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form electric charge density ρ. For the solutions corresponding to supersymmetric gauge

theories, we find numerically that a small magnetic field causes a drastic decrease in the en-

tropy at low temperatures. The near-horizon AdS2×R3 geometry of the purely electrically

charged brane thus appears to be unstable under the addition of a small magnetic field.

Based on this observation, we propose a formulation of the third law of thermodynamics

(or Nernst theorem) that can be applied to black holes in the AdS/CFT context.

We also find interesting behavior for smaller, non-supersymmetric, values of the Chern-

Simons coupling k. For k = 1 we exhibit exact solutions corresponding to warped AdS3

black holes, and show that these can be connected to asymptotically AdS5 spacetime. For

k ≤ 1 the entropy appears to go to a finite value at extremality, but the solutions still

exhibit a mild singularity at strictly zero temperature.
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1 Introduction and summary of results

The dynamics of gauge theories at finite temperature, charge density and background

electromagnetic fields may be studied at strong coupling via AdS/CFT dual supergravity

solutions. The supergravity approximation is valid for large N and large ‘t Hooft cou-

pling, but may be consistently truncated further to Einstein/Maxwell theory in the bulk

when studying these electromagnetic effects. Temperature arises as the solutions to this

Einstein/Maxwell theory exhibit a horizon, while charge density and background electro-

magnetic fields are introduced by imposing boundary conditions on the bulk Maxwell field.

Thermodynamics and transport properties in gauge theories at strong coupling may then

be obtained from suitable black hole or black brane solutions in this relatively simple

Einstein/Maxwell bulk theory.

This program has been applied extensively to 2 + 1-dimensional gauge theory, which

is realized holographically through 3 + 1-dimensional Einstein/Maxwell theory. Its key

solution is the AdS4 black brane with electric charge ρ, and magnetic field B. This brane

solution is known analytically for all ρ and B; its spectrum of small fluctuations may be ob-

tained systematically, and used to compute physical quantities such as electric and thermal

conductivities [1–9, 11, 12].

While several important condensed matter problems in an external magnetic field, such

as the Quantum Hall Effect and high Tc superconductivity, are driven by 2+1-dimensional

physics, it is clearly urgent to obtain results for 3+1-dimensional gauge theories as well. For

instance, strong magnetic fields are created in collisions at RHIC, giving rise to observable

effects which have been the subject of much recent discussion, e.g., [13–18].

In this paper, we shall present a systematic study of the thermodynamic properties of

3 + 1-dimensional gauge theories with finite electric charge density ρ in the presence of a

constant magnetic field B. Their holographic duals should be electrically and magnetically

charged black brane solutions to 4+1-dimensional Einstein/Maxwell theory with a Chern-

Simons term. The Chern-Simons coupling k captures the strength of the anomaly of the

– 1 –
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boundary current, and is required to take a specific value k = 2/
√

3 (in our conventions) if

the Einstein/Maxwell theory is to be the bosonic truncation of minimal D = 5 supergravity;

see e.g. [19].1 It has been proven that any N = 1 superconformal theory with an AdS5

supergravity dual obtained by compactification from IIB or M-theory admits a consistent

truncation to D = 5 minimal gauged supergravity [20–22]. Thus the results we find pertain

to a large class of theories, of which N = 4 super Yang-Mills is but one example.

The purely electric solution (B = 0) is the Reissner-Nordstrom black hole in AdS5;

its analytic form and thermodynamic properties are well-known. The existence of purely

magnetic solutions (ρ = 0) was demonstrated numerically in a previous paper [23], but

no analytical solutions are available at present. Purely magnetic solutions interpolate

between AdS5 and AdS3 × R2 near the horizon. As a function of temperature T , their

entropy density behaves as T 3 for large T , and vanishes as BT for small T . These limits

agree with N = 4 SYM calculations at zero gauge coupling, up to factors of 3/4 and
√

4/3

respectively. On the N = 4 SYM side the low temperature thermodynamics is governed by

fermions in the lowest Landau level; an appealing feature of these supergravity solutions

is that they reproduce this low temperature behavior.

Here we wish to extend these results to nonzero ρ and B. Besides their clear usefulness

for applications of AdS/CFT, this investigation has conceptual implications for the status

of extremal black holes, as we now pause to discuss.

1.1 Extremal black holes, Nernst’s theorem, the third law of thermodynamics,

and all that

A striking feature of the Reissner-Nordstrom black brane solution, in any dimension, is

that it possesses a smooth zero temperature limit with nonzero entropy density. This

extremal solution exhibits a near-horizon AdS2 × RD−2 region, the existence of which

has played a central role in recent holographic descriptions of non-Fermi liquids [24–26].

However, a much discussed cause for concern is that while the extremal entropy apparently

plays a crucial role in this analysis, it is not expected from the point of view of interacting

fermions, nor from the point of view of the dual field theory where the existence of massless

charged bosons suggests that Bose condensation should rule. One possibility is that the

large ground state degeneracy should be understood as an artifact of the large N limit,

as discussed in [9]. Another is that one should focus on alternative bulk theories where

the extremal entropy vanishes, as discussed recently in the case of gauge fields coupled to

massless scalars in [10]. While this may be the case, we would like to propose another

resolution, based on the results we find for the response to magnetic fields.

The tension between the existence of extremal black hole entropy and the thermo-

dynamic behavior of typical systems has been discussed periodically over the years (see

e.g. [27]), and can be phrased in terms of a clash with Nernst’s “theorem” and the third

“law” of thermodynamics. These statements can be expressed in various ways, but essen-

tially they stipulate that the entropy density s should go to zero at zero temperature (see

1Whenever B = 0, the Chern-Simons coupling is immaterial, and does not enter into the physical

quantities considered here.
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Figure 1. Illustration of fine tuning required to maintain nonzero extremal entropy. Small nonzero

couplings λi lead to no appreciable effect at high temperature, but cause the low temperature

entropy to flow to zero.

e.g. [28]). Despite the name, this “law”/“theorem” is actually meant to be a phenomeno-

logical observation characterizing the behavior of observed physical systems. Indeed, only

a moment’s thought is required to realize that it is trivial to concoct theoretical coun-

terexamples based on free systems. However, such counterexamples are to be thought of

as being fine-tuned to an unphysical degree, as any realistic system will exhibit some de-

gree of interactions, and these will typically lift the ground state degeneracy. The relevant

question is whether the ground state degeneracy is stable under adding generic weak in-

teractions or perturbations of the system. If λi represent some set of coupling constants,

we should consider

lim
λi→0

lim
T→0

s(λi, T ) . (1.1)

If this limit gives zero for “typical” couplings λi, then we may conclude that a fine tuning

is required to sustain the entropy.

Phrased in this way, Nernst’s “theorem” admits a natural formulation in terms of black

holes in the AdS/CFT correspondence. We should ask whether the extremal black branes

exhibiting finite entropy at extremality are fine-tuned in the same sense when we change

the interactions. In AdS/CFT we change the Lagrangian of the CFT by changing boundary

conditions for fields in the bulk, and thus we can ask whether the extremal entropy persists

even in the presence of nontrivial boundary conditions for a suitable set of bulk fields. In

a scenario in which the entropy is to be regarded as requiring fine-tuning, we would expect

to see behavior like that in figure 1.

In this work we study the case in which λi corresponds to turning on a constant exter-

nal magnetic field coupling to the R-current of N = 4 SYM (or other superconformal field

theories described holographically), and we will present evidence that the extremal entropy

indeed is unstable in the above sense under the inclusion of a magnetic field. Since we pro-

ceed numerically, and our numerics break down at very low temperature, we are not able to

follow the entropy all the way down to zero, but the simplest extrapolation suggests a pic-

ture in concordance with figure 1. In further support of this interpretation, we will see that

an attempt to construct a finite entropy solution perturbatively in B breaks down at very

low temperature. These results suggest that conclusions drawn from the extremal black

– 3 –
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Figure 2. Schematic illustration of flows in parameter space for three ranges of k. Blue lines are

flows at various fixed values of B3/ρ2. Arrows indicate direction of decreasing temperature. Red

lines indicate the boundary of allowed (b, q) values where nonsingular solutions are possible. The

near-horizon geometries at the end points of the flows are indicated in the k < 1 and k = 1 cases.

For k > 1 there exists an AdS3 ×R2 solution at b =
√

3, indicated by the dot, but the flows do not

reach this point. In the k < 1 and k > 1 cases, near the endpoint of the flow B3/ρ2 becomes a very

sensitive function of (b, q), depending on the precise direction of approach.

brane solution should be viewed with caution, as they can be drastically affected by even a

small (perhaps even arbitrarily small) magnetic field. It is an interesting question to explore

the effect of introducing boundary conditions for other fields and to study their effect on

extremal branes in various dimensions [29]. In this regard, it is worth noting that although

the asymptotically AdS4 extremal brane solution maintains its entropy in the presence of

a magnetic field, the question remains regarding more general perturbations [29].

1.2 Summary of results

One of the main results of the present paper is that the low temperature thermodynamics

of solutions carrying nonzero charge density ρ and magnetic field B depends crucially on

the value of the Chern-Simons coupling k. There are three qualitatively distinct cases:

k < 1, k = 1, and k > 1. In our conventions, the supersymmetric value is k = 2/
√

3, and

so falls into the k > 1 category. At high temperatures there is no significant distinction

between the three cases. However, as we take the temperature to zero, holding fixed the

dimensionless ratio B3/ρ2, we find markedly different behavior, as shown in figure 2.

We parameterize our solutions by b and q, which represent the values of the magnetic

field and charge density at the horizon in a particular coordinate system. They differ

from the physical magnetic field and charge density, which we are calling B and ρ; the

latter are measured at spatial infinity, and the relation between the two sets of parameters

is determined numerically. For nonsingular solutions, b and q take values in a bounded

region, which we can scan over numerically. As we lower the temperature holding B3/ρ2

fixed2 we flow along lines in the (b, q) plane, in what are essentially renormalization group

2Holding B and ρ fixed independently is not meaningful, as they are dimensionful parameters and are
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flows. The flows for the various values of k are shown schematically in figure 2. The figures

representing our actual numerical data will be presented in section 7, specifically in figure 6.

The flows are driven towards three distinct endpoints, depending on the value of k.

• For k < 1 we are driven towards (b = 0, q =
√

6). This is the Reissner-Nordstrom

black brane with near horizon geometry AdS2 × R3.

• For k = 1 we flow towards the curve q2 +2b2 = 6; the solutions along this curve have

a near-horizon geometry corresponding to warped AdS3 ×R2. These warped AdS3

geometries have attracted attention recently in the context of topologically massive

gravity [30] and the Kerr/CFT correspondence [31]; here we find that they emerge

as solutions of 4 + 1 dimensional Einstein-Maxwell theory, and can be connected

to asymptotically AdS5 spacetimes. As we move along the curve the near-horizon

geometries interpolate continuously between AdS2 × R3 and AdS3 × R2.

