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Abstract: In a companion paper [1] we showed that the symmetry group G of non-
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B at I+. For each infinitesimal generator of G, we now define a charge and a flux on NEHs
as well as perturbed NEHs. The procedure uses the covariant phase space framework in
presence of internal null boundaries N along the lines of [2–6]. However, N is required to be
an NEH or a perturbed NEH. Consequently, charges and fluxes associated with generators
of G are free of physically unsatisfactory features that can arise if N is allowed to be a
general null boundary. In particular, all fluxes vanish if N is an NEH, just as one would
hope; and fluxes associated with symmetries representing ‘time-translations’ are positive
definite on perturbed NEHs. These results hold for zero as well as non-zero cosmological
constant. In the asymptotically flat case, as noted in [1], I± are NEHs in the conformally
completed space-time but with an extra structure that reduces G toB. The flux expressions
at N reflect this synergy between NEHs and I+. In a forthcoming paper, this close relation
between NEHs and I+ will be used to develop gravitational wave tomography, enabling
one to deduce horizon dynamics directly from the waveforms at I+.
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1 Introduction

The purpose of this series of papers is to investigate geometry and physics of quasi-local
horizons (QLHs) and relate them to structures available at I+. QLHs can be thought of
as world tubes of marginally trapped 2-spheres (MTSs). Therefore, they can be located
quasilocally — quasilocally, rather than locally, because one of the null normals of the
MTSs is expansion-free on an entire S2, not just in the neighborhood of a point. However, in
contrast to event horizons (EHs), the notion is far from being global; in particular, it makes
no reference to future infinity I+. QLHs are also free from the strange teleological features
that are characteristic of EHs. Since prior knowledge of space-time structure to the infinite
future is not needed to locate them, QLHs have been extremely useful in the numerical
evolution of black hole space-times depicting gravitational collapse, as well as mergers of
compact bodies (see, e.g., [7–15]). They are also better suited to understand physical
processes since, unlike EHs that can grow in flat regions of space-time in anticipation
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of infall of matter and radiation in the distant future, growth and dynamics of QLHs is
governed by local physics in their immediate vicinity [16].

QLHs can be divided into two broad classes: non-expanding horizons (NEHs) that
represent black hole and cosmological horizons in equilibrium, and dynamical horizons
(DHs) that describe growing (or, in the quantum theory, shrinking) black holes. Numerical
simulations show that soon after the common apparent horizon forms in a binary black hole
merger, the initially rapid evolution of the DH slows down and it is then well described by
a perturbed NEH. As in the companion paper [1], here we will restrict ourselves to NEHs
and perturbed NEHs. DHs will be discussed in subsequent investigations.

Let us begin by summarizing the discussion and results of [1] that we will need on our
analysis. We will only recall the salient features; precise definitions and proofs can be found
in [1, 17, 18]. An NEH ∆ is a null, 3-dimensional sub-manifold — possibly a boundary —
of space-time, topologically S2 × R, each of whose null normals is expansion-free. Thus,
every 2-sphere cross-section C of ∆ is an MTS. Let qab := g

←ab
be the pull-back of the

space-time metric to ∆. Since ∆ is null, qab has signature 0,+,+. The NEH ∆ is naturally
endowed with some additional geometric structures:

(i) One can always choose the null normals to ∆ to be affinely parametrized geodesic
vector fields la. Any two such normals are related by l′ a = f la where f satisfies
Llf = 0.

(ii) The space-time derivative operator ∇ compatible with g induces a unique derivative
operator D on ∆ via pull-back. D ‘interacts’ with the degenerate metric qab and the
null normals la in an interesting fashion. On ∆ we have:

Daqbc = 0 and Dal
b = ωa l

b, (1.1)

for some ωa which is called the ‘rotational 1-form’ because it encodes the ‘angular
momentum structure’ of ∆. (ωa depends on the choice of the null normal la; but
we will suppress this dependence for notational simplicity.) On ∆, the pair qab, ωa
satisfies

qab l
b = 0, Llqab = 0; and ωa l

a = 0, Llωa = 0 . (1.2)

Thus, qab and ωa are pull-backs to ∆ of covariant tensor fields on the 2-sphere ∆ of
integral curves of the null normals la. It is customary to go back and forth, regarding
them as fields on ∆ or on ∆. Under la → l′ a = fla we have ωa → ω′a = ωa +Da ln f .

(iii) One can essentially exhaust the rescaling freedom in the choice of la on ∆ by requiring
that ωa be divergence-free on ∆. This selects a small equivalence class of null normals,
where two are equivalent if they are related by rescaling by a positive constant. We
will denote the equivalence class of these preferred geodesic null normals by [¯̀a] and
the rotational 1-form they share by ω̄a. Thus, Daω̄a = 0. As discussed in [1], the
NEH geometry is encoded in the triplet (qab, [¯̀a], ω̄a) that determines its intrinsic
and extrinsic curvature which are then neatly encoded in the real and imaginary
part of the Weyl tensor component Ψ2. Multipole moments provide an invariant
characterization of these curvatures, and hence of the horizon geometry.
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(iv) Every NEH ∆ is equipped with a unique 3-parameter family of pairs (q̊ab, [̊`a]), con-
sisting of unit, round 2-sphere metrics q̊ab and equivalence classes of geodesic null
normals [̊`a], where ˚̀′ a ≈ c˚̀a for some positive constant c. Every pair in this family
is related to the pair (qab, [¯̀a]) on ∆ via q̊ab = ψ̊2qab and [̊`a] = [ψ̊−1 ¯̀a] for some pos-
itive function ψ̊ on ∆ satisfying L` ψ̊ = 0. The conformal factor ψ̊ relating the unit,
round 2-sphere metrics q̊ab to the physical metric qab (induced on ∆ by gab) depends
on qab, and hence varies as we go from one NEH to another. However, the rela-
tive conformal factors α relating one round metric to another are universal because
given a round metric q̊ab on an S2, there is precisely a 3-parameter family of round
metrics that are conformally related to it. Thus, if q̊ab = ψ̊2qab and q̊′ab = ψ̊′ 2 qab,
then q̊′ab = (ψ̊′ψ̊−1)2 q̊ab ≡ α2q̊ab, and the conformal factor α relating the two round
metrics is given by

α−1 = α0 +
3∑
i=1

αi r̂
i , for real constants α0 and αi, with

r̂i = (sin θ cosφ, sin θ sinφ, cos θ) and − α2
0 +

3∑
i=1

(αi)2 = −1 , (1.3)

where (θ, φ) are spherical polar coordinates adapted to the first round metric q̊ab.
In view of the constraints they satisfy, α0 and αi can be thought of as components
of unit, time-like vectors in Minkowski space. Consequently, on any NEH the space
of these round metrics q̊ab can be thought of as the 3-dimensional, unit, space-like
hyperboloid in Minkowski space. As is manifest in eq. (1.3), conformal factors α
relating these round metrics to one another are the same for all NEHs.

