using the current experimental value for the asymmetry in the B0
d system, adsl =

−0.0047 ± 0.0046 [65], the measured value of ∆MB0
s
and the SM prediction for ∆ΓB0

s
, the

D0 asymmetry implies sinφs = −2.7 ± 1.4 ± 1.6, showing that the central value of this

measurement is incompatible with the assumption of negligible influence of new physics

on Γ12
s , while the uncertainties are large enough to allow every value for the mixing phase

at 2σ. Using in addition the direct measurement of assl through B
0
s → µ+D−

s X decays by

D0 [124], assl = −0.0017 ± 0.0091, results in sinφs = −1.7 ± 1.1 ± 1.0. Note that (part

of) the observed deviation may also be due to the possibility of bad convergence of the

operator product expansion (OPE) [125, 126], related to the relatively low effective energy

scale mb − 2mc. However, no signs for a breakdown were found in the above calculation.

Note also that in [127] it has been argued that such a large value violates a “coherence

bound” derived by demanding monotonicity of the Stokes vector in the Bs system. The

possibility of NP influence on the rate as an explanation for this measurement has recently

been discussed in [128, 129, 130]. The authors of [128] conclude, that most of the possible

operators are strongly constrained by other processes (including the one discussed in [129]),

leaving little space for an O(1) contribution to Γs
12.

Hints of a large φs value have been also obtained previously from B0
s → J/ψφ decays

[131, 132, 133], where the extraction of the phase might however be influenced by contri-

butions to the decay amplitude: in the SM, one of the reasons why this decay is “golden”

is the fact, that the potentially relatively large penguin contributions have the same phase

as the leading (colour-suppressed) tree amplitude, and therefore do not spoil the extrac-

tion of the mixing phase from the time-dependent CP asymmetry. However, this is no

longer true in the A2HDM: the charged-scalar penguin contributions include terms similar

to their leading SM counterparts, with an additional factor of ς∗uςdmbmt/M
2
H± ∼ O(1),

thereby providing a second weak phase in the decay amplitude. Quantitatively assessing
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the influence of these contributions would require a reliable calculation of the correspond-

ing matrix elements, which is however not available; we are thus left with the possibility

of a semi-quantitive analysis only, e.g. along the lines of [134], which we however do not

consider here.

The SM predicts a very small positive value for φs and a much larger and negative result

for φd. The theoretical values quoted in [122] are φs = 0.24◦ ± 0.08◦ and φd = −5.2◦ +1.5◦

− 2.1◦ .
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Figure 11: Dependence of sinφq/(|∆q| sinφSMq ) on ϕ ≡ arg (ς∗uςd ).

Assuming that the charged-scalar contributions are the only relevant new-physics ef-

fects, we can analyze the possibility to accommodate a large φs phase within the A2HDM.

In figure 11 we plot the allowed range for sinφq/(|∆q| sinφSMq ), where ∆q ≡M q
12/M

q,SM
12 , as

a function of the relative Yukawa phase ϕ ≡ arg (ς∗uςd ). The other scalar parameters have

been varied in the ranges |ςd| ∈ [0, 50], MH± ∈ [80, 500] GeV, and |ςu| according to the

allowed range from ǫK , Z → b̄b, which includes only values for (|ςu|,MH±) which lead to

acceptable values for ∆ms,d. While it is indeed possible to obtain a large value of φs, the

predicted equality of ∆s and ∆d implies a strong anti-correlation of sinφd/(|∆d| sin φSMd )

and sinφs/(|∆s| sinφSMs ), due to the different sign (and size) of φSMd and φSMs . This leads to

a prediction for the sign of adsl, which could be verified/falsified, once higher experimental

precision is achieved. As can be seen, the preferred negative sign for the assl asymmetry

implies ϕ ∈ [π/2, π], [3π/2, 2π], and for possible large values the Yukawa phase should not

be close to 0, π (obviously).

Figure 12 shows the dependence of sinφs/(|∆s| sin φSMs ) with |ςd| (left) and MH±

(right), varying the remaining parameters within their allowed ranges. If large values for

the assl asymmetry are confirmed (within the physical range | sinφs| ≤ 1), this would point

towards large values of |ςd| and small charged scalar masses. Finally we show in figure 13

the plots from figure 11 again, restricting the product |ςuς∗d | ≤ 20 (see section 5.4). The

corresponding maximal asymmetry is correspondingly smaller, but still relative factors up

to ∼ 60 are allowed for Bs with respect to the SM.

Additional contributions to φs could be induced by neutral scalar exchanges, through

the effective FCNC operator in Eq.(2.13) appearing at the one-loop level. Also, a sizable

Yukawa phase ϕ ≡ arg(ς∗uςd) could generate observable signals in other CP -violating ob-

servables not yet included in our analysis. A detailed discussion of these effects and their

corresponding constraints on the model parameters is postponed to future work.
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Figure 12: Dependence of sinφs/(|∆s| sinφSMs ) on |ςd| (left) and MH± (right).
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Figure 13: Dependence of sinφq/(|∆q| sinφSMq ) on ϕ ≡ arg (ς∗uςd), constraining |ςuς∗d | ≤ 20.

