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Abstract 

 

The resistance of charged polymers to biofouling was investigated by subjecting cationic 

(PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic 

(PSBMA) brushes to assays testing protein adsorption, attachment of the marine bacterium 

Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; 

settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field 

immersion tests. Several results go beyond the expected dependence on direct electrostatic 

attraction; PSPMA showed good resistance toward attachment of C. marina, low settlement 

and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-

PEG10MA or PSBMA after one week of field tests. However, by 8 weeks of field test, there 

were no significant differences in biofouling coverage among the surfaces. While charged 

polymers are unsuitable as antifouling coatings in natural environment, they provide valuable 

insights into fouling processes, and are relevant for studies due to charging of nominally 

neutral surfaces. 
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Introduction 

 

Once surfaces are exposed to marine environments, an electrical double layer is immediately 

formed at the interface. This double layer, which is dependent on the surface charge, affects 

the conditioning of the surface through absorption of dissolved organic material, and also the 

attachment of marine micro- and macroorganisms such as bacteria, diatoms, blue-green algae, 

tubeworms and barnacles (Callow & Callow 2002, Kirschner & Brennan 2012, Rosenhahn et 

al. 2010). Some microorganisms secrete sticky extracellular polymeric substances (EPS) 

which help them to connect together and bind strongly to a surface (Christensen 1989, 

Poulsen et al. 2014). This assemblage of microorganisms and EPS is referred to as a biofilm, 

or slime. The presence of biofilms on surfaces may influence the settlement of propagules of 

higher  organisms such as algal spores (Joint et al. 2002, Marshall et al. 2006, Mieszkin et al. 

2013, Mieszkin et al. 2012, Patel et al. 2003), larvae of barnacles (Dobretsov et al. 2013, 

Hadfield & Paul 2001) and tubeworms (Hadfield 2011, Zardus et al. 2008). The colonization 

by these organisms on surfaces leads to economic and environmental costs, which have been 

widely reported (Callow & Callow 2011, Callow & Callow 2002, Fitridge et al. 2012, Schultz 

et al. 2011). 

Current research on marine antifouling coatings is focused on developing 

environmentally benign (non-toxic) coatings to control, prevent or reduce the impact of 

marine biofouling (Callow & Callow 2011, Lejars et al. 2012, Rittschof 2010). The fact that 

propagules of marine fouling organisms settle and attach easily on immersed untreated solid 

surfaces, while many slimy or gel-like surfaces, such as marine algae (Bhadury & Wright 

2004) and sea anemones (Atalah et al. 2013) are more resistant to epibiosis, has inspired to 

explore the potential of hydrogels and other highly hydrophilic materials for the control of 

marine biofouling (Ekblad et al. 2008, Larsson et al. 2007, Yandi et al. 2014), and for 

informing the development of useful coatings. The prevention of epibiosis of marine 

organisms is sometimes the combined result of a strongly hydrated surface and, for example, 

secretion of substances with antifouling activity by the basibiont (Dobretsov et al. 2013, 

Fusetani 2004, Rickert et al. 2015), continuous production of mucus (Wahl et al. 1998), or 

other specifically developed antifouling mechanisms. It has also been found that attachment 

and settlement of marine organisms on synthetic neutral hydrogels or hydrophilic polymers is 

very low both in laboratory and in marine field tests (up to 1 h exposure to bacteria or algal 

spores, 48 h incubation with barnacle cyprids, up to two months field immersion) (Ekblad et 

al. 2008, Xie et al. 2011, Yandi et al. 2014, Yang et al. 2012). The antifouling properties in 
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the latter case can be correlated with the particular physicochemical properties of hydrophilic 

polymers, such as high wettability and entropic elasticity (Yandi et al. 2014). However, 

interactions between fouling organisms and hydrophilic surfaces are influenced also by other 

parameters, and the presence of charges may facilitate or inhibit macromolecular 

conditioning, or the early attachment of fouling organisms via electrostatic interactions. For 

example, it has been reported that the net charge of the cell walls of most fouling bacteria in 

both freshwater and marine environments is negative (Bereschenko et al. 2010, Mitik-Dineva 

et al. 2009), as is also the case for the plasma membrane of motile zoospores of the marine 

macro-alga Ulva linza (Rosenhahn et al. 2009). Furthermore, the EPS secreted by fouling 

microorganisms typically contains charged polysaccharides and proteins (Christensen 1989, 

Poulsen et al. 2014, Svetlicic et al. 2013).  

The excellent antifouling properties of several charge-neutral hydrophilic materials, 

including nominally uncharged PHEMA-co-PEG10MA and zwitterionic PSBMA, is well 

documented, and has been explained in terms of, for example, steric repulsion, strong 

hydration, large excluded volumes, or low polymer/water interfacial free energy (Chen et al. 

2010). It has also been suggested that charge-neutrality is an essential feature of protein-

resistant self-assembled monolayers (SAMs) (Chapman et al. 2000, Ostuni et al. 2001). 

However, most surfaces, including also nominally neutral materials, become charged to some 

extent upon immersion in water due to preferential adsorption of ions, ionization, or 

asymmetric dissociation. It is also clear that zwitterionic materials, where the strengths of the 

constituent acidic and basic groups are different, have a pH-dependent net charge, with 

additional secondary effects from the exact composition of the ionic environment. Thus, 

understanding the effects of surface charge on fouling is also of considerable relevance to the 

current and intense interest in antifouling charge-balanced materials. 

To further understand marine bioadhesion, behavioral responses of the dispersal stages 

of fouling organisms, and settlement preferences, it is also important to understand the role of 

surface charge. Studies in our own laboratory (Ederth et al. 2008, Ederth et al. 2009) and also 

by others (Rosenhahn et al. 2009) have confirmed that the surface charge has a considerable 

impact on the settlement of zoospores of U. linza. Similarly, in studies using different SAMs 

it was found that settlement of barnacle cyprids of Balanus amphitrite and B. improvisus was 

higher on negatively charged surfaces, compared to neutral and positively charged SAMs (48 

h incubation) (Di Fino et al. 2014, Petrone et al. 2011). Considering that most materials and 

also natural surfaces are negatively charged in aqueous media, it would be expected that most 

organisms have adhesion mechanisms adapted to anionic surfaces. 
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Cationic polymers have been studied extensively for potential applications in 

biofouling control in the biomedical field. Inherent antimicrobial activities of cationic 

polymers have been utilized for contact-active coatings (Ferreira & Zumbuehl 2009). 