• For k > 1, including the supersymmetric value, we flow towards (bc, q = 0), where bc

is a k dependent number that starts out at
√

3 for k = 1 and then decreases with k.

To the right of this end point, at (
√

3, 0), is the AdS3 ×R2 solution that was studied

in [23]. At the supersymmetric value of the Chern-Simons coupling, k = 2/
√

3, the

values of q and b are bounded by a critical curve, which to about 0.5% accuracy, is

given by the relation q2 + αb2 = 6 with α ≈ 2.44149 (this value of α is chosen to give

high precision at the endpoint of the curve.)

As would be expected from the flow diagrams, the behavior of the entropy at low tem-

perature depends on k. In figure 3 we show our numerical results for the supersymmetric

value k = 2/
√

3 with B3/ρ2 fixed at 0 and approximately .15. We plot dimensionless

versions of the entropy density and temperature, since the dimensionful versions have no

intrinsic meaning.

This plot illustrates that a small value of B causes a large decrease in the entropy.

This behavior is representative of the k > 1 case in general, and the effect seems to get

more pronounced with increasing k. Our numerics break down at low temperatures due to

our choice of gauge fixing, and we have stopped our numerics in a regime where the results

are still reliable. Extrapolating further, it is possible that a singularity or instability arises

at some finite temperature. However, what cannot happen is that we end up at a smooth

finite entropy extremal black hole, as we will show that no such solution exists at nonzero

B (within our Ansatz, which assumes such properties as translation invariance).

In the k < 1 and k = 1 cases the situation is dramatically different, as the entropy

appears to go to a finite value (which depends on the value of B3/ρ2), as shown for k = 0

in figure 4. In the k = 1 case the thermodynamics is governed by spacelike warped AdS3

black hole solutions, which represent exact near-horizon geometries for our theory. At

strictly zero temperature, for both k < 1 and k = 1, the full interpolating solutions acquire

a relatively mild singularity at the horizon, unless B = 0 in which case we recover the

Reissner-Nordstrom solution. These singularities can be understood from a perturbative

thus changed by a scale transformation.
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Figure 3. Plot of the entropy versus temperature at fixed B3/ρ2 = 0 and B3/ρ2 = .15 ± .002, for

k = 2/
√

3 (supersymmetric value). The numerical results show that a small B field causes a large

drop in the entropy at low temperature.

Figure 4. Plot of the entropy versus temperature at fixed B3/ρ2 = 0 and B3/ρ2 = 10.5 ± .6, for

k = 0. The entropy appears to go to a finite value (but see the text for comments on the strict zero

temperature limit).

analysis. Thus, strictly speaking, in these cases there is no smooth extremal finite entropy

geometry, just as there was not in the k > 1 case. However, it may be more physically rel-

evant to focus on the behavior for small but nonzero temperature, in which case a residual

entropy is evident.

Besides our numerical results, which are valid for arbitrary B and ρ, we have carried

out a perturbative analysis of the solutions valid to order B2. These solutions can be

obtained analytically by methods analogous to those employed in the AdS/fluid dynamics

literature, starting with [32]. Insofar as they overlap, the perturbative results corroborate

our numerical findings.

The organization of the remainder of this paper is as follows. In section 2, we briefly re-

view the D = 5 Einstein/Maxwell theory with Chern-Simons term, including the definition

of the boundary current and stress tensor for asymptotically AdS5 solutions. In section 3

– 6 –
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we present the Ansatz for uniform electric charge density and constant magnetic field, and

derive the reduced field equations. In section 4, regularity and boundary conditions are

discussed both at the horizon and in the asymptotic AdS5 region. Standard AdS/CFT

formalism is used to express physical quantities such as the entropy, chemical potential,

currents and stress tensor in terms of these asymptotic data. In section 5, the near-horizon

geometries of our solutions are constructed analytically, and we discuss the existence of

solutions that interpolate between these and AdS5. In section 6, a perturbative expansion

in powers of B is shown to be smooth, except for extremal solutions. In section 7, numer-

ical results are presented, and a picture of the phase diagram is assembled. In section 8

we conclude with a discussion. A number of appendices include details of computations

omitted in the main text, a general discussion on the existence of factorized solutions, and

the construction of solutions with a near-horizon extremal BTZ factor.

2 Action, current, and stress tensor

The action for 5-dimensional Einstein-Maxwell theory with negative cosmological constant,

and Chern-Simons term, is given by3

SEM = − 1

16πG5

∫

d5x
√−g

(

R + FMNFMN − 12

L2

)

+ SCS + Sbndy (2.1)

where the Chern-Simons action is given by,4

SCS =
k

12πG5

∫

A ∧ F ∧ F (2.2)

For the value k = ks = 2/
√

3, the action coincides with the bosonic part of D = 5 minimal

gauged supergravity. In this paper, however, k will often be kept general, thus allowing for

values different from ks as well. Boundary terms in the action are required for the proper

renormalization of various physical quantities [33–35]. In a coordinate system (r, xµ) where

grµ = 0 asymptotically for µ = 0, 1, 2, 3, the boundary action Sbndy is given by,

Sbndy =
1

8πG5

∫

∂M
d4x

√−γ

(

K − 3

L
+

L

4
R(γ) +

L

2

(

ln
r

L

)

FµνFµν

)

(2.3)

Here, γµν is the metric induced by gMN on the boundary, and K is the trace (with re-

spect to γ) of the extrinsic curvature of the boundary given by Kµν = (∂rγµν)/(2
√

grr).

Henceforth we set the AdS radius to unity: L = 1. The non-diffeomorphism invariant ln r

term in the boundary action is needed to remove the divergence associated with the trace

anomaly Tµ
µ ∼ FµνFµν .

The Bianchi identity is dF = 0, while the field equations are given by,

0 = d ∗ F + kF ∧ F

RMN = 4gMN +
1

3
FPQFPQgMN − 2FMP FN

P (2.4)

3Conventions: Rλ
µνκ = ∂κΓλ

µν − ∂νΓλ
µκ + Γη

µνΓλ
κη − Γη

µκΓλ
νη and Rµν = Rλ

µλν .
4Note that our convention for k differs from that in [23]: khere = 3

4
kthere. The present convention has

been chosen to simplify the Maxwell equation. By sign-reversal of A, we are free to choose k ≥ 0.

– 7 –
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2.1 Boundary current and stress tensor

For large r the boundary metric of asymptotically AdS5 solutions will behave as

γµν = r2γ(0)
µν + · · · (2.5)

where γ
(0)
µν is the conformal boundary metric, given here by the flat Minkowski metric.

Similarly, the components of the gauge field Aµ tangent to the boundary will go to a

constant at large r, representing a constant magnetic field pointing in the x3 direction.

By considering on-shell variations of the boundary metric and gauge field, we can

define a boundary current and stress tensor in the familiar fashion:

δS =

∫

d4x

√

−γ(0)

(

JµδAµ +
1

2
Tµνδγ(0)

µν

)

(2.6)

Specializing to the case of a constant field strength on a flat boundary metric, we have

− 4πG5J
µ =

(

r3γµν
(0)Frν +

k

3
ǫαβγµAαFβγ

)

(2.7)

8πG5T
µν = r6

(

− Kµν + Kγµν − 3γµν − 2

(

FµαF ν
α − 1

4
FαβFαβγµν

)

ln r

)

where the limit of large r is implied. For our solutions, the explicit ln r terms will cancel

logarithmic terms in the metric functions, yielding a finite large r limit for Tµν .

3 Ansatz and reduced field equations

The presence of uniform magnetic field and electric charge density in the boundary CFT

may be achieved by an Ansatz for the bulk fields which is invariant under translations in

xµ, and space-rotations around the magnetic field, which we shall take to be pointing in

the x3 direction. The Ansatz consistent with these symmetries is given by5

F = E(r)dr ∧ dt + Bdx1 ∧ dx2 + P (r)dx3 ∧ dr (3.1)

for the Maxwell field strength, and by

ds2 =
dr2

U(r)
− U(r)dt2 + e2V (r)

(

dx2
1 + dx2

2

)

+ e2W (r) (dx3 + C(r)dt)2 (3.2)

for the metric. The magnetic field B is forced to be constant by the Bianchi identity, and

the functions E,P, U, V,W , and C depend only on r. Reparametrization invariance in r

has been used to select a coordinate r for which the same function U(r) appears in both

grr and the first factor of dt2. Rescaling x1, x2 can be compensated by a constant shift of

V , while rescaling x3 can be compensated by scaling C and shifting W .

5An additional term of the form N(r)dx3
∧ dt must have constant N in view of the Bianchi identities,

and N = 0 in view of the field equations, and has thus been omitted.
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In this coordinate system the event horizon is located at U(r+) = 0, and the Hawking

temperature is given by

T =
U ′(r+)

4π
(3.3)

The above Ansatz is covariant under the following transformation,

x3 → x3 − αt

C(r) → C(r) + α

E(r) → E(r) − αP (r) (3.4)

with all other coordinates and fields left unchanged, and for any real parameter α. We

shall refer to this transformation as α-symmetry. It may be used, for example, to set C(∞)

to zero. Note that the combinations E + CP and C ′ are invariant under α-symmetry.

The Ansatz (3.1), (3.2) is also covariant under boosts in the direction of the magnetic

field. We can use these boosts to put the solution in the rest frame, defined by C(r+) = 0.

In the dual CFT this corresponds to setting to zero the chemical potential conjugate to

momentum. See appendix A for the details.

3.1 The reduced Maxwell equations

The Bianchi identity is automatic on the Ansatz (3.1). The reduced Maxwell equations are,

(

(E + CP )e2V +W
)′

+ 2kBP = 0
(

UPe2V −W − C(E + CP )e2V +W
)′

+ 2kBE = 0 (3.5)

Both equations may be recast in terms of the α-symmetry invariant combinations C ′ and

E ≡ E + PC (3.6)

only, by eliminating the derivative of (E + CP )e2V +W in the second equation using the

first equation. One then obtains an alternative form of the reduced Maxwell equations,

M1
(

Ee2V +W
)′

+ 2kBP = 0

M2
(

UPe2V −W
)′ − C ′Ee2V +W + 2kBE = 0 (3.7)

3.2 The reduced Einstein equations

The reduced Einstein equations may be simplified to assume the following final form,

E1
(

C ′e2V +3W
)′

= 4PEe2V +W (3.8)

E2 U(V ′′ − W ′′) +
(

U ′ + U(2V ′ + W ′)
)

(V ′ − W ′)

=
1

2
(C ′)2e2W − 2B2e−4V + 2UP 2e−2W

E3 UV ′′ + U ′V ′ + UV ′(2V ′ + W ′) = 4 − 2

3
E2 − 4

3
B2e−4V +

2

3
UP 2e−2W

– 9 –
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E4 U ′′ + U ′(2V ′ + W ′) − (C ′)2e2W = 8 +
8

3
E2 +

4

3
B2e−4V +

4

3
UP 2e−2W

along with the constraint equation,

CON U ′(2V ′ + W ′) + 2U(V ′)2 + 4UV ′W ′ +
1

2
(C ′)2e2W

= 12 − 2E2 − 2B2e−4V + 2UP 2e−2W (3.9)

The r-derivative of the constraint vanishes by the use of the other six equations, and may

be enforced as an initial condition, as usual.