5.3 K0-K̄0 mixing: ǫK

The ∆S = 2 effective Hamiltonian is described by the same basis of four-quark operators

given in (5.8), changing the flavour b to s everywhere. However, the small light-quark

massesmd andms suppress now the contributions from all operators except OVLL. Another

difference with respect to B0 mixing is that, owing to the different CKM factors, one needs

to consider the virtual contributions from top and charm quark exchanges within the box

diagrams:

H∆S=2
eff =

G2
FM

2
W

16π2
{
λ2t C

tt
VLL(µ) + λ2c C

cc
VLL(µ) + 2λtλcC

ct
VLL(µ)

} (
d̄γµPLs

) (
d̄γµPLs

)
.

(5.10)

Since λt ≡ V ∗
tdVts ∼ A2λ5 while λt ≡ V ∗

cdVcs ∼ λ, in spite of them2
c/m

2
t relative suppression,

the charm loop gives the dominant short-distance contribution to ∆mK . There are in

addition large corrections from long-distance physics, which make it difficult to extract

from ∆mK useful constraints on the new-physics amplitude.

More interesting is the CP -violating parameter ǫK , which can be written in the form

ǫK =
κǫ e

iφǫ

√
2

Im(M12)

∆mK
, (5.11)

where κǫ = 0.94 ± 0.02 takes into account small long-distance corrections [135, 78]. The

top and charm contributions are now weighted by less hierarchical CKM factors Im(λ2t ) ∼
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λ4Im(λcλt) ∼ λ4Im(λ2c); the mass hierarchy compensates for this, implying that the top

quark gives the most important contribution to ǫK .

The relevant Wilson coefficients Cqq′

VLL, containing the SM and new-physics contri-

butions, are given in the appendix. The corrections induced by the charged scalar are

proportional to |ςu|2 and |ςu|4. All contributions from the coupling ςd are absent in the

limit md,s = 0. The matrix element 〈K0|H∆S=2
eff |K̄0〉 is parametrized through the hadronic

Figure 14: 95% CL constraints from ǫK.

quantity f2KB̂K . We use the numerical values of fK/fπ and B̂K , given in table 2, together

with the phenomenological determination of the pion decay constant from Γ(π+ → µ+νµ),

fπ = 130.4± 0.04± 0.2 MeV [66]. Figure 14 shows the constraint obtained from ǫK in the

plane MH± – |ςu|. It is very similar to the one extracted from Z → bb̄, and even slightly

stronger.

5.4 B̄ → Xsγ

The radiative decay B̄ → Xsγ has been calculated at NNLO in the SM, leading to the

prediction Br(B̄ → Xsγ)SM = (3.15±0.23)×10−4 [136]. In the 2HDM the decay amplitude

is known at NLO [137, 138, 77, 139]. Following the steps given in [140], one can express

the branching ratio as

Br(B̄ → Xsγ)Eγ>E0 = Br(B̄ → Xceν̄)exp

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
2 6α

πCB
[P (E0) +N(E0)] , (5.12)

where the phase-space factor CB = |Vub/Vcb|2Γ(B̄ → Xceν̄)/Γ(B̄ → Xueν̄) = 0.580± 0.016

[141] accounts for the mc dependence of Br(B̄ → Xceν̄). Normalizing the result with the

B̄ → Xceν̄ transition, cancels the leading non-perturbative corrections of order Λ2/m2
b

and minimizes many sources of uncertainties, such as those generated by the CKM quark-

mixing factors, the dependence on m5
b and the sensitivity to mc. The subleading non-

perturbative contributions are contained in N(E0), which includes corrections of O(Λ2/m2
c)
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[142], O(Λ3/m3
b), O(Λ3/mbm

2
c) [143] and O(αsΛ

2/(mb − 2E0)
2) [144]. The relevant com-

bination of CKM factors is given by

∣∣∣∣
V ∗
tsVtb
Vcb

∣∣∣∣
2

= 1+ λ2(2ρ̄− 1) + λ4(ρ̄2 + η̄2 −A2) +O(λ6) = 0.963± 0.002± 0.005 , (5.13)

where the sensitivity to the apex (ρ̄, η̄) of the unitarity triangle is suppressed by two powers

of λ.

For ms = 0 the effective low-energy operator basis remains the same as in the SM. The

modifications induced by new-physics contributions appear only in the Wilson coefficients,

which are included in the perturbative part P (E0):

Ceff
i (µW ) = Ci,SM + |ςu|2 Ci,uu − (ς∗uςd ) Ci,ud , (5.14)

where ς∗uςd = |ςu||ςd|eiϕ, ϕ being the relative phase. The virtual top-quark contributions

dominate the coefficients Ci,uu and Ci,ud; their explicit expressions as a function of mt can

be found in [77]. Depending on the value of the phase ϕ, the combined effect of the two

terms Ci,uu and Ci,ud can be rather different. For instance, these two terms tend to cancel

each other in the type I model where ϕ = 0, while in the type II version with ϕ = π they

add constructively.