Chitosan, a cationic polysaccharide, has antimicrobial activity against both Gram-positive and 

Gram-negative bacteria (Li et al. 2011, Vinsova & Vavrikova 2008). Other cationic polymers 

containing derivatives of quaternary ammonium amine (Lee et al. 2004) and imine (Yudovin-

Farber et al. 2010), or poly(vinyl-N-hexylpyridinium) (Tiller et al. 2001) have also shown 

antibacterial activity in solution. In comparison to cationic polymers, there are far fewer 

studies on the effects of anionic polymers on biofouling and these are typically oriented 

toward biomedical materials (Lei et al. 2014, Lord et al. 2006). However, a recent study on 

the influence of charge of hydrogels immobilized onto polypropylene (PP) feed spacers for 

use in nanofiltration membrane systems has shown significant reduction in the attachment of 

Escherichia coli and delayed growth of biofilms on anionic hydrogel-coated PP, relative to 

that on neutral and zwitterionic coatings, after seven days of filtration (Wibisono et al. 2015). 

It was hypothesized that the lower biofouling on anionic surfaces resulted from higher surface 

wettability and repulsive electrostatic interactions between the anionic polymer and the 

negatively charged bacterial cell wall. On the other hand, Yang et al. (Yang et al. 2012), 

reported that anionic poly(sodium styrene sulphonate) was less effective in resisting bacterial 

attachment (24 h exposure), than neutral or zwitterionic polymers. Yang and collaborators 

also reported higher settlement of cyprids of B. amphitrite on anionic polymers. Beyond 

these, reports on marine fouling onto charged polymers are few, with a notable exception of 

the electrostatic attractive interaction between cationic pyridinium polymers and zoospores of 

U. linza (Krishnan et al. 2005). 

Here, we perform a systematic study of the cationic polymer PDMAEMA (poly(2-

dimethylaminoethyl methacrylate)) and the anionic PSPMA (poly(3-sulfopropyl 

methacrylate)), with the intention of investigating the role of polymer charge on the 

attachment and adhesion of marine fouling organisms, and to explore properties which are 

potentially useful for fouling control. These charged polymers are compared to neutral 

PHEMA-co-PEG10MA (poly(2-hydroxyethyl methacrylate-co-polyethylene glycol 

methacrylate)) and zwitterionic PSBMA (poly((sulfobetaine methacrylate)), materials which 

are well studied in the context of marine fouling, and which also have shown good antifouling 

properties (Ekblad et al. 2008, Yandi et al. 2014, Zhang et al. 2009). PDMAEMA is a pH- and 

temperature-sensitive material due to the presence of hydrophilic amino groups, and 

hydrophobic segments at the end of the side chains (Liu et al. 2007). In acidic solution, 
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PDMAEMA is hydrophilic and fully ionized by protonation of the ammonium, and it interacts 

strongly with surrounding water molecules. Ion-dipole interactions between ammonium ions 

and water result in formation of a strong solvation (hydration) shell. However, as the pH 

increases this interaction is gradually weakened due to decreasing protonation of ammonium 

groups, resulting in a heterogeneous structure with partial loss of hydration and thus also 

amphiphilic behavior. This polymer has antimicrobial properties against both Gram-positive 

and Gram-negative bacteria (Lee et al. 2004, Liu et al. 2007, Rawlinson et al. 2010). The 

anionic PSPMA has also been reported to reduce bacterial adhesion and to inhibit the growth 

of bacteria due to high surface hydration resulting from solvation of the sulfonate groups 

(Guo et al. 2013, Ramstedt et al. 2007), and also result in lower attachment of E. coli and 

delayed growth of biofilm in membrane filtration tests (Wibisono et al. 2015).  

PDMAEMA, PSPMA, PHEMA-co-PEG10MA and PSBMA were polymerized using 

surface-initiated atom-transfer radical polymerization (SI-ATRP) at uniform thicknesses 

(around 100 Å). Their antifouling properties were studied by adsorption of proteins, 

attachment of the marine bacterium Cobetia marina, settlement of zoospores of the marine 

macro-alga U. linza as well as barnacle cyprids of B. amphitrite and B. improvisus. An 8 

weeks static immersion field test assay in a marina was also conducted. 

Materials and Methods 

Materials. 2-(dimethylamino)ethyl methacrylate (DMAEMA), 3-sulfopropyl methacrylate 

potassium salt (SPMA), 2-hydroxyethyl methacrylate (HEMA), polyethylene glycol 

methacrylate (PEG10MA), [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)-ammonium 

hydroxide (sulfobetaine methacrylate, SBMA), copper (I) bromide (99.999%), 2,2-bipyridine 

(BPY, 99%) and proteins used for bioevaluation were purchased from Sigma-Aldrich Sweden 

AB. α-bromoisobutyrate-11-mercapto-undecane for the initiator SAMs was purchased from 

ProChimia Surfaces, Poland. Protein adsorption assays were carried out using 1 x 1 cm2 

silicon wafer pieces. For bacterial attachment, settlement and adhesion strength of zoospores 

of U. linza as well as field test experiments, glass microscope slides (cleanroom-cleaned 

Nexterion B, 26 × 76 × 1 mm3, Schott AG, Germany) were used. Silicon pieces and glass 

slides were coated with a 25 Å adhesion-promoting titanium layer and subsequently with 300 

Å gold by electron-beam evaporation under vacuum. Cyprid settlement assays were carried 

out in 24-well cell culture plates (Sarstedt, USA) coated with a thin gold layer by 

simultaneously rotating and tilting the well plates during evaporation, as described previously 
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(Petrone et al. 2011). Phosphate-buffered saline (PBS) was prepared by dissolving PBS tablets 

(Sigma-Aldrich) in 200 mL of deionized water (Milli-Q water, > 18.2 Mcm, Millipore) and 

adjusting to pH 7.4 (surface tension 72.4 mN/m). Artificial seawater (ASW) for the captive-

bubble wettability experiments was prepared by dissolving 24.5 g of sodium chloride, 4.1 g of 

sodium sulfate, 11.1 g of magnesium chloride hexahydrate, 1.5 g of calcium chloride 

dihydrate and 0.7 g potassium chloride in one liter of Milli-Q water (simplified version of the 

ASTM standard D1141 (ASTM 2013)). The solution was then adjusted to pH 8.2 with 0.1 M 

NaOH, and filtered through a 0.2 µm pore size membrane filter (Nalgene, USA) (resulting 

surface tension 73.8 mN/m). Tropic Marin ASW was used for all biofouling assays. 

Preparation of initiator SAMs. Gold-coated sample substrates were cleaned in TL1 solution 

(1:1:5 proportions of 25% NH3, 30% H2O2, and Milli-Q water for 10 min at 85°C), and after 

washing several times with Milli-Q water, the surfaces were blow-dried in N2. (Petrone et al. 

2011)Cleaned gold substrates were immersed in 50 µM solutions of α-bromoisobutyrate-11-

mercapto-undecane in ethanol for 24 h to form the initiator SAM. After sonication and rinsing 

with ethanol, the substrates were blow-dried in N2. 