Thus, every NEH ∆ is equipped with a 3-parameter family of pairs (q̊ab, [̊`a]) related
by (q̊′ab, [̊`′ a]) = (α2q̊ab, [α−1˚̀a]), where α is given by eq. (1.3). This structure is universal:
it is common to all NEHs since it does not refer to any fields that vary from one NEH to
another.1 We can fix this family on an abstract 3-manifold ∆̊, topologically S2 × R. The
NEH symmetry group G is the subgroup of the Diffeomorphism group of ∆̊ that preserves
its universal structure, i.e., the collection of pairs (q̊ab, [̊`a]). Given any space-time (M, gab)
with a ‘concrete’ NEH ∆, there is a diffeomorphism from ∆ to ∆̊ that maps the pairs
(q̊ab, [̊`a]) on ∆ to those we fixed on ∆̊. This diffeomorphism is unique up to the action of
G on ∆̊; the situation is completely analogous to that at null infinity I+ [19, 20].

Consider a 1-parameter family of diffeomorphisms d(λ) that preserve the NEH uni-
versal structure, generated by a vector field ξa on ∆. It maps any given pair (q̊ab, [̊`a]) to
another pair (q̊′ab = α2(λ), [̊`′ a] = [α−1(λ)˚̀a]), with α(0) = 1. Taking the derivative w.r.t.
λ at λ = 0 and using eq. (1.3) we obtain the equations that define symmetry vector fields
ξa on ∆:

Lξ q̊ab = 2φ̊ q̊ab and Lξ ˚̀a = −
(
φ̊+ k

)˚̀a . (1.4)

1qab and ω̄a are ‘physical fields’ that vary from one NEH to another and they determine the NEH
multipole moments that characterize the geometry of individual NEHs. They are analogs of, say, Ψ◦

2 and
Ψ◦

1 at I+ that carry information of mass and angular momentum at I+.
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Here k is a constant, and φ̊ = dα(λ)/dλ|λ=0 satisfies the linearized version of eq. (1.3).
Thus φ̊ is given by a general linear combination

∑
m amY1,m of the first three spherical

harmonics of q̊ab. If one sets k = 0, eq. (1.4) becomes identical to that defining the
infinitesimal BMS vector fields on I+ (the null normals ˚̀a on NEH being replaced by the
null normals n̊a in a Bondi conformal frame at I+). The constant k arises in (1.4) because
on NEHs a symmetry vector field that leave q̊ab invariant — i.e., corresponds to φ = 0
— can still rescale the null normals ˚̀a by a constant since NEHs are equipped only with
equivalence classes [̊`a] of null normals. This vector field is ξa = kv̊ ˚̀a (where v̊ is an affine
parameter of ˚̀a) and represents the ‘dilation symmetry’ that is absent in the BMS group.
Thus the NEH symmetry group G is a 1-dimensional extension of the BMS group B. As
we discussed in [1], the extension is inevitable since, for example, the static Killing field
in the Schwarzschild space-time appears as a dilation — rather than a supertranslation —
on its NEH.

Finally, note that the 3-parameter family of pairs (q̊ab, [̊`a]) is completely analogous to
the 3-parameter family of ‘Bondi-conformal frames’ (q̊ab, n̊a) at I+ which are related by
(q̊′ab, n̊′ a) = (α2q̊ab, α

−1n̊a) where α is again given by eq. (1.3) (see, e.g., [21]). The round
metrics q̊ab and the associated null normals [̊`a] were introduced in [1] to define multipole
moments at ∆; at I+ they serve to decompose waveforms and other physical fields into
spherical harmonics which facilitates numerical simulations and data analysis. Also, they
enable one to decompose the BMS vector fields at I+ into supertranslations, rotations and
boosts, thereby providing further intuition for the associated charges and fluxes. We will
see that same is true at NEHs. Nonetheless, the pairs (q̊ab, [̊`a]) are not essential; one can
work just with the physical metric qab and the equivalence class of preferred null geodesic
normals [¯̀a] on ∆. The symmetry vector fields ξa of (1.4) can be equivalently defined by
Lξqab = 2φ qab; Lξ ¯̀a = −(φ+k) ¯̀a where k is a constant and φ satisfies L¯̀φ = 0. However,
while the explicit expression of φ̊ is simple and transparent, φ are solutions to a more
complicated equation on the 2-sphere with the metric qab both at I+ and ∆.

In this paper we will discuss charges and fluxes associated with the NEH symmetry
vector fields ξa using a covariant phase space framework. In the context of space-times
admitting null internal boundaries, the phase space framework has been developed in two
different broad directions. In the first, the phase space was constructed from solutions that
admit an internal boundary representing an NEH, possibly with a rotational symmetry
(see, e.g. [7–9, 17, 22]). The focus was on obtaining a generalization of the first law of
horizon mechanics. This law was first established by Bardeen, Carter and Hawking [23] for
Killing horizons in globally stationary (and axisymmetric) space-times. The goal was to
extend it to space-times that admit only an NEH which is not necessarily a Killing horizon
(e.g., as in the Kastor-Traschen solutions [24–26]), and can even admit radiation arbitrarily
close to the NEH (as in the Robinson-Trautman solution [27]). The first law of horizon
mechanics was shown to arise as a necessary and sufficient condition for the evolution
along NEH symmetries to be Hamiltonian (see, e.g., [17, 22, 28–31]). As a byproduct the
framework yielded charges representing the NEH angular momentum and energy. In these
treatments every permissible variation preserves the NEH boundary conditions, whence all
fluxes across the horizon vanish. The first law was thus obtained in the ‘passive setting’
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in which the variation in the energy, area and angular momentum refer to two nearby
space-times in the phase space, both admitting NEHs but with slightly different energies,
areas and angular momenta about a fixed symmetry axis.

In the second and more recent set of investigations (see, e.g., [2–6]), the covariant
phase space again consists of solutions with an inner boundary N . However, now N can
be any null surface, not necessarily an NEH. This framework is mathematically attractive
because of its generality. Physically, it has the pleasing feature that it allows fluxes of
gravitational radiation across the boundary. On the other hand, because N is now allowed
to be any null surface, the symmetry group — e.g., GCFP of [2] — is much larger than
the BMS group B and, apart from the fact that is also a semi-direct product, its detailed
structure is also quite different from B. More importantly, the framework allows a wide
variety of situations in which charges and fluxes associated with symmetry generators are
difficult to interpret physically. In particular, the charges and even fluxes can be non-zero
in Minkowski space.

Thus, the first strategy seems too restrictive, and the second, too general. In this
paper, we will place ourselves ‘in between’ the two approaches. We will focus just on
the sub-manifold ΓNEH

cov of the covariant phase space Γcov, at each point of which the
internal boundary is an NEH (rather than just a null 3-manifold). Therefore, our boundary
symmetry group will be G which, as discussed in detail in [1], is closely related to B in
its structure. But we will also consider first and second order perturbations around these
g ∈ ΓNEH

cov that do not preserve the NEH structure. The phase space framework enables
one to calculate (charges and) fluxes associated with the generators ξa of G to these orders
in perturbation theory. Thus, our results apply only to space-times that admit NEHs
and perturbed NEHs. While this is a strong restriction, now fluxes can be interpreted
physically: they vanish for the background, just as one would expect. On perturbed NEHs
the flux expressions mirror those for perturbations of stationary space-times at I+. In
particular, the flux of energy carried by perturbations is positive definite to second order.
Also, since Minkowski space does not admit an NEH, it does not lie on ΓNEH

cov and the
framework does not assign charges and fluxes to null surfaces in it. Finally, this strategy
also bypasses the technical issue noted in [2], associated with the lack of smoothness of
a general null boundary N , due to geodesic crossing caused by the infalling radiation in
the full, non-linear theory. As we indicated in [1], the most promising approach to extend
our results beyond perturbation theory would be to replace the perturbed NEHs that
approximate slowly evolving DHs by full-fledged DHs.