4 Asymptotics and initial data

The solutions we consider are asymptotically AdS5. Thus, U(r), e2V (r) and e2W (r) behave

as r2 in the limit r → ∞. The precise overall normalization depends on the normalization of

the space coordinates x1, x2 (for V ) and x3 (for W ). There are two natural ways of normal-

izing this behavior, by parametrizing either the initial data at the horizon, or the asymptotic

behavior as r → ∞. We shall consider both, and relate their behaviors. The data at the

horizon is used for the numerical analysis, and for computing the entropy and temperature.

The asymptotics are used to calculate the Maxwell current and the stress tensor.

4.1 Parametrizing the initial data at the horizon

In the numerical analysis it is important to choose coordinates to remove the gauge freedom.

This can be done by demanding that the solution take a canonical form at the horizon. By

rescaling of x1, x2, x3, and combining an α-transformation and a boost in the x3-direction,

the field strength FH and the metric ds2
H at the horizon may be arranged to take the form,

FH = q dr ∧ dt + b dx1 ∧ dx2

ds2
H = dx2

1 + dx2
2 + dx2

3 (4.1)

where q and b are respectively the charge density and the magnetic field at the horizon

(in the coordinates x1, x2, x3). This corresponds to the following initial conditions at the

horizon,

E(r+) = q U(r+) = V (r+) = W (r+) = C(r+) = P (r+) = 0 (4.2)

We will refer to these coordinates as the horizon frame. It remains to specify

V ′(r+), W ′(r+), and C ′(r+). These quantities are generally not independent, but rather

follow from the reduced equations M2, E2, and CON evaluated at the horizon, and we have,

q
(

C ′(r+) − 2kb
)

= 0

U ′(r+)V ′(r+) = 4 − 2

3
q2 − 4

3
b2

U ′(r+)W ′(r+) = 4 − 2

3
(q2 − b2) − 1

2
C ′(r+)2 (4.3)
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The value of C ′(r+) is specified to be C ′(r+) = 2kb for q 6= 0, but remains an independent

free parameter for q = 0. The quantity U ′(r+) = 4πT is not a genuine initial datum,

since the equation CON for U is of first order. Therefore, genuinely distinct solutions are

specified by only two parameters, for example T and q in units of magnetic field b.

If the temperature T is nonzero, we can always rescale t to set U ′(r+) = 1, leaving the

free parameters b and q. Furthermore, we can shift r to set the horizon at r+ = 1.

4.2 Extremal solutions require bq(k ± 1) = 0

It is now easy to establish a non-existence result that will play an important role in what fol-

lows. We ask under what conditions can we have an extremal horizon, U(r+) = U ′(r+) = 0.

Assuming that all functions in our Ansatz are well behaved at r+, we can always work

in the horizon frame specified in the previous subsection, in which case the conditions (4.3)

apply. But then it is easy to see that the assumption of an extremal horizon with nonzero

b and q is inconsistent with (4.3) unless k2 = 1. To obtain an extremal horizon we must

choose one (or more) of q = 0, b = 0, or k = ±1. As will be discussed in section 5,

these three choices lead to near-horizon geometries of the form AdS2 ×R3, AdS3 ×R2, and

warped AdS3 × R2. But in the generic case in which none of these conditions is satisfied,

finite temperature solutions cannot be smoothly brought to zero temperature, a feature

that we will see explicitly from various points of view.

4.3 Asymptotic behavior as r → ∞

Starting from the initial data (4.2) and integrating our to large r, we will find asymptotically

AdS5 solutions with large r behavior

U = (r − r0)
2 +

u2

r2
+ u′

2

ln r

r2
+ · · · C = c0 +

c4

r4
+ · · ·

e2V = v(r − r0)
2 +

v2

r2
+ v′2

ln r

r2
+ · · · E =

e3

r3
+ · · ·

e2W = w(r − r0)
2 +

w2

r2
+ w′

2

ln r

r2
+ · · · P =

p3

r3
+ · · · (4.4)

where the dots stand for higher order terms in 1/r. Some of the parameters are related to

one another by the field equations,

w2 = −2wv2

v
u′

2 = − 2b2

3v2

v′2 =
b2

3v
w′

2 = −2b2w

3v2
(4.5)

In these coordinates the conformal boundary metric is −dt2+v(dx2
1+dx2

2)+w(dx3+c0dt)2.

As we show in appendix B, we can always perform a coordinate transformation to set

v = w = 1 and c0 = 0, which brings the conformal boundary metric to the standard

Minkowski form. Further, this can be done while preserving the condition that we be in

the rest frame, defined by C(r+) = 0. The components of the current in this frame, which
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we refer to as the asymptotic frame since it is the relevant one for comparing with the

boundary CFT, are computed to be

4πG5J
t ≡ ρ = γc(e3 − c0p3) −

2kb

3v
A3|∞ (4.6)

J1,2 = 0

4πG5J
3 =

3

4
γc

(

p3√
w

−√
wc0e3

)

Here B is the value of the magnetic field in the asymptotic frame, thus identified as the

magnetic field in the CFT, and given by

B =
b

v
(4.7)

γc is a Lorentz boost factor (we use the notation γc to avoid confusion with the boundary

metric γ), appearing when we transform to the rest frame,

γc =
1

√

1 − wc2
0

(4.8)

For black hole solutions in which g33 remains finite at the horizon, A3|∞ is arbitrary,

and can be adjusted by a constant shift of A3 throughout spacetime. Its appearance in

the expression for J t is a consequence of the anomaly equation for the boundary current.6

A similar factor of At|∞ appears implicitly in J3, but since we have fixed At = 0 at the

horizon, the asymptotic value of At is determined without ambiguity. A nonzero value of

A3|∞ corresponds in the CFT to adding a chemical potential for J3; it is simplest to set it

to zero, and we do that henceforth unless stated otherwise.

We similarly have expressions for the temperature, entropy density, and chemical po-

tential in the asymptotic frame:

T =
γcU

′(r+)

4π
(4.9)

G5

(

S

Vol

)

≡ s =
1

4
√

v2wγ2
c

µ =
3γcv

8kb

(√
wc0e3 −

p3√
w

)

Comparing (4.6) and (4.9) we note the simple relation

4πG5J
3 = −1

2
kBµ (4.10)

This is the chiral magnetic current [13–15]: in the presence of a nonzero anomaly coefficient

k and a chemical potential, a current induced parallel to the applied magnetic field. This

result also follows from the anomaly equation, as can be seen by allowing for a slow variation

in x3, differentiating both sides, and identifying ~∇µ with an electric field.

6Given A3(t) and a constant magnetic field along x3 we have ∂tJ
t
∼ kE ·B ∼ kB∂tA3. Integrating gives

J t
∼ kBA3, in accord with (2.7).
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4.3.1 Physical quantities

The global AdS5 solution is invariant under scale transformations,

x′µ = xµ/ℓ , r′ = ℓr (4.11)

Asymptotically AdS5 solutions inherit this as an asymptotic symmetry, reflecting the CFT

nature of the holographic dual theory. Individual quantities, such as B and ρ, transform

under these scalings, just as the coordinates xµ do, and so have no independent meaning.

We should instead look at scale invariant quantities, which have physical meaning. This

is the same as looking at dimensionless quantities from the boundary point of view. Let’s

write O ∼ ℓp to denote the transformation O′ = ℓpO. From the asymptotic invariance of

the field strength F and the metric ds2, we find,

s ∼ ℓ3 , T ∼ ℓ , B ∼ ℓ2 , ρ ∼ ℓ3 , µ ∼ ℓ (4.12)

Any combination behaving as ℓ0 is a good physical quantity to compute.

5 Near-horizon geometries

For generic assignments of the physical parameters ρ and B, analytical solutions are not

available in AdS5 (in contrast with the AdS4 case where an electric-magnetic duality

rotation acting on the B = 0 solution produces a simple dyonic solution). Even the special

case of ρ = 0 at zero temperature (and B 6= 0) does not lend itself to a full analytical

solution [23].

Considerable qualitative and quantitative progress can be made, however, by solving

for the near-horizon geometry of the solutions. This will be carried out in this section. Es-

pecially important will be the question as to whether, for given ρ, B, solutions with extremal

near-horizon geometry exist, and whether they can support an electric field at the horizon.

The existence of these extremal solutions is key to understanding the low temperature limit.

One important result, which was already established in section 4.2 will be that for nonzero

ρ and B, and for k 6= 1 there do not exist smooth, finite entropy, extremal solutions.

In the low temperature regime, the full solutions may then then be viewed as interpola-

tions between asymptotic AdS5 and these near-horizon geometries. By numerical study, to

be discussed in full in section 7, the regularity of this interpolation will be verified (except

at strictly zero temperature, where singularities develop), and the physical properties of

the solution, such as entropy, temperature, and mass will be evaluated.

A general discussion on the existence of factorized solutions may be found in

appendix C.

5.1 General conditions for the existence of extremal solutions

At an extremal horizon r+ we have U(r+) = U ′(r+) = 0. Extremal solutions provide a

natural boundary of the parameter space of all solutions.

To study their existence systematically, it will be convenient to adopt the horizon frame

specified in section 4.1. We scale the coordinates xi so that V (r+) = W (r+) = 0, and
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denote the magnetic field in these coordinates by b. Reduced Einstein/Maxwell equations

M2, E2, E3, and CON, in which only U and U ′ enter on the left hand side, produce a set

of non-trivial constraints,

M2 q
(

C ′(r+) − 2kb
)

= 0

E2 C ′(r+)2 − 4b2 = 0

E3 6 − q2 − 2b2 = 0 (5.1)

where q is defined to be the electric field at the horizon q = E(r+). The constraint equation

CON is a consequence of E2 and E3, and thus has been omitted from the above list.

Eliminating C ′(r+) using the second equation reduces the system to qb(k ± 1) = 0 and

q2 + 2b2 = 6. The solutions are as follows,

1. If k 6= ±1, then we have qb = 0, so that either q = 0 or b = 0, leading to the solutions,

(a) The case b = 0 and q = ±
√

6, corresponds to the well-known extremal electri-

cally charged black brane (without magnetic field, and arbitrary value of k). Its

near-horizon geometry is AdS2 × R3.

(b) The case q = 0 and b = ±
√

3, corresponds to the extremal purely magnetic

brane (without electric charge, and arbitrary value of k), obtained in [23]. Its

near-horizon geometry is AdS3 × R2.

2. If k = ±1, we shall show below that there is in fact a regular solution for every as-

signment satisfying q2 +2b2 = 6, whose near-horizon geometry smoothly interpolates

between AdS2 × R3 (at b = 0) and AdS3 × R2 (at q = 0). These solutions can be

generalized to include finite temperature and momentum, and correspond precisely

to one family of warped black holes considered in [30].