Since the new-physics contribution is only calculated up to NLO, terms in the branch-

ing ratio of O(α2
s) coming from the square of the 2HDM amplitude are neglected con-

sistently. In some regions of the parameter space, leading to large new-physics effects of

opposite sign to the SM amplitude, the cancellations between the two contributions en-

hance the sensitivity to higher-order QCD corrections, generating in some cases unphysical

results (for instance in the type I model at small values of tan β) [138]. Fortunately, the

most problematic region (large values of |ςu|) is already excluded by the constraints from

Z → b̄b and ∆mB0
s
. The inclusion of the SM NNLO contributions substantially improves

the reliability of the theoretical predictions.

To extract the information on the A2HDM couplings, we take into account the latest

experimental values, given in table 3, and use the same renormalization scales as in [140]

(µ0 = 160 GeV, µb = 2.5 GeV and µc = 1.5 GeV as central values and the same ranges of

variation). We follow again the RFit approach, adding the theoretical uncertainty linearly

to the systematic error. The resulting constraints on |ςu| and |ςd| are shown in figure 15,

varying the charged-scalar mass in the range MH± ∈ [80, 500] GeV. The white areas are

excluded at 95% CL. In the left plot, the phase ϕ has been scanned in the whole range

from 0 to 2π; the resulting constraints are not very strong because a destructive interference

between the two terms in (5.14) can be adjusted through the relative phase. In the range

|ςu| < 2, one finds roughly |ςd||ςu| < 20 (95% CL). More stringent bounds are obtained at

fixed values of the relative phase. This is shown in the right plot, where ςu and ςd have

been assumed to be real (i.e. ϕ = 0 or π). In that case, couplings of different sign are

excluded, except at very small values, while a broad region of large equal-sign couplings is

allowed, reflecting again the possibility of a destructive interference.

The sensitivity to the charged-scalar mass is illustrated in figure 16, which shows the

constraints on |ςd| versusMH± for fixed values of ςu = 0.5 (left) and ςu = 1.5 (right). Again,
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Figure 15: Constraints on ςu and ςd from B̄ → Xsγ, taking MH± ∈ [80, 500] GeV. The white

areas are excluded at 95% CL. The black line corresponds to the upper limit from ǫK , Z → b̄b on

|ςu|. In the left panel, the relative phase has been varied in the range ϕ ∈ [0, 2π]. The right panel

assumes real couplings.

in the upper plots the relative phase has been varied in the whole range ϕ ∈ [0, 2π], while

the lower plots assume real couplings. Figure 17 shows the constraints on the |ςu| −MH±

plane, for ςd = 0. Finally, in figure 18 we show the constraints obtained for fixed values

of the charged-scalar mass, assuming ςu and ςd to be real. We reproduce in this case the

qualitative behaviour obtained in [42].

We observe that for small values of |ςu| no constraint on ςd is obtained, because in the

limit |ςu| → 0 the SM is recovered, which is compatible with the data. With growing |ςu| a
bound on |ςd| emerges, corresponding to |ςuςd| . 20. For ςd = 0 on the other hand, a limit of

|ςu| . 3 can be observed for large scalar masses around 500 GeV, strengthening to |ςu| . 1.3

for smaller values ofMH± . The overall constraint is relatively weak compared to the strong

bound on MH± obtained in the type II 2HDM, due to the correlation ςuςd = −1. However,

it can be seen from the plots with vanishing phase and/or a fixed value for |ςd,u| that this
strength is recovered, once some parameters are constrained independently. Comparing the

plots with complex input parameters to their real counterparts, we observe that the effect

of the relative phase is mainly to extend the allowed bands in a way that the excluded

space between them is rendered allowed, too.

We have also analyzed the CP rate asymmetry, defined as

aCP =
BR(B̄ → Xsγ)−BR(B → Xs̄γ)

BR(B̄ → Xsγ) +BR(B → Xs̄γ)
, (5.15)

which is predicted to be tiny in the SM. Once the constraints from the branching ratio are

implemented in the A2HDM, the predicted asymmetry is smaller than the present exper-

imental bounds. Thus, one does not obtain further constraints on the model parameters.

A sizable Yukawa phase ϕ could generate values of the CP -asymmetry large enough to

be relevant for future high-precision experimental analyses. However, a NNLO analysis of

the theoretical prediction appears to be needed to reduce the presently large theoretical

uncertainties and fully exploit such a measurement.
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Figure 16: Constraints on |ςd| versus MH± (in GeV) from B̄ → Xsγ, for ςu = 0.5 (left) and

ςu = 1.5 (right). The white areas are excluded at 95% CL. In the upper panels, the phase has been

varied in the range ϕ ∈ [0, 2π]. The lower panels assume real couplings.