This paper is organized as follows. In section 2.1 we specify our covariant phase space
Γcov and its sub-manifold ΓNEH

cov for which the inner null boundary N is an NEH, and in
section 2.2 we recall the main ingredients needed to define charges and fluxes at N . In
section 3 we discuss charges at NEHs and show that all fluxes vanish, just as one would
physically expect. We also discuss properties of charges and show that they do not have any
spurious features. In particular, because the 4-dimensional subgroup of NEH translations
is augmented by a ‘dilation’ symmetry, a priori one might be concerned that tensions might
arise. Through examples we show that they do not. In section 4 we discuss charges and
fluxes on perturbed NEHs and show that they too have physically expected properties. In
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section 5 we summarize the main findings and sketch some directions for future work that
are being pursued. For convenience of the reader, in appendix A we recall the covariant
phase space framework in presence of an internal null boundaries used in the main text.
Appendix B discusses the extension of the symmetry vector fields on N to its neighborhood
that is necessary to evaluate the associated charges.

Our conventions are the following. Throughout, the underlying space-time is 4-
dimensional, the metric gab has signature -,+,+,+, and its torsion-free derivative operator
is denoted by ∇. Curvature tensors are defined via: 2∇[a∇b]kc = Rabc

dkd, Rac = Rabc
b,

and R = gabRab. Unless otherwise stated, all fields are assumed to be smooth for sim-
plicity. If there is a possibility of ambiguity, we will use =̂ to denote equality that holds
only at the boundary N . Finally, null normals of the inner boundary N are assumed to be
future directed.

2 The phase space framework

In the asymptotically flat case, a covariant phase space framework for general relativity
has been available in the literature for quite some time [32–34]. However, that framework
focused on charges and fluxes associated with asymptotic symmetries and did not consider
space-times with internal boundaries. Recently, that framework was extended to include
space-times with null internal boundaries N (see in particular, [2–6]). As explained in
section 1, we will be primarily interested in the sub-manifold ΓNEH

cov of Γcov consisting of so-
lutions gab for which N is an NEH ∆ (see figure 1), and perturbations δgab (around metrics
gab in ΓNEH

cov ) that represent weak gravitational waves carrying non-zero fluxes across this
∆. Thanks to this restriction, charges and fluxes will have physically expected properties.

2.1 Kinematic structures and the covariant phase space

This sub-section is divided in three parts. In the first we introduce the covariant phase
space Γcov and in the second, its sub-manifold ΓNEH

cov we will focus on. In the third part
we discuss generic tangent vectors δg at points g ∈ ΓNEH

cov . As remarked in section 1, there
have been several discussions of the phase space framework in presence of general null
boundaries in the recent literature [2–6]. Therefore, to provide a global perspective, we
have organized the presentation so as to bring out the relation between those frameworks
and ours, focusing on [2] for concreteness.

2.1.1 The phase space Γcov

Fix a 4-manifold M with a boundary N that is topologically S2 × R, equipped with a set
S of oriented vector fields la such that:

(i) the vector fields la provide a ruling of N , so that the space of their integral curves
is diffeomorphic to S2. They are ‘future complete’ in the sense that their affine
parameters vo tends to ∞ in the direction in which they are oriented; and,

(ii) if la and l′ a are both in S then l′ a =̂ fla where f satisfies f > 0 and Llf=̂0 on N ,
but is otherwise arbitrary.
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The set S does not refer to any space-time metric; as will be clear from our definition
of Γcov, it will serve as the kinematical structure shared by all g ∈ Γcov. The subgroup GN
of Diff(N ) preserving this structure is very large. Straightforward analysis shows that it is
a semi-direct product of the group generated by ‘vertical’ vector fields κ(θ, ϕ) vla+s(θ, ϕ)la

— which is thus ‘worth two functions on a 2-sphere’ — with Diff S2, the diffeomorphism
group of the space of ‘generators’ la of N . This is the symmetry group of Γcov associated
with the internal null boundary N .

Our covariant phase space Γcov will consist of vacuum solutions (M, gab) of Einstein’s
equations (possibly with a cosmological constant) such that

(1) N is a null boundary of M , and every la ∈ S is an affinely parametrized geodesic
null normal. Thus la∇alb =̂ 0;

(2) For any given la, the co-vector la : =̂gab lb is the same for all g ∈ Γcov.

(3) The expansion θ(l) of each null normal vanishes in the distant future at least as fast
as 1/v(1+ε) in the limit v → ∞. If this condition is satisfied by one la, it is satisfied
by all.

Condition (2) implies that N is equipped with pairs (la, la) where any two are related
by a simple rescaling: (l′a, l′a)=̂(fla, f la) with f > 0 satisfying Llf=̂0. This is a metric
independent, kinematic structure on N . It is the same as that used in [2] but with κ of [2]
now set to zero: as condition (1) requires, all our vector fields la are not only null but also
affinely parametrized geodesic vector fields on N for all g in Γcov. Condition (2) might
seem restrictive; however, as remarked in [2], every metric (satisfying (1)) can be mapped
by a gauge diffeomorphism to a metric satisfying this condition. The third condition is new
and introduced because we are only interested in situations such as gravitational collapse
and mergers in which N becomes an NEH in the distant future.

Recall that at I+ expansions in Bondi-Sachs or Newman-Unti coordinates serve to
bring out the asymptotic form of the space-time metric. Let us introduce Newman-Unti
type coordinates in a neighborhood of N and provide a more explicit form of the metrics
g ∈ Γcov. Fix a la on N , and an affine parameter v of la. Introduce angular coordinates
xA with A = 1, 2 on each v =̂ const 2-sphere such that LlxA =̂ 0 on N . The coordinates
(v, xA) on N make no reference to any space-time metric g. However we will need a
specific metric g ∈ Γcov to extend them to a neighborhood in a systematic manner. Fix a
g ∈ Γcov, denote by na the other future directed null normal to each v = const cross-section
of N , normalized so that gablanb = −1, and consider past pointing null geodesics satisfying
na∇anb = 0. Parallel transport v, xA along these geodesics and denote by r the affine
parameter of −na, with r = 0 on N . Then, we have a chart v, r, xA in a neighborhood
of N (in which the geodesics tangential to na do not intersect). In this chart, the metric
g ∈ Γcov we began with has the form

gabdxadxb = −r2 γ dv2 + 2 dvdr + 2r βA dvdxA + qAB dxAdxB , (2.1)

γ, βA, qAB being smooth functions of our coordinates. (Note that we have six free func-
tions, just as one would expect, given there is a 4-dimensional freedom in the choice of
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coordinates.) The vector field na is given by na∂a = −∂r in the neighborhood and by con-
struction it is null and geodesic in the neighborhood. We extend la to the neighborhood
via la∂a = ∂v; it is null and geodesic only on N .2 Since r vanishes on N , eq. (2.1) implies

gabdxadxb =̂ 2 dvdr + qAB dxAdxB . (2.2)

Thus, on the 3-dimensional boundary N , the freely specifiable components of any metric
g ∈ Γcov are qAB, just as one would expect from a characteristic initial value problem based
on two intersecting null hypersurfaces [35]. Finally, because of our condition (3) on the
metrics g ∈ Γcov, qAB∂vqAB vanishes at least as fast as 1/v1+ε as v →∞.