Preparation of polymers. A neutral PHEMA-co-PEG10MA random copolymer and 

homopolymers of cationic PDMAEMA, anionic PSPMA and zwitterionic PSBMA were 

prepared via surface-initiated atom-transfer radical polymerization (SI-ATRP) methods. 

Briefly, the reaction solution of 2.41 mM copper bromide and 4.68 mM 2,2’-bipyridine was 

placed in a sealed glass reactor in a glove box under N2 atmosphere. Then, 200 mM of 

degassed monomer solution of HEMA and PEG10MA (molar ratio 1:1), DMAEMA, SPMA, 

or SBMA in a mixing solvent (Milli-Q water and methanol at a 1:1 volume ratio) was 

transferred to the reactor, using 3 ml solution per cm2 sample. Gold substrates with initiator-

SAMs were then placed into the reactor under N2 protection at room temperature (20°C) 

(Figure 1). The polymer films were prepared at a uniform thickness (around 100 Å) by 

varying the polymerization time (Table 1). After polymerization, samples were rinsed in 

running solvent (H2O/MeOH 1:1), and then kept in Milli-Q water overnight to leach chemical 

residues or unreacted monomers, followed by rinsing in running Milli-Q water.  

Polymer surface characterization. The chemical structure of the polymers was monitored by 

Fourier-transform infrared reflection-absorption spectroscopy (FT-IRAS) at a grazing angle of 

85°. The spectrometer (Bruker IFS66) was equipped with a liquid nitrogen cooled MCT 

detector. A deuterated hexadecanethiol (HS(CD2)15CD3) SAM on gold was used to record the 
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background spectrum. Spectra were baseline-corrected using a 5-iteration concave rubberband 

method. Film thicknesses were determined using a Rudolph Research AutoEL ellipsometer ( 

= 632.8 nm, 70° angle of incidence). The refractive indices of the gold substrates (TL1-

cleaned as described previously) were measured before polymerization. To determine the 

thickness of the polymer layers, a three-layer optical model (ambient/organic film/gold) was 

used, where the refractive index of the organic film was set to 1.5. Five different spots were 

measured on each sample and the average was calculated as the polymer film thickness.  

Wettability was assessed by static contact angle measurements. Measurements with sessile 

droplets of deionised water in air, and captive-bubble measurements with air in ASW, were 

carried out with a CAM 200 Optical Contact Angle Meter (KSV Instruments Ltd., Finland) 

equipped with a manual liquid dispenser. Contact angles on three water droplets/bubbles were 

measured on each surface. The surface energies of hydrated polymers were determined by 

measuring captive-bubble contact angles of n-octane and air in deionised water. The latter 

contact angles were acquired using a Dataphysics OCA35 contact angle analyzer with SCA22 

software. Samples were equilibrated in deionized water (> 1 h) before measurement and were 

then placed facing downwards in a glass cell filled with deionized water. A J-shaped needle 

was used to release 2 μL of an air bubble or n-octane droplet to the surface, using a computer-

controlled dispensing system. Three contact angles were measured for air (θa) and n-octane 

(θo) and were averaged. The stated underwater contact angles were measured inside the 

bubble or n-octane droplet. Surface energies were calculated using the Owens & Wendt 

approach (Owens & Wendt 1969) applied to underwater contact angles (Roudman & DiGiano 

2000). The topography of the dry polymer films was investigated by tapping-mode atomic 

force microscopy (AFM), over a 2.5 x 2.5 µm2 area with an image resolution of 512 x 512 

pixels, acquired at a line scan rate of 1 Hz. 

 

Fouling assays 

 

Protein adsorption. Fibrinogen, lysozyme (net cationic at pH 7.4) and pepsin (net anionic at 

pH 7.4) were used to investigate the effect of charge on the non-specific interaction between 

polymers and proteins. The initial thicknesses of six replicates of each polymer were 

determined via ellipsometry prior to the assays. The samples were equilibrated in PBS for 1 h 

at room temperature, before protein solutions (0.4 mg/mL) were added to the samples, and 
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incubated for 1 h at room temperature under static conditions.  Samples incubated in PBS 

without any protein were used as controls, with negligible changes in thickness. After soaking 

3 times in PBS and gently blow-drying under an N2 stream, the thicknesses of the samples 

were re-measured to obtain the adsorbed protein thicknesses. 

 

Attachment of the marine bacterium Cobetia marina. Three replicate slides of each polymer 

were equilibrated in filtered (0.22 micron) ASW for 1 h prior to the assay. The bacterial 

suspension was obtained after the cells were centrifuged and then washed twice to remove 

excess of EPS for optimal adhesion. The optical density of the bacterial suspension was then 

adjusted to 0.1 OD600 nm. Slide samples were removed from the ASW and placed in 

polystyrene Quadriperm dishes (Greiner Bio-One), followed by addition of 10 mL of bacterial 

suspension. The dishes were then placed on a rotary shaker at room temperature for 1 h at 50 

rpm to allow attachment of bacteria to the surfaces. Next, the bacterial suspension was 

removed and the slides were ‘washed’ with 10 mL of filtered ASW for 1 min at 50 rpm to 

remove any loosely bound cells. After removing the ASW, the three replicate slides of each 

polymer were fixed with 10 mL of 2.5% glutaraldehyde for 20 min at room temperature. 

Slides were then ‘washed’ in Milli-Q water and air-dried. Adhered bacterial cells were stained 

with 5 µM of SYTO®13 (Invitrogen, Molecular Probes, excitation and emission at 488 and 

509 nm, respectively), and covered with a glass cover slip (22 x 64 mm, VWR International). 

The slides were then immediately placed in the dark for 10 min. The density of bacterial cells 

was determined by using an AxioVision 4 image analysis system attached to a Zeiss 

epifluorescence microscope (40x objective; λ excitation and emission: 450/490 and 515/565 

nm, respectively) and a video camera. A total of 30 fields of view, each taken at 1 mm 

intervals along the slide, was counted for each replicate.  

 

Settlement and adhesion strength of zoospores of Ulva linza. Settlement and adhesion strength 

assays were performed by following the principles outlined previously (Callow et al. 1997, 

Mieszkin et al. 2012). Briefly, six replicate slides of each polymer were equilibrated in ASW 

for 1 h prior to the assay. After removal of the ASW, the six replicates of each tested surface 

were placed separately in polystyrene Quadriperm dishes (Greiner Bio-One).  Ten milliliters 

of spore suspension (106 spores/ml) were added to each compartment, and dishes were 

quickly placed in the dark for 45 min to allow zoospores to settle on the tested surfaces under 

static conditions. Samples were then ‘washed’  by passing through a beaker of filtered ASW 

10 times to remove unsettled (swimming) spores. Three slides of each chemistry were fixed 
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with 10 ml of glutaraldehyde (2.5 v/v %) for 20 min at room temperature for determination of 

spore densities. The samples were then rinsed in filtered ASW, followed by filtered 

ASW/deionized water (1:1 volume ratio) and then by deionized water in order to remove 

glutaraldehyde, to be finally air-dried. The number of settled spores was counted by 

chlorophyll autofluorescence by using AxioVision 4 image analysis system attached to a 

Zeiss epifluorescence microscope (20 x objective; λ excitation and emission at 546 and 590 

nm, respectively). Spores were counted in 30 fields of view, each taken at 1 mm intervals 

along the slide, for each of the three replicates.  