Figure 17: Constraints on |ςu| versus MH± (in GeV) from B̄ → Xsγ, for ςd = 0. The white area

is excluded at 95% CL.

6. Discussion

Imposing natural flavour conservation through discrete Z2 symmetries, one finds that the
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Figure 18: Constraints on ςd versus ςu (95% CL) from B̄ → Xsγ, assuming real couplings and

taking MH± = 150 GeV (left) and MH± = 400 GeV (right).

CKM phase is the only source of CP violation in the resulting 2HDMs. During the last

thirty years, it has been common lore to assume that this is a more general fact, i.e.

that the absence of tree-level FCNCs implies the absence of additional phases beyond the

CKM one. The A2HDM provides an explicit counter-example, where FCNC couplings are

absent at the Lagrangian level, while additional unconstrained complex phases generate

new sources of CP violation. Since all Yukawa couplings are proportional to fermion

masses, the A2HDM gives rise to an interesting hierarchy of FCNC effects, avoiding the

stringent experimental constraints for light-quark systems and predicting at the same time

interesting signals in heavy-quark transitions. The flavour-blind phases present in the

model open a very interesting phenomenology which is worth to be investigated. The

built-in flavour symmetries protect very efficiently the A2HDM from unwanted FCNC

effects generated through quantum corrections. At the one-loop level the only allowed

FCNC local structures are the two operators in (2.13), which could have very interesting

(and computable) implications for B0
s mixing.

Besides the fermion masses and mixings, the charged-scalar couplings of the A2HDM

are fully characterized by three complex parameters ςf . In the previous sections, we have

analyzed the impact of the H± contribution to different observables, where it is expected

to be the dominant new-physics effect. Using conservatively estimated hadronic param-

eters and up-to-date data, we have inferred the present constraints on the new-physics

parameters involved in these processes.

Leptonic tau decays provide a direct bound on the leptonic Yukawa coupling: |ςl|/MH± ≤
0.40 GeV−1 (95% CL). From semileptonic processes constraints on the products ς∗l ςu/M

2
H±

and ς∗l ςd/M
2
H± are derived. The leptonic decays of heavy-light mesons allow us to disen-

tangle the effects from ςu and ςd. Thus, from B → τν we derive an annular constraint

in the complex plane ς∗l ςd/M
2
H± (figure 1a), implying the absolute bound |ς∗l ςd/M2

H± | <
0.108 GeV−2 (95% CL). For real Yukawa couplings there is a two-fold sign ambiguity

generating two possible solutions, the expected one around ∆ij = 0 (the SM ampli-

tude dominates) and its mirror around ∆ij = 2, corresponding to a new-physics con-

tribution twice as large as the SM one and of opposite sign. The real solutions are
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ς∗l ςd/M
2
H± ∈ [−0.036, 0.008] GeV−2 and [0.065, 0.108] GeV−2.

Similar, but slightly weaker constraints on ς∗l ςu/M
2
H± are obtained from the decays

D → µν (figure 1b) and Ds → (τ, µ)ν (figure 2); in the last case the bounds from B → τν

are used to get rid of the small ςd contamination proportional to the strange quark mass.

The resulting absolute bound |ς∗l ςu/M2
H± | < 0.6 GeV−2 (95% CL) is rather weak, but the

upper limit corresponds to a new-physics contribution twice as large as the SM one, a very

unlikely situation. The annular form of these constraints results in much stronger limits,

once this possibility is excluded by other processes. For real Yukawa couplings, one finds

ς∗l ςu/M
2
H± ∈ [−0.005, 0.037] GeV−2 or [0.511, 0.535] GeV−2, at 95% CL.

Owing to the quark-mass suppression, the absolute constraints obtained from lep-

tonic decays of light mesons (figure 4) are obviously much weaker. However, the excellent

experimental precision achieved in π and K decays implies a narrow allowed annular re-

gion. For real Yukawa couplings this translates into quite stringent bounds: ς∗l ςd/M
2
H± ∈

[−0.07, 0.07] GeV−2 or [8.14, 8.28] GeV−2 (95% CL). The uncertainties are dominated by

the present theoretical knowledge of the ratio fK/fπ.

Independent information is obtained from the semileptonic decays of pseudoscalar

mesons, through the scalar form-factor contribution. One needs, however, to disentangle

the dominant vector form-factor amplitude, which does not contain any charged-scalar

effect and is correlated with the usual measurement of the corresponding CKM mixing

factor. The present constraints from the ratio Br(B → Dτντ )/Br(B → Deνe), shown in

figures 5 and 6, are not very strong by themselves, but allow in combination with other

processes the exclusion of the second real solutions in the ςu,dς
∗
l /M

2
H± planes. A future

measurement of the differential distribution in B → Dτντ would obviously increase the

sensitivity to the scalar contribution. In spite of the strange-mass suppression, the much

higher experimental accuracy achieved in the analysis of K → πlν decays allows to derive

the bound Re(ς∗l ςd/M
2
H±) ∈ [−0.16, 0.30] GeV−2 (95% CL). This already excludes the

second real solution (a scalar amplitude larger than the SM one) obtained from Kµ2/πµ2.