Consider now another metric g′ ∈ Γcov. Then, keeping the la and v on N the same,
we can repeat the procedure and obtain coordinates (v′, r′, x′A) in a neighborhood of N .
The metric g′ will have the same form as in (2.1) in these new coordinates which, by
construction, agree with (v, r, xA) on N . Therefore, the diffeomorphism that sends the
primed coordinates to unprimed is identity on N and can be regarded as gauge also from
the phase space perspective. It sends g′ to a metric that has the same form as in (2.1),
now in unprimed coordinates. Thus, we can fix the coordinates (v, r, xA) and consider all
metrics of the form given in (2.1). Then, this collection contains a representative from
each equivalence class of gauge related metrics in Γcov. In this sense, there is no loss
of generality in restricting ourselves to a fixed chart (v, r, xA) and solutions of Einstein’s
equations which have the form (2.1) in this chart. (Indeed, this strategy is often followed
at I+, where one often fixes coordinates (u, r, xA) and restricts oneself to solutions which
have the Newman-Unti (or Bondi-Sachs) asymptotic form near I+ in those coordinates.)
While this description of g ∈ Γcov is often convenient, it is also awkward to use while
discussing the action of symmetries in GN on Γcov since the coordinates (v, r, xA) are tied
to a specific pair (la, v) and the pair changes under the action of GN .

2.1.2 The sub-manifold ΓNEH
cov of Γcov

As explained above, we wish to focus on a sub-manifold ΓNEH
cov of Γcov consisting on solutions

g for which N is an NEH (see figure 1). To specify this sub-manifold, we will again proceed
in two steps, first fixing some additional kinematical structure on N and then specifying
further requirements that g ∈ Γcov should satisfy in order to belong to ΓNEH

cov .
Recall from section 1 that each NEH comes equipped with a 3-parameter family of

conformally related pairs (q̊ab, [̊`a]) consisting of unit, round 2-sphere metric q̊ab and an
equivalence class of geodesic null normals ˚̀a, where two of these normals are regarded as
equivalent if they are related by rescaling with a positive constant c. Therefore, let us
equip N with a collection C of such pairs, in addition to the set S we already fixed while
defining Γcov, such that

(i) Each ˚̀a belongs to the set S; and

(ii) (q̊ab, [̊`a]) ∈ C and (q̊′ab, [̊`′ a]) ∈ C if and only if (q̊′ab = α2q̊ab, [̊`′ a] = [α−1˚̀a]) for
a function α satisfying L˚̀α = 0 and given by eq. (1.3). (Thus, there is precisely a
3-parameter family of functions α.)

2Note also that la =̂∇ar. Exactness of la at N is used in [2] to ensure certain uniqueness (see their
eq. (5.28)).
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Figure 1. Part of the space-time that is relevant for the sub-manifold ΓNEH
cov of the full phase

space Γcov that is of primary interest to our discussion. The inner boundary ∆ is an NEH for each
solution gab in ΓNEH

cov . Σ1 and Σ2 are partial Cauchy surfaces that intersect ∆ in 2-spheres ∂Σ1 and
∂Σ2, respectively. Although this figure includes the asymptotic region including I+ and io, only a
neighborhood of ∆ is relevant for our detailed calculations.

This is precisely the universal structure available on NEHs; in particular the functions
α make no reference to any specific NEH geometry. As we showed in [1], the family of
diffeomorphisms that preserves C is the NEH symmetry group G. This group is considerably
smaller than the symmetry group associated with N in the full phase space Γcov which
only has to preserve the entire set S of vector fields la. This is because: (a) in addition to
preserving the set S of vector fields la, the diffeomorphisms in G have to preserve the much
smaller subset of the vector fields ˚̀a; (b) they also have to preserve the 3-parameter family
of unit, round 2-sphere metrics {q̊ab}; and, (c) they act on the conformally related pairs
(q̊ab, [̊`a]) such that their action on q̊ab is appropriately coordinated with their action on [̊`a].

We can now specify the submanifold ΓNEH
cov of Γcov. It will consist of solutions g ∈ Γcov

that satisfy the following additional conditions:

(A) N is an NEH ∆ with respect to the space-time metric gab;

(B) The pull-back qab to N of gab is conformally related to the unit, round 2-sphere
metrics q̊ab in the collection C: q̊ab = ψ̊2qab for some positive function on N satisfying
L˚̀ψ̊ = 0; and,

(C) The preferred equivalence class [¯̀a] of null geodesic normal to N selected by the NEH
structure is related to the equivalence class [̊`a] in the pair (q̊ab, [̊`a]) by [̊`a] = [ψ̊−1 ¯̀a].

Condition (A) implies that the expansion θ(̊`) and shear σ(̊`)
ab of every null normal ˚̀a

in C vanish on N (and therefore they vanish for all null normals to N ). Condition (B) on
gab requires that the metric qab induced on N by gab be conformally related to any of the
round, unit 2-sphere metrics q̊ab in the collection C. It then follows that all metrics qab
induced on N by g ∈ ΓNEH

cov are conformally related to one another. Similarly, Condition
(C) requires that gab be such that the preferred equivalence class [¯̀a] of normals on its NEH
be related to the 3-parameter family of equivalence classes [̊`a] in C via the same conformal
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factor ψ̊ that relates the physical metric qab to the unit round metrics q̊ab. Therefore, at
first glance, the restriction (B) and (C) on g ∈ ΓNEH

cov may appear to be overly restrictive.
However, further thought shows that they are not. Recall that the intrinsic geometry and
angular momentum structure of any given NEH is captured in an invariant fashion by a set
of multipole moments and the horizon geometry can be reconstructed from these moments.
The ‘reconstruction argument’ of [1] implies that given any set of (admissible) multipoles,
there is a gab ∈ ΓNEH

cov with those multipoles. Hence from a physical perspective ΓNEH
cov is as

rich as one would wish it to be. Together, conditions (A-C) imply that the sub-manifold
ΓNEH

cov of Γcov consists of space-times (M, gab) in which N is an NEH ∆, with the same
universal structure as the one that was kinematically fixed through C.