5.2 Vanishing magnetic field: AdS2 × R3

We begin by briefly reviewing the well-known black brane solution in AdS5 for B = 0,

charge density ρ and mass M > 0 (the actual charge and mass densities are proportional

to these), given by the functions P = C = 0, and

E =
ρ

r3
V = W = ln r U = r2 +

ρ2

3r4
− M

r2
(5.2)

In terms of the radii r− ≤ r+ of the inner and outer horizons, we obtain a convenient

parametrization of ρ, M and U ,

ρ2 = 3r2
+r2

−(r2
+ + r2

−)

M = r4
+ + r4

− + r2
+r2

−

U =
1

r4
(r2 − r2

+)(r2 − r2
−)(r2 + r2

+ + r2
−) (5.3)

As long as M3/ρ4 ≥ 3/4, the singularity at r = 0 is protected by a horizon. The near-

horizon metric reduces to

ds2
H =

dr2

UH(r)
− UH(r)dt2 + r2

+(dx2
1 + dx2

2 + dx2
3) (5.4)
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with UH(r) ∼ (r2−r2
+) for the non-extremal case, and UH(r) ∼ (r2−r2

+)2 for the extremal

case. The near-horizon geometry is factorized into the space-part which is flat, and an

AdS2 factor. The temperature T and entropy density s of the black brane are given by

T =
(r2

+ − r2
−)(2r2

+ + r2
−)

2πr3
+

s =
r3
+

4
(5.5)

The black brane becomes extremal as r− → r+, so that the temperature goes to zero, but

the charge density and entropy density remain finite, and related by s/ρ = 1/(4
√

6).

5.3 Vanishing charge density: AdS3 × R2

With vanishing charge density, the Maxwell field strength F reduces to the B-term only.

The solutions in this case were obtained in [23]. The Maxwell-Einstein equations have an

analytical solution, given by E = P = C = 0, and

U = 3(r2 − r2
+) e2V =

B√
3

e2W = r2 (5.6)

which represents the product of a (non-rotating) BTZ black hole with R2. It was confirmed

numerically in [23] that there exists a family of regular solutions, parametrized by T/
√

B,

which interpolate between the BTZ black hole of (5.6) at the horizon, and AdS5 at r = ∞.

The entropy of these solutions tends to zero as T → 0, while the physical magnetic field

B is kept fixed.

More generally, we can have nonextremal rotating BTZ black holes, whose metric is

given by e2V = B/
√

3, and

U = 3
(r2 − r2

+)(r2 − r2
−)

r2
e2W = r2 C = −

√
3
r+r−
r2

(5.7)

with E = P = 0. A useful alternative parametrization of the rotating BTZ solution is

given by,

U = 12(r − r+)(r − r−) C = 2
√

3(r − r+) (5.8)

and V = W = E = P = 0. Note that both forms admit a smooth extremal limit.

5.4 k = 1: warped AdS3 black holes

As shown above, there is a special value of the Chern-Simons coupling, namely k = ±1

(recall that this is less than the value required for supersymmetry), for which there exist

extremal solutions for any q, b satisfying the relation,

q2 + 2b2 = 6 (5.9)

Furthermore, there is a simple nonextremal generalization. The solution is given by V =

W = P = 0, and

E = q (5.10)
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U = 12(r − r+)(r − r−)

C = 2b(r − r+) (5.11)

We have used α-symmetry to set C(r+) = 0. The metric and field strength are then

given by,

ds2 =
dr2

U(r)
− U(r)dt2 +

(

dx3 + 2b(r − r+)dt
)2

+ dx2
1 + dx2

2 (5.12)

F = q dr ∧ dt + b dx1 ∧ dx2

The extremal limit is given by taking r− = r+ as usual.

These solutions can be identified with the “self-dual” solutions described in sec-

tion 6.1.1 of [30], where we make the identification

ν2 =
3b2

12 − b2
(5.13)

Note that as b2 ranges over its allowed values between 0 and 3, ν2 ranges between 0 and 1.

The equivalence can be seen most easily by comparing our metric with eqtn. 1.2 of [36].

Under the identifications

Φ =
12l2

3 + ν2
t , T =

√

12l2

3 + ν2
x3 , R = r (5.14)

the metrics are seen to be proportional. Unlike in [36], we do not compactify Φ ∼ t. Our

metric has no closed timelike curves or other pathologies.

These solutions also arise in a context closely related to ours, namely 2 + 1 dimen-

sional Einstein-Maxwell-Chern-Simons theory (see [37] for solutions which are the analytic

continuation of these). This can be understood from the fact that if we reduce our theory

down to three dimensions along x1,2, then we recover the equations of 2 + 1 dimensional

Einstein-Maxwell-Chern-Simons theory coupled to a massless scalar field. The condition

for the scalar field to take a constant value, representing a constant value of V , is precisely

the condition q2 + 2b2 = 6 that we found above. It is curious that these solutions exist

only at the special value k = ±1.

5.5 Existence of interpolating solutions

As we have seen, for nonzero values of ρ and B, and k 6= ±1, there do not exist smooth

zero temperature solutions under the assumptions of our Ansatz (it is possible that such

solutions do exist if one, for example, relaxes the condition of translation invariance). So

in these cases, if we start from an asymptotically AdS5 solution at finite temperature, as

we lower the temperature some of the functions in our solution will start to diverge; we

will see this as a breakdown of our numerics.

This leaves the question of what happens in the zero temperature limit in the cases

for which there do exist candidate extremal horizons. In the case of B = 0 and nonzero ρ

(the value of k is immaterial in this case), the answer is that we end up at the usual AdS5
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extremal Reissner-Nordstrom solution. This will turn out to be the only case in which we

find a truly nonsingular extremal solution.

For ρ = 0 and nonzero B (k again drops out of the discussion if one notes that

for q = 0 the equation M2 appearing in (5.1) becomes trivial ) interpolating solutions

were constructed numerically in [23]. At low temperatures the near-horizon geometry

approaches AdS3 × R2, but as will be discussed momentarily a singularity develops in the

full interpolating solution at strictly zero temperature.

For nonzero ρ and B, but k = ±1, we have candidate near-horizon geometries corre-

sponding to warped AdS3 black holes times R2, and these have a smooth extremal limit. At

any nonzero temperature, our numerics will establish the existence of solutions smoothly

interpolating between these near-horizon geometries and AdS5. As the temperature is

taken to zero the entropy remains finite, but nevertheless a singularity develops at the

horizon, for reasons that can be seen as follows.

To construct a candidate extremal interpolating solution, we can start with the exact

near horizon extremal warped black hole geometry, and then introduce a perturbation

that grows near the boundary, representing the change in asymptotic boundary conditions

taking us towards AdS5. This perturbation is obtained by solving the equations obtained

by linearizing around the near-horizon solution.

For our near-horizon solution we have

U = 12(r − 1)2 (5.15)

C = 2b(r − 1)

E = q

V = W = P = 0

with q2 + 2b2 = 6. Note that we have used the freedom to rescale r to set the horizon at

r+ = 1.

Now we linearize around this solution, denoting the perturbations by lower case letters

(ǫ denotes the perturbation of E). Plugging in we find the following equations to linear order

M1 : δǫ′ + q(2v′ + w′) + 2bp = 0 (5.16)

M2 :
(

12(r − 1)2p
)′ − qc′ − 2qb(2v + w) = 0

E1 : c′′ + 2b(3w′ + 2v′) − 4qp = 0

E2 :
(

12(r − 1)2(v′ − w′)
)′ − 8b2v − 2bc′ − 4b2w = 0

E3 :
(

12(r − 1)2v′
)′ − 16

3
b2v +

4

3
qǫ = 0

E4 : 3u′′ + 72(r − 1)(2v′ − w′) + 8b2(2v − 3w) − 12bc′ − 16qǫ = 0

CON : 24(r − 1)(2v′ + w′) + 4b2(w − 2v) + 2bc′ + 4qǫ = 0

We impose the boundary conditions

u(1) = u′(1) = v(1) = w(1) = c(1) = c′(1) = p(1) = ǫ(1) = 0 (5.17)
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It is fairly straightforward to solve these equations iteratively. Of most relevance are the

resulting expressions for v, ǫ and p, which are

v = a1(r − 1)α (5.18)

ǫ = 3qa1(r − 1)α

p = −3qαa1

2b
(r − 1)α−1 − q

2b
a2

where a1,2 are integration constants, and

α = −1

2
+

√
81 − 8b2

6
(5.19)

If q2 6= 6 then b2 > 0, in which case α < 1, and then we see that p diverges at the horizon.

Thus to have a smooth solution we are forced to set a1 = 0. But this means that v = ǫ = 0,

and from here it follows rapidly that the entire solution is just the original near-horizon

geometry we started from.

That the divergence in p represents a physical singularity can be seen by considering

an infalling observer. One finds that such an observer sees a diverging physical field

strength at the horizon.

We therefore do not expect to find a smooth extremal interpolating solution when

q 6= 0, even for k = ±1 when smooth near-horizon geometries do exist. In our numerics,

as we lower the temperature we indeed find that P begins to diverge at the horizon in

precisely the manner described above. Nevertheless, since the metric components have

well defined limits (though not their derivatives) we find that the entropy appears to

smoothly approach a finite value.

This leaves the case of nonzero B but ρ = 0, which was studied in [23]. There solutions

were found numerically that interpolated between near-horizon BTZ ×R2 and AdS5. At

at any finite temperature these interpolating solutions are smooth, but it follows from the

above that a mild singularity develops at strictly zero temperature. For these solutions k

does not appear in the field equations, and so we can freely set k = ±1, in which case we

can compare with the linearized analysis just described by setting q = 0. For q = 0 we

have that p = 0, and so we avoid the divergence in that quantity. However, we have that

v ∼ (r − 1)α, α = −1/2 +
√

57/6. Since α < 1, the first derivative of V will diverge at the

horizon, presumably indicating a singularity.

Actually, one special case remains. When ρ = 0, rather than considering the zero

temperature limit of BTZ corresponding to pure AdS3, we can look for solutions with

near-horizon geometry given by a finite entropy extremal BTZ solution. These can be

constructed by a fairly standard construction, as we describe in appendix D. The result-

ing interpolating solutions exhibit the same singularity at extremality as above; namely,

derivatives of V diverge at the horizon.

6 Perturbation theory in powers of B

In this section, we shall construct solutions perturbatively in powers of B around the

analytically known solution for B = 0 and arbitrary charge density ρ and mass M . We
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expect this expansion to be reliable for T 2 ≫ B. For small T , however, the B = 0 solution

is close to extremal, and we know from the conditions of extremality of (5.1) that no

extremal solutions exist with B 6= 0 and ρ 6= 0, unless we also have k = ±1. Thus, for

k 6= ±1, we expect perturbation theory in B to break down near B ∼ T 2. For k = ±1 the

behavior is better, but we find that a mild singularity still results. The structure of the

computation is very similar to the long wavelength fluid dynamics from gravity analysis

in [32]. This is because a weak magnetic field corresponds to a slowly varying gauge field.