The adhesion strength of the settled spores was determined by exposing the three remaining 

slides to a wall shear stress of 52 Pa for 5 min in a calibrated water channel (Schultz et al. 

2000). The sample slides were then fixed and the spore density was determined as described 

above. The percentage of spore removal was determined by comparing the number of 

remaining spores after exposure to the flow channel with that of the unexposed samples.  

 

Settlement of barnacle cyprids. Adults of B. amphitrite (=Amphibalanus amphitrite) (Clare & 

Hoeg 2008) (supplied from the Duke University Marine Laboratory, North Carolina, USA) 

and B. improvisus (=A. improvisus) (supplied from the Department of Biological and 

Environmental Sciences, Tjärnö, University of Gothenburg, Sweden), which were maintained 

in separate tanks, were allowed to release nauplii naturally over a period of 3-4 h (B. 

amphitrite) and 2-3 h (B. improvisus). The larvae were attracted to a cold point light source 

and collected by pipette. The nauplii were then transferred at intervals to a dilute solution of 

Tetraselmis suecica for temporary storage until 10,000 larvae of each species had been 

collected. Nauplii (a mix of stages 1 and 2) were transferred to a clean plastic bucket 

containing 10 L of filtered (0.7 μm) ASW with 36.5 mg L−1 of streptomycin sulphate and 21.9 

mg L−1 of penicillin G at 28 °C. B. amphitrite larvae were fed with an excess of a mixture of 

Skeletonema marinoi and Tetraselmis suecica for 5 days until metamorphosis to the cyprid 

stage. Cyprids were filtered from the culture, transferred into ASW and stored at 6° C. B. 

improvisus nauplii were fed a mixture of Thalassiosira pseudonana and T. suecica, which 

allowed development to the cyprid within 4 days (see Di Fino et al. (2014) for more details). 

Cyprids were filtered from the culture, transferred into ASW and used immediately for 

settlement assay. Three-day-old B. amphitrite and 0-day-old B. improvisus cyprids were used 

in the settlement assays, which used 24-well polystyrene tissue culture plates (Sarstedt, USA). 

Each well plate was coated with gold followed by grafting of polymers via SI-ATRP as 

described above. Two milliliters of filtered ASW containing 20 cyprids were placed in each 
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well. The lids were replaced on the plates, wrapped in damp tissue and in tinfoil to minimize 

evaporation, and subsequently incubated in the dark at 28 °C. The number of permanently-

settled cyprids on the bottom and sides of the wells was enumerated after 24 and 48 h of 

incubation and the percentage settlement was calculated. The permanently-settled cyprids 

were identified when the antennules were embedded in the cypris permanent adhesive 

anchored on the surface, with the body showing contractions and subsequent shedding of the 

carapace. 

 

Static immersion field test in a marina. Six replicates of each polymer were arranged 

randomly in vertical panels immersed at 50 cm below the water level, and facing east, at a 

static immersion test site in Hartlepool Marina, County Durham, UK (54.69º N, 1.20º W) 

from August 30th to October 31st, 2012. Temperature and salinity were not monitored, but 

normally vary over 12-15 °C and 34-35 psu, respectively, during this period. The fouling 

coverage was assessed after 1, 2 and 8 weeks of immersion. The biofouling community was 

divided into four categories: microfouling, weeds, soft- and hard-bodied animals. The 

percentage of each biofouling category was estimated by visual inspection, relative to the total 

area of the surface. The samples were not rinsed before estimation of coverage, because this 

would remove loosely attached materials which are part of the fouling. The sum percentage of 

these four fouling categories was defined as total percentage of biofouling. 

 

Statistical analysis. Statistical analysis of the biofouling data was carried out using Minitab 15 

(barnacle data) or Minitab 16 statistical software. One-way analysis of variance (ANOVA) 

and Tukey's HSD post-hoc test were performed to determine the differences between 

treatments. Values were considered significantly different from each other when p < 0.05. 

This analysis was applied to protein adsorption, bacterial attachment, spore settlement and 

adhesion strength, and cyprid settlement assays, as well as the field test results. The 

percentage data of spore adhesion strength was arcsine transformed prior to statistical 

analysis.  

 

 

Results and Discussion 

 

Polymer preparation and characterization. Cationic PDMAEMA, anionic PSPMA, neutral 

random PHEMA-co-PEG10MA copolymer, and zwitterionic PSBMA brushes were prepared 
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via SI-ATRP (Figure 1), each with a dry thickness of about 100 Å, as determined via 

ellipsometry. This thickness was achieved by varying the reaction time for each synthesis 

(Table 1). The variation in reaction time required to achieve 100 Å polymer thickness might 

be due to differences in inherent reactivity and solvation of the monomers (Ouchi et al. 2011), 

which is strongly influenced by their molecular structure. PHEMA-co-PEG10MA showed the 

fastest reaction time, as a result of the high solubility of HEMA and PEG10MA monomers in 

the water-methanol solvent due to the high availability of hydrogen bond acceptor atoms, 

which facilitates pre-organization of monomers resulting in higher monomer propagation 

(Jansen et al. 2003). In addition, the larger monomer size of PEG10MA might also contribute 

to achieving 100 Å of PHEMA-co-PEG10MA layer thickness faster than for the smaller 

monomers.  

The ellipsometric thickness of the initiator SAM is 22 Å, consistent with near-upright 

molecules, though the positions of the asymmetric and symmetric C-H stretching modes at 

2923 and 2852 cm-1, respectively, indicate a layer with considerable disorder. Hence, the 

initiator SAM forms a dense, but not crystalline, monolayer. The chemical composition of the 

grafted polymers was evaluated by FT-IRAS (Figure 2). The ester carbonyl (C=O) stretching 

around 1731-1737 cm-1 is prominent in all polymers, and the increase in intensity of this band, 

relative that of the initiator SAM, reflects the addition of monomers through successful 

methacrylate polymerization. This absorption is weak in the initiator SAM, because of its 

transition dipole moment being parallel to the metal substrate, in which case the surface 

selection rule dictates that the intensity is weak. The C-O ester stretching near 1245 cm-1 is 

also present in the spectra, but overlapping with other bands in some cases. We also note the 

overall lack of bands near the 1640 cm-1 absorbance of methacrylate C=C bonds, which 

would have indicated the presence of free monomers in the films. All spectra have in common 

several C-H vibrations, whose exact locations depend on the type of polymer. The dominating 