Combining the information from all leptonic and semileptonic decays analyzed, one

gets the constraints shown in figure 8.

The flavour-conserving decay Z → bb̄ provides a very stringent constraint on |ςu|. Since
Vtb ≈ 1, the one-loop contributions involving virtual top quarks completely dominate both

the SM (W±) and the new-physics (H±) radiative corrections. In contrast to leptonic

and semileptonic processes, where the charged-scalar effects are necessarily proportional

to ςl, the Z → bb̄ amplitude gives direct access to ςu and ςd. Owing to the relative

factor mb/mt which suppresses the ςd contribution, one gets finally the constraints on

|ςu| shown in figure 9 (assuming |ςd| ≤ 50). At 95% CL, we obtain |ςu| < 0.91 (1.91), for

MH± = 80 (500) GeV. The upper bound increases linearly withMH± , implying |ςu|/MH± <

0.0024 GeV−1 + 0.72
M

H±
< 0.011 GeV−1, where we have used the LEP lower bound on the

charged-scalar mass MH± > 78.6 GeV (95% CL) [1, 81]. Together with the tau-decay

constraint on |ςl|/MH± , this gives the limit |ςuς∗l |/M2
H± < 0.005 GeV−2, which is much

stronger than the information extracted from the global fit to leptonic and semileptonic

decays.

Quite similar information can be extracted from B0 mixing, which is also dominated
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by one-loop contributions involving virtual top quarks. The smallness of the ms/MW

ratio implies that SU(3)-breaking corrections are negligible; therefore, the charged-scalar

contributions cancel in the ratio ∆mB0
s
/∆mB0

d
, which can be used in the CKM fit. Only two

∆B = 2 four-quark operators are numerically relevant; the one generating the leading SM

amplitude gets new-physics contributions proportional to |ςu|2,4, while the other operator

generates subleading corrections proportional to (ς∗uςd )
1,2m2

b/M
2
W . Scanning the parameter

ranges |ςd| < 50 and ϕ ∈ [0, 2π], where ϕ is the relative phase between ςu and ςd, the

measured B0
s mixing amplitude implies the constraints shown in figure 10, in the plane

MH±– |ςu|. At 95% CL, one gets |ςu| < 0.00279MH±+0.27+117/MH± , forMH± ∈ [80, 500],

in GeV units.

The charged-scalar contribution could accommodate a large B0
s mixing phase, without

spoiling the agreement in the Bd system, although it is not possible to reach a value as

large as hinted at by the present D0 central value, which is however at odds with the rate

difference being unaffected by new physics (unless the calculation of the rate difference

is affected by problems regarding the OPE). If confirmed, a large phase φs would point

towards large values of |ςd|, small charged-scalar masses and a sizable Yukawa phase ϕ.

The preferred negative sign for the assl asymmetry would require ϕ ∈ [π/2, π], [3π/2, 2π].

Additional contributions to φs could be induced by neutral scalar exchanges, through the

effective FCNC operator in Eq.(2.13) appearing at the one-loop level. Large Yukawa phases

could be constrained by other CP -violating observables not yet included in our analysis.

A detailed discussion of these effects is postponed to future work.

The observable ǫK leads again to a similar constraint, even slightly more restrictive

than the ones from B0 mixing and Z → b̄b. Although CP violating, this observable is

insensitive to the new-physics phases, as the relevant contributions involve |ςu|, only. We

obtain at 95% CL |ςu| ≤ 0.560 + 2.647 10−3MH± − 1.049 10−6M2
H± + 6.153 10−10M3

H± in

units of GeV.

The radiative decay B̄ → Xsγ provides another important source of information. There

are two different charged-scalar contributions, proportional again to |ςu|2 and ς∗uςd , but in

this case the two have similar sizes. Their combined effect can be quite different depending

on the value of the relative phase ϕ. This results in rather weak limits because a destructive

interference can be adjusted through this phase. The resulting constraints on |ςu| and |ςd|
are shown in figure 15, varying the charged-scalar mass in the range MH± ∈ [80, 500] GeV.

Scanning the phase ϕ in the whole range from 0 to 2π, and imposing |ςu| < 3, one finds

roughly |ςd||ςu| < 20 (95% CL). Much stronger bounds are obtained at fixed values of the

relative phase. Assuming real values of ςu and ςd (i.e. ϕ = 0 or π), one finds that couplings

of different sign are excluded, except at very small values, while a broad region of large

equal-sign couplings is allowed, reflecting again the possibility of a destructive interference.