The functions E(r), U(r), V (r), W (r) are even in B, while the functions P (r) and C(r)

are odd in B. Here, we shall expand up to order B2 included, so that,

U = U0 + B2U2 E = E0 + B2E2 (6.1)

V = V0 + B2V2 C = BC1

W = W0 + B2W2 P = BP1

The zeroth order solution coincides with (5.2), and is given by P0 = C0 = 0, and

E0 =
ρ

r3
V0 = W0 = ln r U0 = r2 +

ρ2

3r4
− M

r2
(6.2)

The horizons of U0 will be denoted by r±. The boundary conditions include C1(r+) =

C1(∞) = 0, together with the requirement that V2 and W2 fall off faster than r−2 as r → ∞.

To separate out the spin zero (scalar) and spin two (tensor) perturbative corrections, it

will be convenient to introduce the combinations,

S2 = 2V2 + W2 T2 = V2 − W2 (6.3)

Equations M2 and E1 are odd in B, and thus have contributions only to first order in B,

while all other equations, M1, E2, E3, E4, and CON are even in B and thus have only

second order contributions. We begin by solving M2 and E1 first.

6.1 Spin one sector

To order B, equation M2 is given by,

(U0rP1 − ρC1)
′ = −2

kρ

r3
(6.4)

It may be readily integrated, and the integration constant is fixed by the boundary condi-

tions at the horizon, U0(r+) = C1(r+) = 0. As a result, P1 is given in terms of C1 by,

P1(r) =
ρ

rU0(r)

(

C1(r) +
k

r2
− k

r2
+

)

(6.5)

Note that the function P1 is automatically smooth at the horizon. To obtain C1, we

substitute the solution P1 into equation E1. Using the special form of the function U0,

this equation may be recast as follows,

(

rU2
0

(

r2C1

U0

)′
)′

=
4kρ2

r5
− 4kρ2

r3r2
+

(6.6)
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In this form, the equation may be solved by two successive integrations, producing

two integration constants. These constants are fixed uniquely by the requirements that

C1(r+) = C1(∞) = 0, and we find,

C1(r) = −kρ2 U0(r)

r2

∫ r

∞

dr′

r′U2
0 (r′)

(

1

r′2
− 1

r2
+

)2

(6.7)

Thus, the functions P1 and C1 are uniquely determined by the boundary conditions.

6.2 Spin two sector

Equation E2 to order B2 gives,

(

r3U0T
′

2

)′
=

1

2
r5(C ′

1)
2 + 2rU0(P1)

2 − 2

r
(6.8)

The terms on the right hand side are known from the solution in the spin one sector.

This equation may be solved by two successive integrations. The two resulting integration

constants may be fixed by demanding smoothness of T ′
2 at the horizon, and the vanishing

of T2 at infinity, so that T2 is uniquely given by,

T2(r) =

∫ r

∞

dr′′
1

r′′3U0(r′′)

∫ r′′

r+

dr′
(

1

2
r′5(C ′

1)
2 + 2r′U0(P1)

2 − 2

r′

)

(6.9)

6.3 Spin zero sector

The functions E2, U2 and S2 all correspond to scalar perturbations. The linear combination

3 × E3 − CON gives an equation for S2 in terms of C1 and T2,

U0S
′′

2 +
2

r
U0S

′

2 + U0T
′′

2 +
3

r
U0T

′

2 + 3U ′

0T
′

2 =
1

2
r2(C ′

1)
2 − 2

r4
(6.10)

Eliminating T2 using (6.9), the remaining equation can be recast in the form, (r2S′
2)

′ =

−2P 2
1 , which may be solved by two successive integrations. We need S2 to fall off faster than

1/r2 at infinity to preserve the boundary. The solution is therefore uniquely fixed to be,

S2(r) = 2

∫ r

∞

dr′
(

1

r
− 1

r′

)

P1(r
′)2 (6.11)

Next, equation M1 determines E2,

(r3E2)
′ + (ρS2)

′ + (r3P1C1)
′ + 2kP1 = 0 (6.12)

The integration constant can be reabsorbed into ρ, and so we have

E2(r) = − ρ

r3
S2 − P1C1 −

2k

r3

∫ r

∞

dr′ P1(r
′) (6.13)

Equation E4 determines U2. It may be expressed as (r3U ′
2)

′ = X, with X given by,

X(r) = −r3U ′

0S
′

2 +
16ρ

3
(E2 + C1P1) + r5(C ′

1)
2 +

4rU0P
2
1

3
+

4

3r
(6.14)

The solution which goes to zero at infinity is

U2(r) =

∫ r

∞

dr′′

r′′3

∫ r′′

r+

dr′X(r′) − a3

2r2
(6.15)

where a3 is an integration constant. Finally, the constraint equation may be checked to

hold at r → ∞ to leading order. This will guarantee that it is obeyed throughout.
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6.4 Asymptotic behavior of the perturbative solution

The full perturbative solution is now fixed. The free parameters are: B, ρ, M , where we’re

not counting a3 since it can be absorbed into M , nor r+ since it is a function of M and ρ.

As a result, the asymptotic behavior of these functions can now be computed, and we find,

C1(r) =
kρ2

4r2
+r4

c4 =
kρ2B

4r2
+

P1(r) = − kρ

r2
+r3

p3 = −kρB

r2
+

T2(r) =
ln r

2r4
v = 1

S2(r) = − k2ρ2

15r4
+r6

w = 1

E2(r) = − k2ρ

r2
+r5

e3 = ρ

U2(r) = −2 ln r

3r2
− 1

3r2
− a3

2r2
u2 = −M +

(

2

3
ln r+ − 1

3
− a3

2

)

(6.16)

6.5 Regularity of the perturbative expansion

For the perturbative expansion around the non-extremal black brane with r− < r+, the

functions C1 and P1 fall off fast as r → ∞, and are smooth at the outer horizon r+, as

well as at all other values of r > r+. As a result, the integrals giving S2, T2, E2 and U2 are

rapidly convergent, and define regular functions throughout.

The perturbative expansion around the extremal black brane with r− = r+, however,

is not, generally, well-behaved. For r− = r+, the function C1(r) is given analytically by

C1(r) = − k

3r2
+

U0(r)

r2

[

2r2
+

r2 + 2r2
+

− r2
+

r2 − r2
+

+
1

3
ln

(

r2 − r2
+

r2 + 2r2
+

)]

(6.17)

The functions C1 and C ′
1 are smooth throughout. The function P1 is given analytically by

P1(r) = − kρ

r2
+r3

[

2r2
+

r2 + 2r2
+

+
3r2 + 2r2

+

3(r2 + 2r2
+)

+
1

3
ln

(

r2 − r2
+

r2 + 2r2
+

)]

(6.18)

and exhibits a logarithmic singularity as r → r+. This singularity is integrable in the formu-

las giving the perturbation functions S2, T2, U2 and E2. As a result, the functions S2, U2, E2

are smooth, while the function T2 has a logarithmic singularity as r → r+, given by

T2(r) ∼
(

k2 − 1

6r4
+

)

ln(r − r+) (6.19)

To summarize, in the extremal limit, the electric current density P , and the tensor

perturbation of the metric T2 both diverge logarithmically at the horizon, and the solution

is not globally smooth.
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6.6 Perturbative calculation of entropy, temperature, and mass

Having normalized the metric at r = ∞ to be the conformally standard Minkowski met-

ric, (B.1) with v = w = 1, the same metric at the horizon then reads,

ds2
H = r2

+e2V (r+)(dx̃2
1 + dx̃2

2) + r2
+e2W (r+)dx̃2

3 (6.20)

The perturbative corrections to the entropy density, temperature, and mass to order B2

may then be deduced from the metric functions as follows. The entropy density s is given by

s = s0

(

1 + B2S2(r+)
)

(6.21)

Similarly, the temperature T and mass M are given by

T = T0 +
1

4π
B2U ′

2(r+)

M = M0 + B2

(

1

3
− 2

3
ln r+ +

1

2

∫

∞

r+

dr′
(

X(r′) − 4

3r′

))

(6.22)

Here, s0, T0, and M0 are respectively the entropy density, temperature and mass of the

B = 0 black brane. Note that it follows from the form of (6.11), that S2(r+) < 0, so that

the correction to the entropy density is always negative.

6.6.1 Eliminating r+-dependence

The position of the outer horizon, r+, has dimension and hence no direct physical meaning.

It may be thought of as setting the overall scale, and plays the role of ℓ above. Therefore,

any physical quantity must be independent of r+. Thus, we shall introduce dimensionless

coordinates and quantities, such as

x ≡ r/r+ λ ≡ r−/r+ (6.23)

The r+-dependence may now be isolated in each one of the functions that enter perturbation

theory. For C1 and P1 we define the dimensionless functions Ĉ1(x) and P̂1(x) by,

C1(r) = kρ2Ĉ1(x)/r8
+ P1(r) = kρP̂1(x)/r5

+ (6.24)

We also define the dimensionless functions σ(λ) and τ(λ) by,

S2(r+) ≡ σ(λ)/r4
+ U ′

2(r+) ≡ τ(λ)/r3
+ (6.25)

and we use ρ as a physical quantity that sets the scale for r+,

ρ2 = r6
+ν(λ)6 ν(λ)6 = 3λ2(1 + λ2) (6.26)

so that r+ = ρ1/3/ν(λ). The expressions for entropy density and temperature normalized

to the physical dimensionful quantity ρ are as follows,

s

ρ
=

4π

3ν(λ)3

(

1 +
B2

ρ4/3
σ(λ)ν(λ)4

)

T

ρ1/3
=

1

2πν(λ)

(

(1 − λ2)(2 + λ2) +
B2

2ρ4/3
τ(λ)ν(λ)4

)

(6.27)
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6.6.2 Calculating the dimensionless functions

The dimensionless functions Ĉ1(x) and P̂1(x) may be readily computed (analytically)

from (6.7) and (6.5), and used to evaluate the dimensionless functions σ(λ) and τ(λ),

given by

σ(λ) = −2k2ν(λ)6
∫

∞

1
dx

(

1 − 1

x

)

P̂1(x)2

τ(λ) = −4

3
+ k2λ2(1 + λ2)τ̂(λ) (6.28)

where τ̂(λ) is given by

τ̂(λ) = −9

2
λ2(1 + λ2)Ĉ ′

1(1)2 − 9λ2(1 + λ2)

∫

∞

1
dx x3Ĉ ′

1(x)2 − 24

∫

∞

1
dxP̂1(x)

+8

∫

∞

1

dx

x4
P̂1(x) +

∫

∞

1
dxP̂1(x)2

(

8x − 4λ2(1 + λ2)
1

x5

)

(6.29)

+2(1 − λ2)(2 + λ2)

∫

∞

1
dxP̂1(x)2 − 72λ2(1 + λ2)

∫

∞

1
dx

(

1 − 1

x

)

P̂1(x)2

The functions σ(λ) and τ̂(λ) may be evaluated numerically, using the analytic expression

for Ĉ1(x) and P̂1(x). The results are as follows.