C-H modes are stretching in the range 2800-3000 cm-1, deformation modes near 1450 and 

1480 cm-1 (scissoring), 1250 and 1270 cm-1 (twisting). The presence of the HEMA and 

PEG10MA segments is confirmed by several features in the spectrum: the broad band from 

hydrogen-bonded O-H-stretching over 3100-3600 cm-1, which is absent from the spectrum of 

the initiator SAM; and by the C-O-C skeletal stretching vibration in the PEG chains at 1158 

cm-1 (Lee et al. 2009). The asymmetric and symmetric CH2 stretching modes of PEG were 

observed as broad bands at 2942 and 2876 cm-1, respectively. In PDMAEMA, a tertiary amine 

C-H stretching is present at 2772 cm-1, and peaks at 1154 and 1193 are tentatively assigned C-

N stretching and contributions from C-H deformations in the tertiary dimethyl groups. The 
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presence of sulfonate (SO3
-) in the SPMA and SBMA samples is confirmed by a strong 

symmetric S=O stretching peak observed at 1035 and 1039 cm-1, respectively. In PSPMA, the 

asymmetric S=O absorption, which is expected near 1200 cm-1, is most likely split (and 

partially overlapping the C-O ester stretching) as a result of asymmetric binding of 

counterions to the sulfonate (Ramstedt et al. 2007), while in PSBMA this remains as a single 

band centered at 1214 cm-1, with shoulders most likely from C-O ester stretching, and amine 

C-N stretching on the low-frequency side.  Taken together, these results show that PHEMA-

co-PEG10MA, PDMAEMA, PSPMA and PSBMA were successfully prepared on initiator 

SAM-coated gold substrates. The root mean square (RMS) surface roughness values of the 

dry polymer films, as determined by AFM on the PHEMA-co-PEG10MA, PDMAEMA, 

PSPMA and PSBMA films were 0.64, 0.56, 0.79 and 0.81 nm, respectively (Figure 3). The 

small and similar RMS values indicate that all polymers were prepared in uniform and smooth 

layers.   

 

Wettability and surface energy. Sessile droplets of deionized water on PHEMA-co-PEG10MA, 

PSPMA and PSBMA in air have lower contact angles than on PDMAEMA, which indicates 

that these three polymers are more hydrophilic than PDMAEMA (Table 1). This result was 

also confirmed by the determination of surface free energies of the hydrated polymers, where 

the surface energy of PDMAEMA was found to be lower than those of the three other 

polymers. This indicates a stronger interaction of PHEMA-co-PEG10MA, PSPMA and 

PSBMA with water molecules than for PDMAEMA in a pH-neutral environment.  

In general, measurements of wettability and the determination of surface energy are 

affected by both surface topography (Quere 2008, Spori et al. 2008) and surface chemistry 

(Meuler et al. 2011, Schilp et al. 2007). Since the AFM measurements in Figure 3 show that 

these four polymer surfaces have small variations in RMS roughness, we assume that surface 

chemistry plays the most important role in determining wettabilities and surface energies. 

Strong hydrophilicity and high surface energy of PHEMA-co-PEG10MA result from the 

strong dipoles formed by the PEG ether units, which effectively bind water molecules to the 

PEG chain. The strong hydrophilic character of PSPMA results from solvation of sulfonate 

ions, giving higher surface hydration. The zwitterionic PSBMA, like several other 

zwitterionic materials, has been reported to be more strongly hydrated than many uncharged 

hydrophilic polymers via electrostatically-induced hydration (Chen et al. 2010). For 

PDMAEMA, the higher sessile water droplet contact angle (in air) and lower surface energy 
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might be a result of weaker ion-dipole interactions between PDMAEMA and water molecules 

due to only partial ionization of the ammonium group, and possibly also of the presence of 

hydrophobic segments on this polymer. PDMAEMA is a weak polycation, with pKa near 8. 

This means that less than half of the dimethyl amino groups are charged at pH 8.2. The 

wettability data presented in Table 1 shows that PDMAEMA is more hydrophobic than the 

other polymers, but the difference does not suggest that the materials is uncharged, in which 

case the hydrophobic nature of the hydrocarbons would be more pronounced. A more 

thorough investigation of the pH-dependence shows that at high pH, of PDMAEMA is 

uncharged, and collapsed, but both our own unpublished investigations (Yandi et al. In 

preparation) and published data (Lee et al. 2011) demonstrate that this is not the case at the 

pH of ASW, but that PDMAEMA have approximately 10% of the amino residues protonated 

at a pH of 8.2. Hence, we here refer to PDMAEMA as ‘cationic’, although the polymer itself 

is nominally neutral. 

While hydrophilicity and surface hydration are important for antifouling properties, 

many other factors such as surface chemistry, surface topography, polymer conformation, 

chain packing density and electrostatic interactions contribute to fouling resistance, and must 

also be considered. As an example, we recently demonstrated the importance of surface 

hydration and polymer viscoelasticity for the antifouling properties of PHEMA-co-PEG10MA 

films of varying thicknesses (Yandi et al. 2014).  

Captive air bubbles were used to measure contact angles in both deionized water and 

in ASW (pH 8.2 and total salt concentration about 0.6 M). The captive-bubble contact angles 

in ASW were lower than in deionized water for PHEMA-co-PEG10MA, PDMAEMA, and 

PSPMA, with the largest differences for PDMAEMA and PSPMA, see Table 1. This decrease 

in contact angles is probably a result of partial dehydration of the polymer brushes caused by 

electrostatic screening of charges, leading to weakening of the hydration shells. In accord with 

this, the change was smallest for the nominally uncharged PHEMA-co-PEG10MA sample. In 

contrast, the air bubble contact angle in ASW increased on PSBMA, compared to the contact 

angle in deionized water. This increase might be a result of the unique antipolyelectrolyte 

behavior of PSBMA, i.e., chain expansion due to a viscosity increase in the presence of salt 

ions, as has been reported previously (Chang et al. 2009, Chang et al. 2010). It is useful to 

compare the contact angles obtained with sessile droplets in air with those obtained 

underwater on the hydrated films. The contact angles obtained in air can be compared directly 

with the captive-bubble contact angles if the latter are subtracted from 180 degrees, to take 
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into account that the geometries for measuring the angles are reversed. The corresponding 

angles thus obtained underwater are 20-30 degrees lower than those obtained in air. This 

demonstrates that the brushes are strongly hydrated. Moreover, the difference is greater than 

that between the angles obtained in deionized water and ASW, showing that while ASW has a 

dehydrating effect on the brushes, it does not induce them to collapse, or to adopt the structure 

of the dry films. 