Finally, let us discuss how the requirement g ∈ ΓNEH
cov further constrains the form (2.1)

of the metric gab near N . Recall first that the NEH geometry is encoded in the triplet
(qab, [¯̀a], ωa) where qab is the intrinsic metric induced on ∆ by the space-time metric gab and
[¯̀a] is the preferred equivalence class of null geodesic normals selected by the requirement
that its rotational 1-form ω̄a — defined by ←∇a ¯̀b = ω̄a ¯̀a — is divergence free. Let us
use an ¯̀a ∈ [¯̀a] to carry out the construction that led us to the form (2.1) of the metric.
Then it follows that in the chart (v, r, xA) determined by that construction, qAB are the
components of qab, and −1

2βA of ωa. Therefore, βa is divergence-free w.r.t. qab. Finally,
since L¯̀qab =̂ 0, L¯̀ω̄a =̂ 0 and qab ¯̀b =̂0, ω̄a ¯̀a =̂ 0 on any NEH ∆ it follows that qAB and
βA satisfy

qAB,v =̂ 0 and βA,v =̂ 0 . (2.3)

2.1.3 Generic perturbations δg around g ∈ ΓNEH
cov

Let us now consider first order perturbations δgab at points gab ∈ ΓNEH
cov . These perturba-

tions represent arbitrary tangent vectors; they need not be tangential to ΓNEH
cov . Therefore,

generically, the NEH character of N is not preserved to first order. In particular, δqAB
and δβA can have time-dependence. Nonetheless, since every la ∈ S that N is equipped
with is a geodesic normal null to N for every g ∈ Γcov, it follows in particular that these
properties are preserved to the first order:

δg
←ab
lb =̂ 0 and δ

(
la∇a lb

)
=̂ 0 . (2.4)

Next, for every g ∈ Γcov and la ∈ S, the expansion θ(l) falls-off at least as fast as 1/v1+ε

for some ε > 0. The Raychaudhuri equation that holds for the geodesic null normals la for
any g ∈ Γcov,

Llθ(l) = −1
2θ

2
(l) − σ

(l)
ab σ

(l)
cd q

acqbd , (2.5)

then implies that the shear σ(l)
ab also falls-off at least as fast as 1/v1+ε for some ε > 0.

Therefore for any linearized perturbation δg, δθ(l) and δσ
(l)
ab have the same fall-off as v →∞.

Now, since for g ∈ ΓNEH
cov the expansion θ(l) as well as the shear σ(l)

ab determined by g

vanish everywhere on N . Therefore, linearization of the Raychaudhuri equation about a
g ∈ ΓNEH

cov implies Ll(δθ(l)) =̂ 0. Since δθ(l) vanishes in the limit v → ∞, it follows that
δθ(l) =̂ 0 everywhere on N for arbitrary perturbations δg about any g ∈ ΓNEH

cov . Thus, the
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perturbed expansion again vanishes to first order. However, perturbed shear δσ(l)
ab does not

vanish. Such perturbations represent weak gravitational waves. We will see in section 4
that the presence of such perturbations leads to non-trivial fluxes of physical quantities
associated with NEH symmetries across N , just as one would expect. Finally, even for
perturbations δg that are tangential to ΓNEH

cov , the angular derivatives of δqab and δβa are
generically unconstrained. Such perturbations map the NEH geometry of g to a nearby
NEH geometry, with different multipoles. For example if g is the Schwarzschild metric,
then δg could be a linearized Kerr metric on the background g. Under such perturbations,
charges associated with the NEH symmetries change but there will be no fluxes, again just
as one would expect.

To summarize, the universal structure defined intrinsically on N consists of the set S
of vector fields la specified in section 2.1.1. The symmetry group preserving this structure
GN has a semi-direct product structure like the BMs group B, but the normal subgroup
(of ‘vertical diffeomorphisms’) is ‘worth two functions on a 2-sphere’ rather than one, and
the quotient is the infinite dimensional Diff S2, rather than the six dimensional Lorentz
subgroup. The full phase space Γcov consists of those solutions gab of Einstein’s equations
for which N is a null 3-boundary of space-time, each la ∈ S serving as a geodesic null
normal, and satisfying the condition that for any given la, the covariant normal lb := gab l

a

is the same, independent of gab.3 One can choose coordinates (v, r, xA) in a neighborhood
of N such that every g ∈ Γcov is gauge related to the metric of the form (2.1). To define
the sub-manifold ΓNEH

cov of Γcov that is of primary interest in our analysis, we introduced
additional kinematic structure on N : a collection C consisting of pairs (q̊ab, [la]), specified
in section 2.1.2. The group preserving the full kinematic structure is G, whose structure
is discussed in detail in [1]. It is a 1-dimensional extension of the BMS group B and thus
considerably smaller than GN . The sub-manifold ΓNEH

cov of Γcov consists of those g ∈ Γcov
for which N is an NEH such that the intrinsic metric qab and the canonical equivalence class
[¯̀a] of null normals on this NEH are conformally related to the pre-specified pairs (q̊ab, [̊`a])
in the manner spelled out in section 2.1.2. Because of these additional conditions on gab
the metric coefficients in (2.1) are now constrained by eq. (2.3). Finally we discussed the
structure of generic perturbations δg at points g ∈ ΓNEH

cov . Our conditions on ΓNEH
cov imply

that, to first order in perturbations, vector fields la continue to be geodesic null normals
to N as in eq. (2.4), and the expansion continues to vanish; δθl=̂0. However the first
order shear δσ(l)

ab is generically non-zero on N , just as one would expect of perturbations
representing gravitational waves that traverse N .

2.2 New ingredients

To define charges and fluxes at internal, null boundaries, two new ingredients have to
be added to the standard Hamiltonian framework. To spell them out, let us begin with
the standard covariant phase space of general relativity [32, 33]. It consists of suitable

3Physical considerations also led us to require that N becomes an NEH in the distant future for all
g ∈ Γcov. To bring out the similarity between structures on N and at I+, it is convenient to assume in
addition that gab is asymptotically flat in the Λ = 0 case, although this restriction plays no direct role in
our analysis.
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solutions gab of Einstein’s equations on a given 4-manifoldM , such that (M, gab) is globally
hyperbolic. Given a solution g in the covariant phase space and a tangent vector δg at this
point, the Lagrangian formulation provides us with a 3-form Θabc(g; δg) on space-time,

Θabc (g; δg) = 1
16πG εabc

d (gef∇d δgef −∇eδged) , (2.6)

that depends linearly on δg. For globally hyperbolic space-times under consideration, the
integral of Θabc(g; δg) over a Cauchy surface provides a 1-form Θ(g) on the covariant phase
space, whose exterior derivative yields the pre-symplectic 2-form Ω(g). Since Θ(g) is a
symplectic potential on the phase space, the space-time 3-form Θabc(g; δg) will be referred
to as the ‘obvious 3-form potential’.

Now, given a pre-symplectic potential Θ, we can add to it the gradient of a phase
space function to obtain another, equally viable pre-symplectic potential. This freedom
translates to that of adding to Θabc(g; δg) a term of the form δFabc(g), where Fabc(g) is a
space-time 3-form that depends on the given metric g, and δFabc its directional derivative
along δg in the argument of Θabc.

The definition of charges and fluxes associated with the internal null boundary N
requires us to eliminate this ‘gauge freedom’ [2, 34]. More precisely, one needs the pull-
back Θabc(g; δg) to N of a ‘preferred 3-form potential’. This 3-form on N is selected by
imposing a set of natural conditions, summarized in appendix A. This is the first ingredient
that one needs to define charges and fluxes. This ‘preferred’ Θabc(g; δg) on N is given by

Θabc(g; δg) = Θ
←abc

(g; δg)− 1
8πG δ

(
(θ(l) εabc)(g)

)
. (2.7)

Here Θ
←abc

(g; δg) is the pull-back to N of Θabc (g; δg) of eq. (2.6); θ(l) denotes the expansion
of the null normal l to N , as before; and εabc, the volume 3-form on N defined by

εabc := ndεdabc where na is any vector field on N s.t. lanb gab = −1 . (2.8)

Note that the term (θ(l) εabc) is independent of the choice of the geodesic null normal la

and the associated na used in its evaluation. Consequently, Θabc(δg) is also insensitive to
this choice.