Numerical evaluation of the integral entering σ(λ) shows very little dependence on λ

throughout the interval λ ∈ [0, 1], and may be well approximated there by the average

value of 0.015 (specifically, its value drops uniformly from 0.01505 at λ = 0 to 0.01490 at

λ = 1). As a result, we have the approximate formula,

σ(λ) ∼ −0.090 × k2λ2(1 + λ2) (6.30)

for λ throughout the interval [0, 1].

Numerical evaluation of the function τ̂(λ) produces a dependence given in figure 5

below. We record the end point values,

τ̂(0) = 8.605 τ(0) = −1.333

τ̂(1) = 4.527 τ(1) = −1.333 + 9.054 × k2 (6.31)

and for the supersymmetric value k2 = 4/3, we have τ(1) = 10.739.

6.7 Physical interpretation of the perturbative corrections

• If τ(1) > 0, then T is non-zero and positive at the extremal value λ = 1. We

can extract an estimate for the minimum temperature under the assumption that

B3/ρ2 ≪ 1, by simply estimating the temperature at λ = 1, and we get,

Tmin =
τ(1)ν(1)3

4π

B2

ρ
(6.32)

which for the supersymmetric value k = 2/
√

3 gives approximately Tmin =

2.0932B2/ρ. Of course, at λ = 1 our perturbative analysis breaks down, and so

higher order terms could well invalidate this result.
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Figure 5. The function τ̂(λ).

• If τ(1) < 0, then T = 0 is attained for λ = λc < 1, and the geometry must have

a naked singularity whenever λc < λ ≤ 1, as it would correspond to negative

temperature.

7 Numerical analysis

7.1 Setup

We turn now to a discussion of our results obtained by numerical integration of the

equations of motion. The first step is to specify our coordinate system. We impose the

conditions corresponding to the horizon frame described in section 4.1, including choosing

r+ = 1 and U ′(1) = 1. This coordinate system will inevitably break down in the limit

of vanishing temperature, since in that case we would have U ′(r+) = 0, and no rescaling

of the time coordinate can bring us to our chosen gauge. We will see this breakdown

occurring explicitly in the numerics.

Solutions in this gauge are parameterized by the values of b and q, both of which we

take to be non-negative without loss of generality. Choosing a value for the pair (b, q)

fixes initial data at the horizon, and then we can integrate out to the asymptotically AdS5

region at large r (we used Maple to do this).

From the large r form of the obtained solution we can then compute the numerical

coefficients (v, w, etc.) appearing in (4.4). We then convert these into physical quantities

using the formulas given in section 4.3. The expressions we will be using in the following are

B =
b

v
(7.1)

T =
γc

4π

s =
1

4
√

v2wγ2
c

ρ = γc(e3 − c0p3)
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with γc = 1/
√

1 − wc2
0.

It is most illuminating to provide plots of entropy density versus temperature with the

magnetic field and charge density held fixed. However, it only makes sense to keep fixed

the dimensionless ratio B3/ρ2. Similarly, it is only meaningful to compute dimensionless

versions of the entropy and temperature, and for these we choose

s

(ρ2 + B3)1/2
,

T

(ρ2 + B3)1/6
(7.2)

An instructive special case is the Reissner-Nordstrom solution with B = 0 reviewed

in section 5.2. The solution is originally given in terms of r+ and ρ. Transforming this

solution into the gauge used here, we find q = ρ/r3
+, along with

s

ρ
=

1

4q
,

T

ρ1/3
=

1

4π

(

4 − 2
3q2

q1/3

)

(7.3)

Note that the extremal limit in this parametrization is q =
√

6 with s/ρ = 1/(4
√

6) ≈ .102.

A consistency check on our numerics is that we recover the curve described by (7.3) along

with the extremal endpoint.

The next step is to determine the region of the (b, q) parameter space that gives rise

to smooth solutions. The boundary of this region depends on the value of k. Numerical

integration shows that as we move out radially from the origin in the (b, q) plane we

eventually find that some of the parameters v, w, etc. start to diverge or go to zero as we

approach a curve in the (b, q) plane, depicted by the red lines in figure 2. The analytic

form of this curve is only known at k = 1, where it is given by q2 + 2b2 = 6. Points on

the k = 1 critical curve correspond to extremal warped AdS3 black holes, as was described

in section 5.4. For the other values of k that we consider, the curve acquires some bulges,

but continues to look roughly like that for k = 1. In the generic case, we determined

the critical curve numerically by evolving outward until γc exceeds some specified value,

which we take to be roughly 12. This requires fine tuning (b, q) to the critical curve to

roughly four decimal places. The k = 0 case is special since here γc = 1 exactly for all

solutions; here we locate the critical curve by looking for a divergence in 1/v. In all cases,

the dimensionless temperature tends to zero as we approach the critical curve.

Once the critical curve has been identified, we can set up a grid in the (b, q) plane, and

scan over the gridpoints. We took about 12, 000 roughly evenly spaced gridpoints. Once

data at the gridpoints has been obtained we can search for curves along which B3/ρ2 is

approximately constant. These curves were illustrated schematically by the flow diagrams

in figure 2. Finally, we plot the entropy versus temperature for points along such a curve.

7.2 Results

We will discuss three cases: k = 0, k = 1, and k = 2/
√

3, the latter being the supersym-

metric value. We expect that these are representative of the general cases k < 0, k = 1

and k > 1.

Curves of approximately fixed B3/ρ2 are shown in figure 6, which may be compared

with the schematic version in figure 2. In the k = 0 and k = 2/
√

3 cases, the curves appear
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Figure 6. Points in the (b, q) plane (b on horizontal axis) obtained by scanning over a grid and

keeping points with B3/ρ2 fixed within some interval. These numerical plots are to be compared

with the schematic flows illustrated in figure 2

Figure 7. Entropy versus temperature for k = 1 and B3/ρ2 ≈ .1 ± .005

to be heading towards b = 0 and q = 0 respectively. As they do so, they begin to approach

very near to the critical curve discussed above. We cannot follow them all the way there, as

our limited precision prevents us from collecting data points arbitrarily close to the critical

curves. It is conceivable that the true curves instead terminate at some location on the

critical curves, as apparently occurs in the k = 1 case.

Given the points along a fixed B3/ρ2 curve, we can construct a plot of entropy versus

temperature. Such plots for the k = 2/
√

3 and k = 0 cases are displayed in figures 3 and 4.

In figure 7 we show the corresponding plot for k = 1. In all of these plots we compare

the finite B results against those for B = 0. The B = 0 curves represent the Reissner-

Nordstrom black brane solution, and reproduce numerically the curve described in (7.3).

In the k = 0, 1 cases, the entropy appears to go to a finite value at extremality, even

though a singularity seems to be developing at the horizon in this limit, as was discussed in

section 5.5. By adjusting B3/ρ2, we can tune this limiting entropy to any desired value be-

tween 0 and that of the Reissner-Nordstrom solution at B = 0. In the plots we have chosen

the value of B3/ρ2 such that the extremal entropy is roughly half of its maximal value. We

see that this requires a much larger magnetic field in the k = 0 case as compared to k = 1.

At k = 1 the entropy is controlled by the near-horizon warped AdS3 black hole solution.

The situation for k > 1 appears to be very different, at least for the values that we
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have studied. The main effect, which becomes more pronounced at larger k, is that the

entropy decreases substantially at low temperatures, and appears to be headed towards

zero, until our numerics break down. For the supersymmetric case k = 2/
√

3 shown in

figure 3 the effect is relatively modest due to the fact that 2/
√

3 ≈ 1.15 is not too much

larger than 1. But even in this case it is evident that at low temperature a value of B3/ρ2

much less than 1 causes a decrease in the entropy by factor much larger than 1, and the

effect grows as the temperature is decreased.

The main property driving this behavior is the apparent location of the endpoint of the

flows at fixed B3/ρ2. We can locate the endpoint numerically by setting q = 0 and increas-

ing b until a singularity (or numerical breakdown) occurs. Calling this endpoint value bc, we

find bc =
√

3 = 1.732 for k ≤ 1, but bc <
√

3 for k > 1. For k = 2/
√

3 we find bc ≈ 1.568. On

the other hand, with q = 0 we showed that only for b =
√

3 does a smooth, extremal, near-

horizon geometry exist. Since there is no candidate smooth endpoint, it seems likely from

this perspective that the flows terminate in a singularity at the point (q = 0, b = bc). The

metric functions we compute certainly behave very badly as this point is approached, but it

is difficult to completely disentangle physical divergences from a breakdown of our numerics.

The breakdown of our numerics at very low temperature is a reflection of our gauge

fixing choice U ′(r+) = 1. Because of this, we are not able to unambiguously determine

whether the k > 1 curves end at zero temperature and entropy, or terminate before then

in a singularity. But we certainly do not see any evidence of a finite entropy endpoint at

zero temperature, a conclusion which is bolstered both by our perturbative analysis and

by the non-existence of any candidate near extremal geometries to match onto. The most

likely scenario seems to be that finite entropy at extremality requires the magnetic field to

be fine tuned to zero. One clear goal for the future is to improve the numerical treatment

to allow a more refined study of the very low temperature regime.

8 Discussion

In this work we have constructed asymptotically AdS5 black brane solutions carrying

nonzero charge density and magnetic field. They were found analytically in a perturbative

expansion for small B, and numerically for general values. The most interesting results

centered around the low temperature regime, where we found a sensitive dependence on

both the magnetic field and the value of the Chern-Simons coupling k. For k > 1, includ-

ing the supersymmetric value of k = 2/
√

3, we found that a small magnetic field causes

a rapid decrease of the entropy at low temperatures. We proposed an AdS/CFT version

of Nernst’s theorem and the third law of thermodynamics consistent with the observed

behavior. More general tests were left to the future [29].

k = 1 emerged as a special value, for here, and only here, there exist smooth finite en-

tropy extremal near-horizon geometries carrying charge and magnetic field. We identified

these, and their nonextremal generalizations, with one class of warped AdS3×R2 black hole

solutions studied in [30] (without the R2 factor) in the context of topologically massive grav-

ity. We found that these could be connected to asymptotically AdS5 spacetimes, although a

singularity in the interpolating solution develops at the horizon in the strict extremal limit.
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It is an intriguing question as to whether the value k = 1, which appears special from

the point of view of supergravity solutions, has a special significance also on the CFT side,

perhaps because it corresponds to a special embedding of the gauge field U(1) ⊂ SU(4)R.

There are some other contexts in which sufficiently large values of the Chern-Simons

coupling k causes novel effects. In the recent work [38] it was found that sufficiently large k

can cause an instability in Reissner-Nordstrom black brane solutions. In [39] it was found

that large k likely causes an instability of spinning black hole solutions. In both of these

cases k must be larger than the supersymmetric value for an instability to occur, while we

have seen here that the extremal Reissner-Nordstrom entropy is apparently destabilized

even at the supersymmetric value.