 

 

Fouling assays 

 

Protein adsorption. Protein adsorption on surfaces is an essential aspect of the biofouling 

process since fouling organisms often secrete temporary or permanent adhesives, which 

frequently consist of proteins and glycoproteins. Adsorbed proteins might also act to 

condition a surface, to influence further or subsequent adhesion or attachment of fouling 

organisms. We used three different proteins: fibrinogen (a frequently used model for a 

‘sticky’ protein), lysozyme (net positively charged at pH 7.4) and pepsin (net negatively 

charged at pH 7.4). As shown in Figure 4, adsorption after 1 h static incubation was overall 

low onto PHEMA-co-PEG10MA and PSBMA, in agreement with previous results on the 

protein resistance of these materials (Larsson et al. 2007, Yandi et al. 2014). The highest 

adsorption was obtained in the systems where surface and protein had opposite net charge, i.e. 

for PDMAEMA-pepsin (56.2 ± 1.2 Å) and PSPMA-lysozyme (42 ± 1.6 Å), as it would be 

expected from electrostatic considerations. Similarly, the pattern was opposite for adsorption 

of lysozyme and pepsin on PDMAEMA and PSPMA, respectively, presumably due to 

repulsive electrostatic interactions. Beyond these rather unsurprising observations, we found 

that the adsorption of fibrinogen was significantly greater than zero (ANOVA, p < 0.05) on 

all polymers, including also the neutral PHEMA-co-PEG10MA, with the exception of the 

zwitterionic PSBMA. Fibrinogen is known to attach indiscriminately on many different types 

of surfaces. One reason for this is the amphoteric properties of the protein, with domains of 

different net charge, even though the whole fibrinogen molecule is net negatively charged at 

pH 7.4. (Wasilewska & Adamczyk 2011). Thus, the adsorption of fibrinogen on PDMAEMA, 

and to some extent also on PSPMA, can be associated with attractive electrostatic interactions 

(though this does not explain why adsorption is higher on the nominally neutral PHEMA-co-

PEG10MA than on the zwitterionic PSBMA). Early studies on the adsorption of fibrinogen on 

various polyelectrolyte surfaces also demonstrated high adsorption (from concentrations > 0.5 
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mg/mL) on those which have bulk ion-exchange capacities of +0.8 meq g-1 (Schmitt et al. 

1983). The presence of deprotonated and hydrophobic segments in PDMAEMA at pH 7.4 

might also contribute to a higher adsorption via hydrophobic interactions.  

 

Bacterial attachment. The marine bacterium Cobetia marina was used as a model organism to 

study the interactions of marine bacteria with the polymers. Bacterial densities (after 1 h 

incubation on a rotary shaker) determined from epifluorescence images are presented in 

Figure 5 and showed that cells attached abundantly onto the cationic PDMAEMA (7539 ± 

1564 cells/mm2). Numbers of attached bacterial cells to PHEMA-co-PEG10MA (203 ± 98 

cells/mm2), PSPMA (206 ± 112 cells/mm2) and PSBMA (103 ± 47 cells/mm2) were 

significantly lower compared to DMAEMA (ANOVA, p < 0.05), and not significantly 

distinguishable from each other (ANOVA, Tukey’s pairwise comparison test, p < 0.05), and 

in agreement with previous studies on the attachment of cells of C. marina on PEG hydrogels 

and EG6 SAMs (Ekblad et al. 2008, Ista et al. 1996). Higher attachment of C. marina on the 

cationic PDMAEMA is very likely caused by attractive electrostatic interaction with cells of 

C. marina, which was reported by Mitik-Dineva et al (Mitik-Dineva et al. 2009) to have a 

surface zeta potential of -32 mV. Considering this negative charge, which is also greater in 

magnitude than that of spores of U. linza (zeta potential -19 mV) where PDMAEMA showed 

anti-algal activity (see below), we anticipate that antibacterial properties of PDMAEMA 

might be expressed, since this has been demonstrated in previous studies (Karamdoust et al. 

2012). However, in the present study, antibacterial activity of PDMAEMA towards C. marina 

was not immediately apparent, and was not further investigated either.  

Although no comprehensive studies on the influence of polymer charge on the 

attachment of cells of C. marina have been reported yet, Pranzetti et al. (Pranzetti et al. 2012) 

demonstrated higher attachment of cells of C. marina (1 h exposure) on positively charged 

amine-terminated SAMs than on neutral (methyl-, EG6- or hydroxyl-terminated) SAMs, 

which is in accordance with our current results. It has also been reported (Ista et al. 1996, Ista 

et al. 1999) that cells of C. marina have a higher affinity for hydrophobic surfaces (2 h 

exposure). As described above, the pH of ASW is 8.2, where PDMAEMA has weaker net 

positive charge than at 7.4 due to reduced protonation of the ammonium, rendering the 

dimethylammonium segments considerably less polar, and the presence of more hydrophobic 

segments of PDMAEMA at this pH might also contribute to the high attachment via 

hydrophobic interactions. 
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Settlement and attachment strength of Ulva zoospores. Figure 6 shows the settlement 

densities of zoospores on the four polymers, as observed by epifluorescence microscopy (after 

45 min exposure under static conditions). The spore density differed with the surface type 

(ANOVA, p < 0.05), and settlement on each surface is significantly different from that on 

every other, according to the Tukey’s pairwise comparison test (p < 0.05). The highest 

number of spores was found on the cationic PDMAEMA (1276 ± 193 spores/mm2). However, 

the adhesion strength of the attached spores was relatively weak, as indicated by a high 

percentage of spore removal (near 80 %) after exposure to a wall shear stress of 52 Pa. The 

high settlement is likely to be due to the higher hydrophobicity and the associated lower 

surface hydration of PDMAEMA, and also electrostatic interaction between the positively 

charged polymer and the negatively charged cells. This is in line with previous studies which 

have demonstrated the high affinity of zoospores to positively charged surfaces (Ederth et al. 

2008, Ederth et al. 2009, Maleshlijski et al. , Rosenhahn et al. 2009, Vater et al. 2015). 

Although little settlement of spores was observed on the anionic PSPMA (180 ± 27 

spores/mm2) and zwitterionic PSBMA (60 ± 9 spores/mm2), it is clear that spores were also 

weakly attached on these brushes. The presence of negative charges on PSPMA might induce 

repulsion of spores of U. linza, which have a net negative charge (Rosenhahn et al. 2009). The 

settlement of spores on neutral PHEMA-co-PEG10MA (13 ± 3 spores/mm2) was the lowest 

(ANOVA, Tukey’s pairwise comparison, p < 0.05). Regarding the adhesion strength of 

spores, the weakest adhesion strength was found on PSPMA, which is indicated by the high 

percent removal (88%). This adhesion strength is significantly weaker compared to the others 

(ANOVA, Tukey’s test, p < 0.05). The adhesion strength of spores on PSBMA does not differ 

significantly from that on PDMAEMA (ANOVA, Tukey’s test, p > 0.05), but is significantly 

lower than that on PHEMA-co-PEG10MA (ANOVA, Tukey’s test, p < 0.05). However, since 

the numbers of settled spores are very small on all but the PDMAEMA samples, the latter 

differences must be taken with some caution. 