Figures 16, 17 and 18 show the sensitivity of the B̄ → Xsγ constraints to the different

unknown parameters: MH± , |ςu|, |ςd| and ϕ.
The constraints discussed so far apply to the general A2HDM framework, with three

arbitrary complex parameters ςf . The limits become of course much stronger in particular

models where these parameters are correlated. Figures 19 show the combined constraints
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Figure 19: Constraints on MH± (in GeV) versus tanβ (95% CL), in the 2HDM models of types

I (upper-left), II (upper-right), X (lower-left) and Y (lower-right).

on the tan β–MH± plane for the different Z2 models. The bounds from Z → bb̄, ǫK , ∆mB0
s

and B̄ → Xsγ are obviously identical for the models of type I and X and also for type II

and Y. In the type I/X case, ς2u = ς2d = ςuςd = cot2 β and the scalar amplitudes grow for

decreasing values of tan β. For type II/Y, this behaviour is only observed in the ς2u term,

while ς2d = tan2 β and ςuςd = −1; the decay B̄ → Xsγ provides then a very strong lower

bound on the scalar mass,MH± > 277 GeV (95% CL), due to the constructive interference

of the two contributing amplitudes. The ςl coupling gives rise to different constraints from

leptonic and semileptonic decays in each of the four models. Our results agree with the

qualitative behaviour found in previous analyses [14, 38, 39, 40, 41, 42, 136, 145, 146, 147,

148, 149, 150], the small differences originating from the slightly different inputs adopted.

The A2HDM is not the most general version of a 2HDM without tree-level FC-
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NCs. To avoid the unwanted FCNCs one just needs diagonal Yukawa matrices Yf in

the fermion mass-eigenstate basis, i.e. Yd = diag(yd, ys, yb), Yu = diag(yu, yc, yt) and

Yl = diag(ye, yµ, yτ ), with arbitrary parameters yi. This more general scenario can be

formally described by the Lagrangian (2.10) with the substitution ςfMf → Yf . One could

still use nine dimensionless parameters ςf ≡ yf/mf , one for each charged fermion [151], but

in this case this is just a redefinition of the Yukawa couplings yf because a priori nothing

relates them to the fermion masses [152]. The hierarchy of couplings characteristic of the

A2HDM ansatz is lost and one can no longer justify that the leading charged-scalar effects

originate in the heavier fermion couplings (it becomes an assumption). With this caveat

in mind, our results can still be applied in this case, but most correlations among different

processes disappear because the associated constraints correspond now to different ςf pa-

rameters. For instance, the constraint in (4.4) refers to
√

|ςτ ς∗µ| and figures 1 to ς∗τ ςb (left)

and ς∗µςc (right).

The A2HDM provides a general setting to discuss the phenomenology of 2HDMs,

satisfying in a natural way the requirement of very suppressed FCNC effects. The align-

ment conditions imply Yukawa couplings proportional to the corresponding fermion masses,

which is supported by the data (bounds of order 1 for the ςf parameters). While including

as limiting cases all Z2 models, the A2HDM incorporates possible new sources of CP vi-

olation through the ςf phases. The additional freedom introduced by these phases makes

easier to avoid some low-energy constraints, resulting in weaker limits than in the usual

scenarios with discrete Z2 symmetries. A detailed analysis of CP -violating observables

is clearly needed to investigate the allowed ranges for these phases and their potential

phenomenological relevance [35].

At the moment, the data does not show any clear deviation from the SM. Therefore,

we have derived upper limits on the Yukawa parameters. Nevertheless, we have already

pointed out that the A2HDM could account for a sizeable B0
s mixing phase, as suggested

by the present Bs → J/ψφ and like-sign dimuon data. Our bounds could be made stronger,

adopting more aggressive estimates for the hadronic parameters entering the analysis, but

we have preferred to be on the conservative side and infer solid limits for later use. Im-

provements are to be expected on one hand from better theoretical determinations of the

hadronic inputs, and on the other hand from more accurate measurements at NA62 (kaons),

LHCb (∆md,s, Bs → J/ψφ), a future Super-B factory (τ , b→ sγ,∆md, B → ℓν,B → Dℓν),

or a linear collider with Giga-Z option (Rb). The agreement of the different bounds in the

vicinity of zero is trivial, when the SM agrees with the data. If signals for new-physics are

found at LHC, the analysis presented here will be capable of quantifying the agreement

(or disagreement) of the data with the A2HDM, and with the different implementations of

the 2HDM based on Z2 symmetries, in one step.