The second ingredient one needs to define charges and fluxes is a suitable extension
Xa of the symmetry vector fields ξa on N to its neighborhood in the space-time manifold
M . The actual calculations require only the first outward derivatives of the extension and
a prescription to fix this derivative was given in [2]. Since in our analysis N is restricted
to be an unperturbed or a perturbed NEH ∆, we can do more: we can provide an explicit
form of the extension Xa to the desired order by fixing a chart (v, r, xA) as in section 2.1.1:

X = (vf1 + f2)∂v +HA∂A − rf1∂r − rX̃v∂v + rX̃A∂A + r2 ˜̃Xr∂r . (2.9)

Here f1, f2, H
A are functions only of the angular coordinates xA. As one can see by

setting r = 0, the symmetry vector field ξa on N is given by ξ =̂ (vf1 + f2)∂v + HA∂A.
Thus, f1, f2, H

A are completely determined by the given ξa. X̃v, X̃A, ˜̃Xr are new smooth
functions (of (v, r, xA)) that represent the freedom in the extension. However, as we will
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see in sections 3 and 4, the charges and fluxes associated with ξa are insensitive to this
freedom. The Lie algebra of these (equivalence classes) of extensions Xa is the same as the
Lie algebra g of our symmetry vector fields ξa on ∆. (For details on this extension and its
properties, see appendix B.) Finally, the form of the extension given in (2.9) holds only in
a neighborhood of N . If one is interested in charges also at infinity, one would have assume
that Xa can be further extended so that it is an asymptotic symmetry. If one is interested
in charges and fluxes only on N it is convenient to assume that the extended vector field
Xa vanishes outside a spatially finite region.

With these two ingredients at hand, the expression of charges at the null boundary N
are given by [2]:

Qξ[C] = QN
ξ [C]− 1

8πG

∮
C
θ(`) ξ

a εabc ≡ −
1

16πG

(∮
C
εabcd∇cXd + 2 θ(`) ξ

c εcab

)
. (2.10)

The first term, QN
ξ [C], is the Noether charge that results if one uses the pre-symplectic po-

tential Θ
←abc

(g; δg), while the second term arises from the ‘gradient term’ 1
8πG δ

(
(θ(`) εabc)(g)

)
that was added to obtain the canonical Θabc(g; δg). The extension Xa of the symmetry
vector field ξa on N is needed to evaluate the Noether charge since its integrand requires
the knowledge of the outward (i.e., radial) derivative of Xa at points on C. We will find
that only the part −r f1(xA) ∂r of the extension is needed in this calculation and f1(xA) is
determined directly by the symmetry vector field ξa on N . Therefore, the charge Qξ[C] de-
pends only on the space-time metric gab and the symmetry vector field ξa; it is independent
of additional structures we will introduce in section 3 to make the physical interpretation of
charges transparent. Finally note that, if the symmetry vector field ξa is either tangential
to the cross-section C, or if N is an NEH for the metric g under consideration, the second
term vanishes and Qξ[C] is given just by the Noether charge.

The flux across the portion N1,2 of N bounded by two cross-sections C1 and C2 (with
C1 to the future of C2) is given, of course, by the integral of the exterior derivative of the
2-form integrand of Qξ[C] over N1,2. One can show that this expression can be recast in
the form

Fξ [N1,2] =
∫
N1,2

Θabc (g; δXg) (2.11)

that is sometimes more convenient to use. (Our conventions are such that Fξ [N1,2] is
the flux leaving space-time portion depicted in figure 1 and falling inward.) All these
considerations hold on the full phase space Γcov.

In section 3 we will evaluate these charges and fluxes for various symmetry generators
by restricting ourselves to solutions g for which N is an NEH and, in section 4, for metrics
g for which it is a perturbed NEH.

3 Charges and fluxes on NEHs

This section is divided into three parts. In the first we collect expressions that will be used
in the subsequent subsections as well as in section 4; in the second we calculate charges
and fluxes on NEHs; and in the third we use explicit examples to illustrate that they are
viable from physical considerations, and have interesting properties.
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3.1 General considerations

To begin with, let us consider general metrics g ∈ Γcov for which N is not necessarily an
NEH. Fix any geodesic null normal la, and a null vector field na on N that is normal to the
cross-section C of interest and satisfies lanbgab =̂ − 1. Then, the expression of the Noether
charge QN

ξ becomes:

QN
ξ [C] ≡ − 1

16πG

∮
C
εab

cd∇cXd = − 1
8πG

∮
C
εab l

cnd∇[cXd]

= − 1
16πG

∮
C
εab n

d(LlXd −∇d(l ·X)
)

(3.1)

where εab is the area 2-form on C, Xa is the extension (2.9) of the symmetry vector field ξa.
To simplify this expression further, let us fix an affine parameter v of this la, and introduce
the ‘Newman-Unti’-type chart (v, r, xA) in a neighborhood of N as in section 2.1. Then,
we have la∂a = ∂v and na∂a = −∂r in a neighborhood of N , so that Llna = 0. Using this
fact in (3.1) and the form (2.1) of the space-time metric in these coordinates, we have:

QN
ξ [C] = − 1

16πG

∮
C
εab
[
Ll(gcdXc nd) − Ln(gcdXc ld)

]
= 1

8πG

∮
C
εab

(
f1 −

1
2 βaH

a
)

(3.2)

where (εab, βa) are determined by the metric gab while f1, H
a are determined by symmetry

vector field ξa on N itself (see the expression (2.9) of X). The first expression in (3.2)
makes it manifest that the charge QN

ξ [C] depends only on the space-time metric and the
extension Xa of the symmetry vector field while the second expression makes it clear that
all the necessary information in the extension Xa is available already in ξa on N ; auxiliary
information such as the fields that remain undetermined in the extension (2.9) do not enter.
With this expression of QN

ξ [C] at hand, the total charge Qξ[C] of eq. (2.10) becomes:

Qξ [C] = 1
8πG

∮
C

(
f1 −

1
2βaH

a
)
εab − θ(l) ξ

c εcab . (3.3)

Eq. (3.3) holds for any choice of the geodesic null normal la (in the universal structure
at N spelled out in section 2.1.1). Since (θ(l) εcab) is independent of the choice of la, the
charges depend only on the infinitesimal symmetry generator ξa and physical fields εab, βa
and (θ(l) εcab), induced by the space-time metric at C.