There should be many applications of these solutions to the study of condensed matter

and finite density QCD. Transport properties can be computed in these backgrounds;

although we lack analytical solutions, a numerical treatment should be tractable.

We conclude with a curious observation concerning the frequent appearance of 3/4

in this subject. To wit: the ratio of the high temperature entropy in gravity to that in

the gauge theory is 3/4; the corresponding ratio of the low temperature entropy in the

presence of a magnetic field is
√

4/3; and the ratio of the “special” value of k (k = 1 in our

conventions) to the supersymmetric value is
√

3/4. These three factors are not logically

related in any obvious way. Perhaps this is just coincidence.
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A Asymptotic boost symmetry

The Ansatz (3.1), (3.2) is covariant under boosts in the direction of the magnetic field.

Assuming the metric ds2 to be asymptotically AdS5, the boundary space-time coordinates

xµ may be rescaled so that its asymptotic behavior, as r → ∞, is given by,

ds2 ∼ dr2

r2
+ r2

(

−dt2 + dx2
1 + dx2

2 + dx2
3

)

(A.1)

Performing a boost in the x3-direction

t = γc(t̃ + βx̃3) γ2
c (1 − β2) = 1

x3 = γc(x̃3 + βt̃) |β| < 1 (A.2)

produces a field strength and a metric of the same form as (3.1) and (3.2), but with

the coordinates r, t, x3 replaced by r̃, t̃, x̃3 and the functions E,P, U, V,W,C of r replaced

by the functions Ẽ, P̃ , Ũ , Ṽ , W̃ , C̃ of r̃ respectively, leaving x1, x2, and B unchanged. (A
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reparametrization r → r̃ is generally needed to put the U -function back into the gauge of the

Ansatz.) The relation between the transformed and original Maxwell fields are as follows,

Ẽdr̃ = γc

(

E − βP
)

dr

P̃ dr̃ = γc

(

P − βE
)

dr (A.3)

while for the metric fields, we have Ũ−1dr̃ = U−1dr, and Ṽ = V , as well as,

Ũ − e2W̃ C̃2 = γ2
c U − γ2

c

(

C + β
)2

e2W

e2W̃ = γ2
c

(

1 + βC
)2

e2W − γ2
c β2U (A.4)

and the following transformation law between C̃ and C,

C̃ =

(

C + β
)(

1 + βC
)

e2W − βU
(

1 + βC
)2

e2W − β2U
(A.5)

If C(∞) = 0, then it follows that C̃(∞) = 0 for all β. At an event horizon, r = r+, where

U(r+) = 0, we have a simplified formula,

C̃(r̃+) =
C(r+) + β

1 + βC(r+)
(A.6)

As a result, in these coordinates, the value of C at the horizon characterizes the velocity

of the configuration. Performing a boost β = −C(r+) brings the solution to its rest frame.

B Relation between horizon and asymptotic frames

Our solutions being asymptotically AdS5 implies that by rescaling t, x1, x2, x3, and per-

forming an α-transformation and a boost, the asymptotic behavior of the field strength

and of the metric as r → ∞ may be put in standard form,

F = Edr ∧ dt̃ + Bdx̃1 ∧ dx̃2 + Pdx̃3 ∧ dr

ds2 ∼ dr2

r2
+ r2

(

−dt̃2 + dx̃2
1 + dx̃2

2 + dx̃2
3

)

(B.1)

In general, the coordinates t̃, x̃i will be different from the coordinates t, xi used in specifying

initial conditions at the horizon. In the coordinates t, xi, the asymptotics of the functions

take the form displayed in (4.4) and (4.5). The rescaling and α-transformation relating the

coordinates t, xi and t̃, x̃i is given by,

t̃ = t x̃1,2 =
√

vx1,2 x̃3 =
√

w (x3 + c0t) (B.2)

This is combined with a constant shift in the r coordinate by an amount r0. Since the

magnetic field term in F is r-independent, we obtain a simple relation between the magnetic

field b at the horizon, and the magnetic field B at infinity,

b = vB (B.3)

– 29 –



J
H
E
P
0
3
(
2
0
1
0
)
0
9
5

The functions Ũ , Ṽ , W̃ , C̃, Ẽ , P̃ of the full metric in the coordinates t̃, x̃i are then given by,

Ũ = r2 +
u2

r2
− 2B2

3

ln r

r2
+ · · · C̃ =

√
w c4

r4
+ · · ·

e2Ṽ = r2 +
v2

vr2
+

B2

3

ln r

r2
+ · · · Ẽ =

e3

r3
+ · · ·

e2W̃ = r2 − 2v2

vr2
− 2B2

3

ln r

r2
+ · · · P̃ =

p3/
√

w

r3
+ · · · (B.4)

While the metric at the boundary of AdS5 now takes the standard form of (B.1), the metric

ds2
H at the horizon has been rescaled and α-transformed to become,

ds2
H =

1

v
(dx̃2

1 + dx̃2
2) +

1

w
(dx̃3 − c0

√
wdt̃)2 (B.5)

corresponding to a solution moving with velocity c0
√

w.

We can move to the rest frame of the solution by performing a boost in the x̃3-direction,

thereby removing the cross term in ds2
H while preserving the conformal boundary metric,

t̃ = γc(t̂ +
√

wc0x̂3) , x̃3 = γc(x̂3 +
√

wc0t̂) , γc =
1

√

1 − wc2
0

(B.6)

In these coordinates the field strength is

F = γcEdr̂ ∧ dt̂ +
b

v
dx̂1 ∧ dx̂2 +

(

P√
wγc

−√
wc0γcE

)

dx̂3 ∧ dr̂ (B.7)

and the metric on the horizon is

ds2
H =

1

v
(dx̂1

2 + dx̂2
2) +

1

wγ2
c

dx̂3
2 (B.8)

which corresponds to a solution at rest in the hatted frame. This hatted (asymptotic)

frame is the one that we use to express physical quantities in the CFT.

B.1 Evaluating entropy, temperature and chemical potential

Now we can give expressions for the various physical quantities in these coordinates. The

entropy density s is read off from metric on the horizon, and is given by

s =
1

4

1
√

v2wγ2
c

(B.9)

The factors in the denominator ensure that s is the physical entropy density per unit

volume, as measured in the CFT.

To evaluate the temperature, we first recall its behavior under a boost. Let T0 be the

temperature of some system in the rest frame. Then in a boosted frame the temperature is

given by T = T0/γc, as can be seen by writing the Boltzmann factor e−E/T0 in terms of the

boosted energy and momentum. Now in the original (unhatted) frame the temperature is

T̃ = U ′(r+)/(4π). This represents the moving frame, while the rest frame is one in which

– 30 –



J
H
E
P
0
3
(
2
0
1
0
)
0
9
5

C(r+) = 0, which is the hatted frame. Therefore, the temperature in the rest frame, which

is what we’re interested in, is

T̂ = T0 = γcT̃ =
γcU

′(r+)

4π
(B.10)

From now on, when we write T we have in mind T̂ .

We also want the chemical potential, given by the asymptotic value of Ât. Since we

set Ât = 0 at the horizon we have Ât|∞ =
∫

∞

r+
dr̂ F̂rt. This gives

µ = Ât

∣

∣

∣

∞

= γc

∫

∞

r+

dr E (B.11)

If kB 6= 0, we may use the second Maxwell equation, in the form given in (3.5) to recast

E as a total r-derivative. The chemical potential may now be evaluated in the original

unprimed coordinates, where the magnetic field is b, and we find,

µ =
3γcv

8kb

(√
wc0e3 −

p3√
w

)

(B.12)

B.2 Evaluating the Maxwell current

We identify the Maxwell current in terms of the on-shell variation of the Maxwell-Einstein

action of (2.1), with respect to the Maxwell field at the boundary of AdS5,

δS =

∫

d4x

√

−γ(0)JµδAµ (B.13)

Here, γ
(0)
µν is the asymptotic conformal metric defined by γµν/r2 → γ

(0)
µν in the limit r → ∞,

where γµν is the metric induced from gµν on a surface of constant r. The on-shell variation

of the action with respect to the gauge field may be calculated from (2.1) and we find the

following expression for the current,

4πG5J
µ = −

(

r3F rµ + r4(ln r)∂νF
νµ +

k

3
ǫαβγµAαFβγ

)

(B.14)

Here, ǫαβγµ denotes the volume form for γ
(0)
µν . Using the leading forms grr = r2 and

gµν = γµν
(0)/r2 we can write this as

4πG5J
µ =

(

r3γµν
(0)Frν + (ln r)γµα

(0)γ
νβ
(0)∂νFαβ +

k

3
ǫαβγµAαFβγ

)

(B.15)

Since we only consider solutions with constant field strength on the boundary the middle

term will not contribute.

B.3 Evaluating the current in the rest frame

The current can be computed directly in the double primed coordinates system as

4πG5Ĵ
t =

(

ê3 −
2kB̂

3
√

v̂2ŵ
Â3

∣

∣

∣

∞

)

(B.16)
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4πG5Ĵ
1,2 = 0

4πG5Ĵ
3 =

(

p̂3

ŵ
+

2kB̂

3
√

v̂2ŵ
Ât

∣

∣

∣

∞

)

The double primed coordinates have been defined so that v̂ = ŵ = 1. From the formulas

given above we also have,

B̂ =
b

v
, ê3 = γc(e3 − c0p3) , p̂3 = γc

(

p3√
w

−√
wc0e3

)

(B.17)

and

Ât

∣

∣

∣

∞

= −3γcv

8kb

(

p3√
w

−√
wc0e3

)

= − 3v

8kb
p̂3 (B.18)

We therefore finally have

4πG5Ĵ
t = γc(e3 − c0p3) −

2kb

3v
Â3

∣

∣

∣

∞

(B.19)

4πG5Ĵ
3 =

3

4
γc

(

p3√
w

−√
wc0e3

)

We note that Â3

∣

∣

∣

∞

can be chosen arbitrarily as long as g33 is finite at the horizon (though

we should set it to zero unless we want to add a source for J3 in the CFT partition function),

while Ât

∣

∣

∣

∞

is given in (B.11).

C Factorized solutions

In the general 5-dimensional solutions we have obtained here, the 2-dimensional x1, x2-

plane perpendicular to the magnetic field is warped over the remaining 3-dimensional space.

The near-horizon geometry of these solutions, however, invariably reduces to a space-time

in which the x1, x2-plane factorizes from the solutions because the field V becomes r-

independent. This raises the question as to the structure of the most general factorized

solution. In this appendix we shall show that, modulo certain regularity conditions, the

only factorized solutions are of the type given in section 4.

We begin by proving the following auxiliary result: if the function P vanishes, then we

only have the factorized k2 = 1 solution of section 4.4. Next, assuming now that P 6= 0,

but V = 0, we show that again only the factorized k2 = 1 solution of section 4.4 exists.