 

Settlement characteristics of U. linza spores on cationic PDMAEMA. Beside a high settlement 

density, we also found qualitative difference in spores attached on the cationic PDMAEMA. 

For example, anomalous ‘settlement’ of spores in the form of pear-shaped spores with 

unretracted flagella (Figure 7), disrupted cells as well as detached flagella were also observed 

on this surface. Close inspection revealed that about 20 percent of attached spores showed 

anomalous settlement (ie pseudosettled spores), 20 percent were disrupted (ie damaged) cells 

and the remaining 60 percent were normal settled cells (ie rounded spores with an intact 
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plasma membrane). The presence of net positive charge in PDMAEMA leads to favorable 

attractive electrostatic interaction with the negatively charged spore surface membrane. 

Instead of initially probing and then attaching to the surface on its apical papilla, as is the case 

for normal settlement, the spore body appeared to have attached directly onto the cationic 

PDMAEMA, mediated by attractive electrostatic and hydrophobic interactions and observed 

as pear-shaped cells that were morphologically identical to motile spores. This anomalous 

settlement behavior of spores has been observed in our previous study on the settlement of 

spores on cationic oligopeptide SAMs (Ederth et al. 2008, Ederth et al. 2009). Detached 

flagella on the PDMAEMA surface might indicate entrapment of flagella via attractive 

electrostatic and hydrophobic interactions during surface exploration since the plasma 

membrane surrounds the flagella as well as the spore body. A feature of the surface 

exploration by zoospores is a phase of rapid spinning, and this might contribute to detachment 

of the flagella if the latter stick to the surface during this phase. The disrupted spores might 

also be correlated to the antimicrobial activity of PDMAEMA (Karamdoust et al. 2012). It is 

conceivable that strong interaction between anionic lipopolysaccharides on the spore 

membrane and the cationic PDMAEMA brush could lead to the disruption of the cell surface 

membrane via penetration of the membrane by the polymer. Details of the interactions of U. 

linza zoospores with cationic PDMAEMA surfaces, and their potential anti-algal function, 

will be discussed in a separate publication.  

 

Barnacle cyprid settlement. The settlement of cyprids from two different barnacle species, 

Balanus amphitrite and B. improvisus, was also studied (at 24 and 48 h after incubation under 

static conditions). Figure 8 shows that after 48 h, cyprids from these two species follow the 

same pattern in that they settled to a higher degree on the charged polymers PDMAEMA 

(20.35 ± 4 % for B. amphitrite and 28.06 ± 6% for B. improvisus)  and anionic PSPMA (40.35 

± 4 % for B. amphitrite and 51.37 ± 3% for B. improvisus). Contrary, lower settlement was 

observed on zwitterionic PSBMA (3.9 ± 2 % for B. amphitrite and 14.72 ± 4 % for B. 

improvisus) and on neutral PHEMA-co-PEG10MA (5.6 ± 2 % for B. amphitrite and 13.37 ± 

5% for B. improvisus). Settlement data differed significantly between surfaces (B. amphitrite 

p < 0.05, F = 22.96 and B. improvisus p < 0.05, F = 15.72) at 95% confidence (ANOVA, 

Tukey’s method). Settlement of B. improvisus on the cationic PDMAEMA surfaces was high, 

following the trend of B. amphitrite, but not significantly different from PSBMA and 

PHEMA-PEGMA surfaces (Tukey's pairwise comparison of means) (see Figure 8). The 

settlement assay results are in good agreement with previous studies (Di Fino et al. 2014, 
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Petrone et al. 2011) using various charged SAMs, in two respects: 1) settlement was highest 

on the anionic surface, and 2) the overall pattern of settlement for both species was very 

similar. Low settlement of cyprids on the PHEMA-co-PEG10MA surface is also in accordance 

with results obtained by Aldred et al. (2011) who observed fewer footprints of cyprid 

temporary adhesive deposited during searching behavior by Semibalanus balanoides on a 

PEG10MA/HEMA hydrogel compared to a range of model SAMs. There is good evidence to 

suggest that cyprid temporary adhesive contains a glycoprotein termed the settlement-

inducing protein complex (SIPC). SIPC has recently been found to behave as a sticky protein 

with binding characteristics similar to fibrinogen (Petrone et al. 2014).  In this regard, it is 

interesting to note that the degree of binding of fibrinogen to surfaces used in the present 

study is broadly similar to the pattern of cyprid settlement obtained on the same surfaces; a 

result to be expected if the SIPC is important to effecting temporary adhesion.  

 

Field tests. The biofouling after one week of immersion in a marine environment was 

dominated by microfouling (ie slime) whatever the surface chemistry (Figure 9). Contrary to 

the bioassays carried out in the laboratory using model fouling organisms, the biofouling on 

the cationic PDMAEMA was significantly lower (ANOVA, Tukey’s test, p < 0.05) than on 

the zwitterionic PSBMA, and did not differ significantly  (ANOVA, Tukey’s test, p > 0.05) 

from the anionic PSPMA or the neutral PHEMA-co-PEG10MA after one week of immersion 

in a marina. Furthermore, the total biofouling on the PSPMA was significantly lower 

(ANOVA, Tukey’s test, p < 0.05) than on the zwitterionic PSBMA and the neutral PHEMA-

co-PEG10MA. Although the complexity of the fouling conditions in the field test situation 

prevents a meaningful interpretation of these observations in terms of molecular properties of 

the surfaces, they are still interesting since both, neutral and zwitterionic surfaces, typically 

perform better than the net charged polymers in the laboratory assays. 

After two weeks of immersion, the biofouling was still dominated by slime. The settlement of 

microfouling organisms on the neutral PHEMA-co-PEG10MA was lower (ANOVA, Tukey’s 

test, p < 0.05) than on any of the other three chemistries (which were indistinguishable), and 

the total fouling was reduced compared to that after one week of immersion. This might 

indicate weak or temporary attachment of microfouling organisms on this particular polymer. 

Similar results have been obtained in laboratory assays on ethylene glycol-rich surfaces where 

settlement of the diatom Navicula perminuta was found to be low (Schilp et al. 2009). All 

samples were fully covered by biofouling (weeds and to a lesser extent microfouling) after 

eight weeks’ immersion, and they did not differ significantly between each other (ANOVA, 
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p > 0.05), possibly due to chemical or mechanical instability of the samples under the 

influence of temperature, water currents and salinity. It is also important to note that surfaces 

are rapidly (hours) ‘conditioned’ by adsorption of macromolecules on immersion, a process 

that may change the surface properties (Thome et al. 2014). Furthermore, the adhesion and 

settlement of organisms in marine environments is a dynamic and complex process since 

many parameters influence the pattern of adhesion and settlement (Hellio & Yebra 2009), and 

which is also dependent on local variations in fouling pressure. Larger biodiversity and 

adhesion mechanism differences also lead to complications in the detailed interpretation of 

field tests. 