To associate physical interpretation to charges and corresponding fluxes it is convenient
to decompose the vector fields ξa into various parts, just as one does at null infinity I+.
As discussed in [1], ξa can be written as a sum of a dilation da, a supertranslation Sa a
rotation Ra and a boost Ba. However, this decomposition is not defined invariantly: it
requires us to choose a round metric q̊ab from the universal structure of section 2.1.2. We
also need to choose a vector field ˚̀a in the equivalence class [̊`a] corresponding to q̊ab, and
an affine parameter v̊ of ˚̀a to display various pieces of the decomposition explicitly.4 But

4 As we pointed out in section 1, the situation is completely analogous to that at I+. In our case, one
can select a unique (q̊ab, [̊`a]) on ∆ by requiring that the ‘area dipole moment’ vanish — i.e.,

∮
C
Y̊1mεab = 0

on ∆ [1]. Given a space-time with an NEH, one can use this q̊ab. However, we will not confine ourselves to
this choice because this q̊ab varies from one space-time to another.
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as we will see, these two additional choices play a minor role. Given (q̊ab,˚̀a, v̊), we can
write a general element ξa of the symmetry Lie algebra g as

ξa = k v̊ ˚̀a + s̊˚̀a + ε̊abD̊bχ̊ + (φ̊ v̊ ˚̀a + q̊abD̊bφ̊)
≡ da + Sa +Ra +Ba (3.4)

Thus the dilation da is labelled by a constant k, the supertranslation sA, by a function s̊(xA)
of angles, the rotation Ra by a function χ̊(xA) and the boost Ba by a function φ̊(xA), where
χ̊(xA) and φ̊(xA) are both linear combinations of the ` = 1 spherical harmonics defined by
the q̊ab we fixed. (For details, see section 3 of [1].) Note that the combination v̊ ˚̀a is un-
changed under rescalings of ˚̀a and s̊ is a function with conformal weight 1. Consequently,
if we use a different conformal frame (q̊′ab, [̊`′ a]) = α2q̊ab, [α−1˚̀′ a]), the vector space gener-
ated by linear combinations of dilations and supertranslations remains the same.5 However,
‘pure’ Lorentz transformations with respect to one conformal frame are no longer so with
respect to another. Again this situation is completely analogous to that at I+.

We will use the expressions (3.2) and (3.3) of charges and the decompositions (3.4)
and (3.6) of symmetry vector fields to define dilation energy, supermomenta, and the
Lorentz angular momentum. Note that in the derivation of (3.2) and (3.3), we only assumed
that g ∈ Γcov; thus N is not required to be an NEH. We will use these expressions for NEHs
in this section, and for perturbed NEHs in section 4.

Remark: while the NEH symmetry group G arose [1] as the group preserving the
universal structure provided by the pairs (q̊ab, [̊`a]) on ∆, as we remarked in section 1, on
any given ‘concrete’ NEH ∆, the symmetry vector fields ξa can be also be identified by
their action on pairs (qab, [¯̀a]), directly induced on ∆ by the space-time metric gab, via:

Lξqab = 2φ qab and Lξ ¯̀a = −(φ+ k) ¯̀a (3.5)

This characterization of symmetries provides an equivalent but alternate decomposition
of ξa. Given a concrete NEH, then, let us choose an ¯̀a ∈ [¯̀a], fix an affine parameter v̄
of ¯̀a, and consider v̄ = const foliation. Then, eq. (3.5) implies that ξa can be uniquely
decomposed as

ξa = da + ba = da + (Sa + La) = kv̄ ¯̀a +
(
s̄¯̀a + (φ¯̀a + H̄a)

)
, (3.6)

where ba is a BMS vector field that is a sum of a supertranslation Sa and a Lorentz
transformation La = φ¯̀a + H̄a. The ‘horizontal part’ H̄a is tangential to the v̄ = const
cross-sections; is Lie-dragged by ¯̀a, L¯̀H̄a = 0; and is a conformal Killing field of qab
satisfying LH̄qab = 2φqab. Thus, 2φ = DaH̄

a where Da is the derivative operator on the
v̄ = const cross-sections.

5If we change the fiducial pair (˚̀a, v̊) → (c−1˚̀a, c̊v + f(xA)), the sub-algebra v of vertical vector fields
remains invariant, and the dilation part of ξa also remains invariant but the supertranslation part changes
via s(xA)→ c s(xA) + f(xA).
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3.2 Simplifications on ΓNEH
cov

For notational convenience, let us decompose a general symmetry vector field ξa of (3.4)
in to its vertical and horizontal parts:

ξa = V a
(ξ) +Ha

(ξ), with V a
(ξ) = (̊v (k+ φ̊) + s̊)˚̀a and Ha

(ξ) = ε̊abD̊bχ̊ + q̊abD̊bφ̊ . (3.7)

Thus, in terms of the extension (2.9) Xa of ξa, we have: f1 = k + φ̊, f2 = s̊ and HA =
Ha

(ξ)∇aX
A (in the chart (v, r, xA) determined by ˚̀a and its affine parameter v̊ on ∆.)

Let us now restrict ourselves to metrics g ∈ ΓNEH
cov so that N is an NEH; thus θ(`) =̂ 0

for all null normals. Hence, the second term in the expression (3.3) of the charge Qξ[C]
vanishes and we are left just with the Noether Charge. For dilations and supertranslations,
φ = 0 and the horizontal part Ha

(ξ) also vanishes. Therefore, the corresponding charges are
given by

Q
(0)
d [C] = 1

8πG kA[C] and Q
(0)
S [C] = 0 , (3.8)

where A [C] is the area of the 2-sphere C, and where the superscript (0) in Q(0) is a reminder
that this charge refers to an unperturbed NEH. For rotations and boosts we have:

Q
(0)
R [C] = − 1

16πG

∮
C
Rcβc εab and Q

(0)
B [C] = − 1

16πG

∮
C

(
2φ̊−Bcβc

)
εab . (3.9)

Finally, it is instructive to use the second decomposition (3.6) of ξa and obtain the
corresponding charges without any reference to pairs (q̊ab, [̊`a]). Let us use for the null
normal in (3.1) an ¯̀a from the canonical equivalence class [¯̀a] on ∆ and simplify:

Qξ [C] = − 1
8πG

∮
C
εab ¯̀cn̄d∇cXd

= − 1
8πG

∮
C
εab

(
− (k + φ) + ξcn̄d∇c ¯̀d

)
= 1

8πG

∮
C
εab

(
(k + φ) + H̄cωc

)
= 1

8πG

∮
C
εab

((
k + 1

2DcH̄
c
)

+ H̄cωc

)
. (3.10)

Here: (i) in the first step we have removed anti-symmetrization over c and d using the
fact that the vector field Xa satisfies `bLXgab =̂ 0 for all null normals (since for any given
`b, the 1-form ¯̀

a : =̂ gab`
a is the same for all g ∈ Γcov); (ii) in the second step, we used

the fact that Xa is tangential to ∆ and satisfies LX ¯̀a =̂ − (φ + k)¯̀a; and, (iii) in the
third step the fact that ←∇a ¯̀b = ωa ¯̀b, where ωa is the (divergence-free) rotational 1-form;
and, (iv) in the fourth step, the fact that H̄a is a conformal Killing field of the metric qab
with LH̄qab = 2φ qab. In this derivation, we used the null normal ¯̀a but we did not have
to introduce coordinates. On the other hand, in expressions (3.9) of rotation and boost
charges we introduced the chart (v, r, xA) adapted to the null normal ˚̀a. If q̊ab = ψ2qab,
it is easy to verify that φ̊ = φ + LH̄ lnψ and βa = −2(ωa + Da lnψ). Therefore the two
sets of charges agree, as they must. Thus (3.10) encodes the dilation, supermomentum,
rotation and the boost charges we found above using a conformal frame (q̊ab, [̊`a]). The
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expression (3.10) has the advantage that it makes it manifest that the final values of charges
depend only on g ∈ ΓNEH

cov and the symmetry vector field ξa and are independent of the
auxiliary structures such as the choice of a pair (q̊ab, [̊`a]).