C.1 P = 0 leads to the near-horizon geometry

By shifting V,W by constants, we may always assume that V (r+) = W (r+) = 0. Recall

that the magnetic field in these coordinates is denoted by b. We assume kb 6= 0 and q 6= 0.

We begin by showing that the condition P = 0 leads to U ′′, V, W, E constant. When P = 0,

equations M1, M2, E1 may be integrated, and give,

E = q e−2V −W
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C ′ = 2kb e−2V −W

C ′ = 2kb e−2V −3W (C.1)

Comparing the two expressions above for C ′, we find that W = 0 identically. Taking the

difference between E2 and E3 (for W = 0), we find,

0 = 24 − 4E2 + 4b2e−4V − 3(C ′)2 (C.2)

Substituting the above expression for C ′ and E , we find,

0 = 24 + e−4V
(

−4q2 + 4b2 − 12k2b2
)

(C.3)

Since the terms in the parenthesis are constants, V must be constant, and hence V = 0 in

view of the boundary condition. Thus, E and C ′ are constant. Equation E2 now requires

0 = 2k2b2 − 2b2 which requires k2 = 1. Equation E3 requires

0 = 6 − q2 − 2b2 (C.4)

which is precisely the boundary curve equation for k2 = 1. CON is automatic, and E4

gives U ′′ = 24. But this gives precisely the factorized solution of section 4.4.

C.2 V = 0 leads to the near-horizon geometry

Next, we assume P 6= 0 and V = 0, so that the geometry is factorized. Under this assump-

tion, equation M2 may be traded for the constraint equation, since upon differentiation,

CON will require the use of M2 when P 6= 0. Clearly, we must now retain E4 as an inde-

pendent equation. Equations E2, E3, and CON are equivalent to the following equations,

E2 = 6 − 2b2 + UP 2e−2W

U ′W ′ = −1

2
(C ′)2e2W + 2b2

−W ′′ − (W ′)2 = 2P 2e−2W (C.5)

By eliminating E2, (C ′)2, and P 2 from E4, using the above equations, we obtain a relatively

simple equation relating only U and W ,

U ′′ + 3U ′W ′ + 2UW ′′ + 2U(W ′)2 = 24 (C.6)

Finally, equation M1 may be viewed as giving P in terms of E and W ,

P = − 1

2kb

(

EeW
)′

(C.7)

and E1 may be integrated upon using M1, to give,

C ′ = − 1

kb
E2e−W + αe−3W (C.8)

where α is an integration constant. As promised, we omit equation M2.
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Equation (C.6) may be readily integrated in terms of the function τ , defined by,

τ(r) ≡
∫ r

r0

dr′ eW (r′) (C.9)

and we have

U =
12

(τ ′)2
(τ2 − τ2

0 ) (C.10)

where r0 and τ0 are integration constants. Using the relations τ ′ = eW and,

W ′ =
τ ′′

τ ′
W ′′ + (W ′)2 =

τ ′′′

τ ′
(C.11)

and eliminating E , U, P, W from (C.5) in favor of τ and Ê = τ ′E , we find the following

three equivalent equations,

Ê2 = (6 − 2b2)(τ ′)2 − 6τ ′′′

τ ′
(τ2 − τ2

0 ) (C.12)

(Ê′)2 = −2k2b2τ ′τ ′′′

0 = 48(τ ′′)2(τ2 − τ2
0 ) − 48τ(τ ′)2τ ′′ + 4b2(τ ′)4 − 1

k2b2

(

Ê2 − αkb
)2

Finally, Ê and Ê′ may be eliminated from the above equations to yield two equations for

τ . Eliminating Ê2 between the first and third equations yields an equation of third order

in τ . Eliminating Ê′ requires some extra care, as we do not wish to unduly increase the

order of the resulting equation, or introduce square roots. To obtain a second equation of

third order, we take the product of the first two equations giving [(Ê2)′]2/4, and use the

last equation to eliminate Ê2 from this. The results are as follows,

0 = 6(6 − 2b2)τ2(τ ′′′)2 + 12τ2
0 b2(τ ′′′)2 + (6 − 2b2)2(τ ′)2(τ ′′)2

−12(6 − 2b2)ττ ′τ ′′τ ′′′ + 2b2(6 − 2b2)(τ ′)3τ ′′′

0 = 48k2b2(τ ′′)2(τ2 − τ2
0 ) − 48k2b2τ(τ ′)2τ ′′ + 4k2b4(τ ′)4

−
(

(6 − 2b2)(τ ′)2 − 6
τ ′′′

τ ′
(τ2 − τ2

0 ) − q2 − 2k2b2

)2

(C.13)

We shall now examine the existence of joint solutions to both equations, which solve the

boundary conditions, U(r+) = W (r+) = P (r+) = 0, and C ′(r+) = 2kb. These conditions

translate as follows

τ(r+) = τ0 kbα = q2 + 2k2b2

τ ′(r+) = 1

τ ′′′(r+) = 0 Ê′(r+) = 0 (C.14)

Evaluating the first equation of (C.12) at the horizon, using the above boundary conditions,

gives the boundary curve relation,

q2 + 2B2 = 6 (C.15)
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Evaluating both equations of (C.13) at the horizon, and using the boundary conditions,

τ ′(r+) = 1 and τ ′′′(r+) = 0, we find,

0 = (6 − 2b2)τ ′′(r+)2

0 = −48k2b2τ0τ
′′(r+) + 4k2b4 − 4k4b4 (C.16)

where in the last equation we have used the relation (C.15). Since we assume that q 6= 0,

relation (C.15) gives 6−2b2 6= 0, and thus we must have τ ′′(r+) = 0 from the first equation

in (C.16). Using this result in the second equation gives altogether

τ ′′(r+) = 0 k2 = 1 (C.17)

Note that we have now, in principle, overdetermined the boundary conditions even just on

a single equation, as we have τ(r+) = τ0, τ
′(r+) = 1, τ ′′(r+) = τ ′′′(r+) = 0 for a differential

equation which is of third order. To proceed further, it appears necessary to make some

assumption on the regularity properties of τ near the horizon. A general Ansatz consistent

with the above boundary conditions is as follows,

τ(r) = τ0 + (r − r+) + τp(r − r+)p + higher orders (C.18)

for any real number p > 3. Substituting this Ansatz into the first equation of (C.13) shows

that, as r → r+, the last term is of order (r − r+)(p−3) and dominates the other 4 terms,

which all vanish faster as r → r+. Thus, we must have τp = 0, for any p > 3. Thus, within

the class of asymptotic behaviors given by (C.18), the expression

τ(r) = τ0 + (r − r+) (C.19)

is the only solution satisfying the boundary conditions. Clearly, for this solution, we have

U ′′ = 24, and W constant, which is the solution of section 4.4.

D Interpolating between extremal BTZ ×R
2 and AdS5

In section 5.5 we alluded to the existence of solutions that interpolate between a near-

horizon extremal BTZ ×R2 geometry and AdS5. In this appendix we give the details of

their construction. They can be thought of as infinitely boosted versions of the solutions

studied in [23].

D.1 Extremal solutions with momentum

In [23] we found zero temperature solutions interpolating between AdS3×R2 (with magnetic

flux on the R2) and AdS5. The metric and field strength are

ds2 = e−2W (r)dr2 + e2W (r)(−dt2 + dx2
3) + e2V (r)(dx2

1 + dx2
2) (D.1)

F = Bdx1 ∧ dx2

The Einstein-Maxwell equations reduce to

2V ′′ + W ′′ + 2(V ′)2 + (W ′)2 = 0 (D.2)

(V ′)2 + (W ′)2 + 4V ′W ′ = 6e−2W − e−4V −2W B2
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One can (numerically) find solutions with small r behavior e2V = B/
√

3, e2W = r2, and

large r behavior e2V = vr2, e2W = r2, with v ≈ 1.87. Since B can be set to unity be

a coordinate rescaling, there is actually a unique such solution. The solutions are not

entirely smooth, as V develops a subleading small r dependence rα with 0 < α < 1, as

was discussed in section 5.5.

Physically, these solutions represent the RG flow of N = 4 SYM theory in the presence

of a magnetic field. At low energies the theory is governed by fermions in the lowest Landau

level. These fermions are free to move parallel to the magnetic field lines, and give rise

to a 1 + 1 dimensional CFT at low energies, hence the appearance of AdS3. In [23] the

central charges in gravity and N = 4 SYM at vanishing coupling were compared, and

found to differ by a factor of
√

3/4. Note that the theory is nonsupersymmetric even at

zero temperature due to the presence of the magnetic field.

On the CFT side, one should be able to excite one chirality of fermions to arrive at zero

temperature configurations carrying momentum, and we expect corresponding solutions on

the gravity side as well. The structure of such solutions follows, as in [40, 41], from the

existence of null translational isometries.

We take as our Ansatz

ds2 = e−2W (r)dr2 + e2W (r)(−dt2 + dx2
3) + e2V (r)(dx2

1 + dx2
2) − u(r)(dx3 − dt)2 (D.3)

F = Bdx1 ∧ dx2

with V and W obeying (D.2). Plugging in, we find that the Einstein-Maxwell equations

reduce to the following linear equation

u′′ + (2V ′ − W ′)u′ − 2
(

W ′′ + (W ′)2 + 2V ′W ′

)

u = 0 (D.4)

This equation can be solved subject to the boundary condition that u(r) should fall

off as 1/r2 as r → ∞. The solution is given by

u(r) = p e2W (r)

∫ r

∞

dξ e−2V (ξ)−3W (ξ) (D.5)

where p is an integration constant. Given the asymptotics of V and W , the precise fall-off is

u(r) = − p

4r2
+ · · · (D.6)

Evaluating the boundary stress tensor on these solutions we find

8πG5T
tt = −3

2
u2 +

1

2
p (D.7)

8πG5T
t3 =

1

2
p

where u2 determines the large r falloff of U = e2W according to U = r2+ u2

r2 +· · · . The form

of the stress tensor is consistent with a momentum p being carried by chiral excitations.

Another manifestation of this is the formula for the entropy density, which is

1

G5
s = 2π

√

c

6
L0 (D.8)
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with

L0 =
T t3

2π
, c =

B

2G5
(D.9)

The central charge is the same as was computed in [23].

The solutions just described carry momentum but no electric charge or current. The

latter can be included in a fairly trivial way by turning on constant gauge potentials subject

to regularity conditions at the horizon. According to (2.7), the combination of the Chern-

Simons coupling k and the magnetic field B converts such constant potentials into charges

and currents. The regularity condition at the horizon is At + A3, and so we can turn on

At = −A3 = A for any constant A. This induces

4πG5J
t = 4πG5J

3 =
1

2
kBA (D.10)

Although we have thus constructed finite entropy, extremal, solutions carrying both

charge and magnetic field, we see that this requires that we have a nonzero value of A3

at infinity, which corresponds to a nonzero chemical potential for current in the CFT. If

we demand that this chemical potential is zero, corresponding to the boundary condition

A3|∞ = 0, then these solutions do not appear.
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