 

 

Conclusions 

 

In general, the tested model fouling organisms have a higher tendency to attach and settle on 

charged polymer surfaces than onto neutral and zwitterionic surfaces under controlled 

laboratory conditions, in agreement with previous knowledge, suggesting that net charge is 

undesirable in antifouling materials. However, many nominally neutral materials acquire 

surface charge upon immersion in saline media, and a number of observations were made that 

are of general relevance, and which should be of interest to future studies of marine 

bioadhesion, and also for the development of antifouling coatings. The antifouling activity of 

anionic PSPMA against the marine bacterium C. marina is on a par with the neutral and 

zwitterionic polymers. Settlement of zoospores of U. linza on PSPMA was very low, and 

spore adhesion strength to PSPMA was the lowest among the tested polymers. Our results 

also confirm recent observations obtained on model SAMs showing that the settlement 

preferences of the two barnacle species B. amphitrite and B. improvisus are similar, and that 

low cyprid settlement on PSPMA and PHEMA-co-PEG10MA conformed to expectations 

based on prior studies. Despite high settlement of algal spores on cationic PDMAEMA, this 

surface shows potential for the development of non-leaching contact-active anti-algal 

surfaces, due to its inherent ability to kill spores upon contact. Field immersion tests in a 

marina even showed that both PSPMA and PDMAEMA had better antifouling properties at 

the end of 1 week of immersion than PHEMA-co-PEG10MA and PSBMA, which are both 

well known for their superior antifouling properties. The reason for the opposite results of the 

field tests and the laboratory assays in this respect is not known, but point to the relevance of 
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further studies of the physicochemical properties and interactions with fouling species of both 

PDMAEMA and PSPMA, and with charged surfaces in general.  
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Tables 

 

Table 1. Ellipsometric thicknesses, SI-ATRP polymerization times, static contact angles (CA), and surface free energies of the used polymers 
(DI = deionized water). 

 

 

     Captive-bubble contact angles  

Sample Type 
Film  thickness 

(Å) 

Polymerization 
time 

 (min) 

Sessile droplet 
CAs in air 

(deg) 

n-octane  
 in DI 
(deg) 

Air in DI, 
pH 7.0 
(deg) 

Air in ASW, 
pH 8.2 
(deg) 

Surface energy 
in DI 

(mJ/m2) 
PHEMA-co-PEG10MA 

PDMAEMA 
Neutral 
Cationic 

101 ± 3 
105 ± 2 

5 
63 

64 ± 2 
74 ± 2 

139 ± 1 
121 ± 1 

140 ± 1 
134 ± 1 

135 ± 2 
121 ± 1 

56 
53 

PSPMA Anionic 97 ± 1 35 62 ± 1 150 ± 2 148 ± 2 140 ± 1 62 
PSBMA Zwitterionic 95 ± 2 20 61 ± 2 160 ± 3 146 ± 1 151 ± 1 61 
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Figures 

 

 

Figure 1.  Preparation of polymers (cationic PDMAEMA, anionic PSPMA, neutral 

random PHEMA-co-PEG10MA copolymer, and zwitterionic PSBMA) onto gold 

surfaces with an initiator SAM (top) via surface-initiated atom transfer radical 

polymerization (SI-ATRP). 
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Figure 2. Infrared reflection-absorption spectra of the used polymers and also of the 

initiator SAM, for comparison. a) The O-H and C-H stretching regions. b) The 

fingerprint region. See text for details about peak assignments. 
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Figure 3. AFM images of the dry polymer films, measured in tapping mode in air. 

Each image corresponds to an area of 2.5 x 2.5 µm2. 
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Figure 4. Adsorption of fibrinogen, lysozyme (cationic) and pepsin (anionic) on 

cationic PDMAEMA, anionic PSPMA, zwitterionic PSBMA and neutral PHEMA-co-

PEG10MA, after 1 h incubation in 0.4 mg/mL protein solutions in PBS at pH 7.4. The 

error bars represent the Standard Deviation (SD) from six measurements on each 

sample. Letters (a-i) indicate data points that do not differ significantly from each 

other at p < 0.05.  
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Figure 5. Epifluorescence images (a) and the corresponding number densities (b) of 

the marine bacterium Cobetia marina attached to cationic PDMAEMA, anionic 

PSPMA, zwitterionic PSBMA and neutral PHEMA-co-PEG10MA. Scale bars in (a) 

are 40 µm. Error bars in (b) represent ± 2 × Standard Error (SE) from 30 measurement 

spots on each sample. Letters (a-b) indicate data points that do not differ significantly 

from each other at p < 0.05. 
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Figure 6. Epifluorescence images (a) and the corresponding number (b) of attached 

zoospores of the marine alga Ulva linza on cationic PDMAEMA, anionic PSPMA, 

zwitterionic PSBMA and neutral PHEMA-co-PEG10MA prior to (white) and after 

(hatched) exposure to a wall shear stress of 52 Pa. Scale bars in figure 6a are 20 µm. 

Percentages in blue represent the percent removal of spores after exposure to 52 Pa 

shear stress calculated from arcsine-transformed data with 95 % confidence limit. 

Error bars represent ± 2 × SE calculated from arcsine-transformed data with 95 % 

confidence limits. Letters indicate data points that do not differ significantly from 

each other at p < 0.05. 
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Figure 7.  (a) A normally settled and (b) a pseudosettled spore of Ulva linza, as 

observed on the cationic PDMAEMA surface. Scale bar  = 5 µm. 
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Figure 8. Percent settlement of cyprids of Balanus amphitrite and Balanus improvisus 

on cationic PDMAEMA, anionic PSPMA, zwitterionic PSBMA and neutral PHEMA-

co-PEG10MA observed after 24 and 48 hours of incubation. Error bars represent % ± 

SE. No significant differences were detected for settlement on the different surfaces at 

24 hours. Tukey pairwise comparisons are presented. Means that do not share a letter 

are significantly different. 
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Figure 9. Percent coverage of total biofouling observed after 1, 2 and 8 weeks of 

immersion in seawater at the depth 0.5 meter below sea level on cationic 

PDMAEMA, anionic PSPMA, zwitterionic PSBMA and neutral PHEMA-co-

PEG10MA. Error bars represent standard deviations of the total biofouling from six 

replicates of each sample. Letters indicate data points that do not differ significantly 

from each other at p < 0.05. 
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