Note added

After this work was finished, two relevant papers have been posted in the archives. In

Ref. [153] an approximate solution to the renormalization-group equations of the A2HDM

is analyzed and the generated FCNC terms are studied numerically; the results presented
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there agree with our FCNC operator (2.13) and it is concluded that the induced FCNC

effects are well below the present experimental bounds. Ref. [154] analyzes the strength

of FCNC effects mediated by neutral scalars in a minimal-flavour-violating framework

containing two Higgs doublets, assuming a perturbative expansion around the type II

model. The tree-level alignment conditions of Ref. [1] are reproduced, the one-loop FCNC

structures in (2.13) are discussed and their coefficients are estimated at large tan β in the

decoupling limit. The phenomenological analysis of Ref. [154] emphasizes the potential

relevance of the flavour-blind phases present in the A2HDM to accommodate the recent

hints of a large B0
s mixing phase through neutral-Higgs exchange.
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A. ∆F = 2 effective Hamiltonian

A.1 ∆B = 2

At lowest order, the ∆F = 2 transitions are mediated by box diagrams with exchanges of

W± and/or H± propagators. Performing the matching between the A2HDM amplitude

and the low-energy effective Hamiltonian H∆F=2
eff , at the scale µtW ∼MW ,mt, one obtains

the Wilson coefficients Ci(µ). We have derived the LO results given in table 4, where

xW ≡ m2
t/M

2
W and xH ≡ m2

t/M
2
H± . They can be expressed in terms of the two four-point

functions [155]:

D0(m1,m2,M1,M2) ≡
m2

2 log
(
m2

2

m2
1

)

(m2
2 −m2

1)(m
2
2 −M2

1 )(m
2
2 −M2

2 )
+

+
M2

1 log
(
M2

1

m2
1

)

(M2
1 −m2

1)(M
2
1 −m2

2)(M
2
1 −M2

2 )
+

+
M2

2 log
(
M2

2

m2
1

)

(M2
2 −m2

1)(M
2
2 −m2

2)(M
2
2 −M2

1 )
, (A.1)
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D2(m1,m2,M1,M2) ≡
m4

2 log
(
m2

2

m2
1

)

(m2
2 −m2

1)(m
2
2 −M2

1 )(m
2
2 −M2

2 )
+

+
M4

1 log
(
M2

1

m2
1

)

(M2
1 −m2

1)(M
2
1 −m2

2)(M
2
1 −M2

2 )
+

+
M4

2 log
(
M2

2

m2
1

)

(M2
2 −m2

1)(M
2
2 −m2

2)(M
2
2 −M2

1 )
, (A.2)

through (i = 0, 2)

Di(m,M1,M2) ≡ lim
m2→m

Di(m,m2,M1,M2) , (A.3)

Di(m,M) ≡ lim
M2→M

Di(m,M,M2) , (A.4)

D2(m,M1,M2) ≡ D2(m,M1,M2)−D2(0,M1,M2) . (A.5)

These one-loop contributions involve virtual propagators of up-type quarks (u, c, t).

Once the GIM cancellation is taken into account, the up and charm contributions vanish

in the limit mu,c → 0, which we have adopted. Thus, the B meson mixing is completely

dominated by the top-quark contributions (the different CKM factors have all a similar

size for B0
d mixing, V ∗

udVub ∼ V ∗
cdVcb ∼ V ∗

tdVtb ∼ Aλ3, while in the B0
s case V ∗

usVub ∼ Aλ4

and V ∗
csVcb ∼ V ∗

tsVtb ∼ Aλ2). Since the scalar couplings are proportional to quark masses,

we have maintained the masses of the external down-type quarks. In the limit md → 0, we

reproduce the results given in [121]. The only Wilson coefficients which are not suppressed

by powers of md are CVLL and C1
SRR. Therefore, for all practical purposes, one can neglect

the remaining operators.

The running for OSRR
1 is performed using the results of [119],

(
C1
SRR(µb)

C2
SRR(µb)

)
=

(
[η11(µb)]SRR [η12(µb)]SRR

[η21(µb)]SRR [η22(µb)]SRR

)(
C1
SRR(µtW )

C2
SRR(µtW )

)
, (A.6)

with

[η11(µb)]SRR = 1.0153 η−0.6315
5 − 0.0153 η0.71845 , (A.7)

[η12(µb)]SRR = 1.9325 (η−0.6315
5 − η0.71845 ) , (A.8)

[η21(µb)]SRR = 0.0081 (η0.71845 − η−0.6315
5 ) , (A.9)

[η22(µb)]SRR = 1.0153 η0.71845 − 0.0153 η−0.6315
5 . (A.10)

These are leading-order expressions, but they have been evaluated with the two-loop ex-

pression for αs in η5 =
α
(5)
s (µtW )

α
(5)
s (µb)

∼ 0.7.

The corresponding matrix elements are given by

〈OVLL〉(µ) =
1

3
mB0

d
f2B0

d
BVLL(µ) , (A.11)

〈OSRR
1 〉(µ) = − 5

24

(
mB0

d

mb(µ) +md(µ)

)2

mB0
d
f2B0

d
BSRR

1 (µ) , (A.12)

〈OSRR
2 〉(µ) = −1

2

( mB0
d

mb(µ) +md(µ)

)2

mB0
d
f2B0

d
BSRR

2 (µ) , (A.13)

– 34 –



Oi Ci(µtW )

OVLL (4xW + x2W )M2
WD2(mt,MW )− 8x2WM

4
WD0(mt,MW )+

+ 2|ςu|2x2W
[
M2

WD2(mt,MW ,MH±)− 4M4
WD0(mt,MW ,MH±)

]
+

+ |ςu|4x2WM2
WD2(mt,MH±)

OVRR m2
d
m2

b

M4
W

[
|ςd|4xHM2

WD2(mt,MH±) + |ςd|2M2
WD2(mt,MW ,MH±)

]

OLR
1 2mdmb

M2
W

xW
[
|ςd|2|ςu|2M2

WD2(mt,MH±) + 2Re(ς∗d ςu)M
2
WD2(mt,MW ,MH±)

]

OLR
2 2mdmb

M2
W

[
4|ςd|2|ςu|2xWM4

WD0(mt,MH±)− 4|ςd|2M2
WD2(mt,MW ,MH±)+

+ (|ςd|2 + |ςu|2)xWM2
WD2(mt,MW ,MH±)

]

OSLL
1 4

m2
d

M2
W

x2W
[
(ςuς

∗
d )

2M4
WD0(mt,MH±) + 2ςuς

∗
dM

4
WD0(mt,MW ,MH±)

]

OSLL
2 0

OSRR
1 4

m2
b

M2
W

x2W
[
(ςdς

∗
u)

2M4
WD0(mt,MH±) + 2ςdς

∗
uM

4
WD0(mt,MW ,MH±)

]

OSRR
2 0

Table 4: Leading-order Wilson coefficients for the ∆B = 2 operators given above. The quark

masses from the scalar couplings are to be taken at the matching scale µtW .

the Bi(µ) parametrizing the deviation from the naive factorization limit. These Bi(µ)

factors have been evaluated in the quenched approximation on the lattice in [156], using

a different operator basis. The connection reads (see again [119], given here with both

operators in the same scheme)

BSRR
1 (µ) = B2(µ) , BSRR

2 (µ) =
5

3
B2(µ)−

2

3
B3(µ) . (A.14)

From [156] we arrive at the values given in table 5 by adding again all systematic uncer-

tainties linearly.

B0
d B0

s

BMS
2 (mb) 0.83 ± 0.03 ± 0.06 0.84 ± 0.02± 0.06

BMS
3 (mb) 0.90 ± 0.06 ± 0.12 0.91 ± 0.03± 0.12

Table 5: B-parameters for B0
d,s mixing from [156]. Systematic errors added linearly.

The wanted B0
d-B̄

0
d mixing amplitude is given by

〈B0|H∆B=2
eff |B̄0〉 =

G2
FM

2
W

16π2
(V ∗

tdVtb)
2f2B0

d
M2

B0
d
×

×
[
2

3
B̂B0

d
ηB(xW , xH)CVLL(µtW )+ (A.15)

+
m2

B0
D

(mb(µb) +md(µb))2
[ηSRR(µb, µtW )CSRR(µtW )]T BSRR(µb)

]
,
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with

BSRR(µb) =

(
− 5

12B2,d(µb)
2
3B3,d(µb)− 5

3B2,d(µb)

)
. (A.16)

From this, we get the relevant observables as

∆mB0
d
=

1

mB0
d

|〈B0
d |H∆B=2

eff |B̄0
d〉| , (A.17)

φB0
d
= −Arg

[
〈B0

d |H∆B=2
eff |B̄0

d〉
]
. (A.18)

The analogous expressions for B0
s -B̄

0
s mixing are trivially obtained changing the label

d to s everywhere.

A.2 ∆S = 2

For the Kaon mixing amplitude, we have calculated the LOmatching coefficients completely

anologous to the ∆B = 2 coefficients, keeping the charm mass finite. Due to the strong

suppression of all other operators by light quark masses we can choose the LO matching

coefficients to be

Ccc
OVLL

= (4xccW + xcc 2W )M2
WD2(mc,MW )− 8xcc 2W M4

WD0(mc,MW ) ,

Cct
OVLL

= (4xctW + xct 2W )M2
WD2(mc,mt,MW )− 8xct 2W M4

WD0(mc,mt,MW ) +

+2|ςu|2xct 2W

[
M2

WD2(mc,mt,MW ,MH±)− 4M4
WD0(mc,mt,MW ,MH±)

]
+

+|ςu|4xct 2W M2
WD2(mc,mt,MH±) , (A.19)

Ctt
OVLL

= (4xW + x2W )M2
WD2(mt,MW )− 8x2WM

4
WD0(mt,MW ) +

+2|ςu|2x2W
[
M2

WD2(mt,MW ,MH±)− 4M4
WD0(mt,MW ,MH±)

]
+

+|ςu|4x2WM2
WD2(mt,MH±) ,

COi
= 0 (i 6= VLL) ,

where the loop functions D0,2 have been defined in appendix A, and xctW = mcmt/M
2
W . In

the calculation, we use the NLO results for the SM which have been calculated in [157, 158],

while the NLO charged scalar contributions to the top contribution are again taken from

[121], corrected and applied to our scenario.
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