Remarks. (1) In the quasi-local horizon framework, angular momentum is unambigu-
ously defined for axisymmetric NEH geometries and is then given by J∆ = − 1

8πG
∮
C ωaR

a

where Ra is the generator of rotational symmetry [7, 22]. It follows from eqs. (3.9)
and/or (3.10) that J∆ = −QR[C]. Consequently, on general NEHs where the geome-
try is not necessarily axisymmetric, we are led to interpret J (0)

R [C] := −Q(0)
R [C] as the

component of the NEH angular momentum corresponding to the NEH symmetry Ra.
(2) As we noted in footnote 4, each concrete NEH is equipped with a canonical unit

round metric q̊ab for which the ‘area dipole’ vanishes [1]. If one uses this q̊ab to carry out
the decomposition of ξa into various parts, the first term involving φ in the boost angular
momentum in (3.9) vanishes because φ is a linear combination of the first three spherical
harmonics. However, this specific canonical round metric q̊ab is tied to physical metric qab;
it is not universal.

Are the specific values of charges we found compatible with our physical intuition?
Recall that on the full phase space Γcov where N is only required to be a null boundary,
this is not the case because, for example, the charge and flux associated with the dilation
symmetry on (possibly, a portion of) the null cone of Minkowski space is non-zero and time-
dependent because

∮
C θ(`) d

a εabc fails to vanish and varies from one cross-section to another.
Do such physically spurious features persist even though we have restricted ourselves to
2-sphere cross-sections C of an NEH?

Let us first consider fluxes. Recall first that NEHs ∆ are more general than the
Killing horizons. For example, in the asymptotically de Sitter context the Kastor-Traschen
solutions represent dynamical, multi-black hole space-times that admit NEHs which are
not Killing horizons [24–26]. In the zero cosmological context, the Robinson-Trautman
solution admits an NEH which is not a Killing horizon; in fact every neighborhood of the
NEH contains radiation [27]. Nonetheless, the area of cross-sections of NEHs does not
change. The mathematical reason is that the expansion θ(`) vanishes and the physical
reason is that the definition of NEHs ensures that even though there may be radiation
arbitrarily close to ∆, none falls into ∆. Therefore, one expects that fluxes of physical
quantities across ∆ should vanish. Is this expectation borne out? Since εab and ωa are
Lie-dragged by every null normal `a and also transverse to it, it follows that the values of
these charges are independent of the choice of the cross-section C. Therefore, all fluxes
vanish identically, just as one would expect. One can also verify this directly using the
expression (2.11) of fluxes.

What about the charges? Let us begin with angular momentum. Consider axisymmet-
ric solutions gab in ΓNEH

cov that are asymptotically flat at spatial infinity, in which the axial
Killing field R̄a is tangential to ∆. As we noted above, on an NEH, the charge Q(0)

ξ [C]
associated with any horizon symmetry ξa is given by the Noether charge of the extension
Xa of this horizon symmetry. Now, a key feature of our extensions Xa is that if ξa is the
restriction to ∆ of any space-time Killing vector, then Xa agrees with that Killing field (to
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the order that enters the expression of the Noether charge; see appendix B). Therefore, in
the axisymmetric space-times now under consideration, the charge Q(0)

R [C] associated with
the NEH symmetry Ra induced by the space-time Killing field R̄a satisfies

Q
(0)
R [C] = QN

R̄
[C] ≡ − 1

16πG

∮
C
εabcd∇cR̄d . (3.11)

In vacuum space-times, QN
R̄

[C] is precisely negative of the Komar integral for angular
momentum associated with the Killing field R̄a. The value of the Komar integral remains
unchanged if we continuously deform the 2-sphere C to another 2-sphere C ′. Furthermore,
in the limit that C approaches spatial infinity, it yields JADM

R̄
. Thus, our interpretation

that J (0)
R [C] = −Q(0)

R [C] is the horizon angular momentum (associated with the rotation
symmetry Ra) implies J (0)

R [C] = JADM
R̄

for space-times that admit a global axial Killing
field R̄a, just as one would hope.

What about translations? Initially it is rather surprising that the 4-dimensional trans-
lation subgroup of the BMS group is now extended to a 5 dimensional group due to the
presence of the dilation in G. Although, as explained in detail in [1], this extension is
inevitable, does it lead to any physically uncomfortable results with respect to charges?
For example, we just found that all supermomentum charges vanishes identically if N is
an NEH. Does this result not lead to a tension in the case when ∆ is a Killing horizon,
given that the ADM charge associated with the time translation Killing field is non-zero?
To shed light on such issues we will now evaluate the charges in a few simple yet physically
interesting examples. We will find that there is no tension at all.

3.3 Examples

In the interplay between time-translation Killing fields in space-time and the horizon
charges one encounters two subtleties. To illustrate the first, let us begin with the
Schwarzschild metric. Then, our internal boundary N is a Killing horizon, with surface
gravity κ = 1/4GM associated with the time translation Killing field t̄a that is normalized
to be unit at infinity. For simplicity, let us use the Eddington-Finkelstein coordinates that
are adapted to the Killing symmetry, so that:

gabdxadxb = −
(

1− 2GM
r̄

)
dv̄2 + 2dv̄dr̄ + r̄2dθ2 + r̄2 sin2 θdϕ2 . (3.12)

Since the horizon is located at r̄ = 2GM , the coordinate r in eq. (2.1) is given by r =
r̄ − 2GM . More importantly, in a neighborhood of the horizon, the metric (3.12) is not
in the form given in eq. (2.1) because in the Eddington Finkelstein coordinates ∂v̄ = t̄a∂a,
whence its restriction to ∆ does not coincide with the affinely parametrized null geodesic
vector field ∂v. On the NEH, this Killing field can be expressed in the v, r, θ, ϕ chart as
∂v̄ = 1

4GM v ∂v. Thus, it is a dilation symmetry da = k v ∂v with k = 1
4GM . Therefore, the

associated charge (2.10) is

Q
(0)
d [C] = 1

32πGM A[C] = M

2 . (3.13)
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That the result isM/2 rather thanM may seem puzzling at first. However further thought
shows that this is precisely what one should expect because: (i) As we noted above, Q(0)

d [C]
equals the Noether charge associated with the extension Xa of da, and Xa agrees with the
Killing field t̄a to the desired order; and, (ii) It is well-known that the Noether charge
associated with the time translation Killing field in any stationary space-time is half the
ADM mass. Thus we are led to interpret 2Q(0)

d [C] =: E(0)
t̄

[C] as the NEH energy associated
with the Killing symmetry t̄a. Note that because restriction of the Killing field t̄a to ∆ is a
dilation, there is no tension with the fact that all supertranslation charges vanish. Indeed,
there is no Killing field in the Schwarzschild space-time whose restriction of the horizon
yields a supertranslation.

To bring out the second subtlety associated with time-translation symmetries, let us
turn to the Kerr solution. Denote by t̄a the stationary Killing field that has unit norm
at infinity and by R̄a the rotational Killing field whose affine parameter takes values in
(0, 2π). Mass M is associated with t̄a and angular momentum J associated with R̄a. Does
our interpretation of the horizon charges Q(0)

d [C] and Q0
R[C] reproduce M and J correctly?

NEH supertranslations played no role in the Schwarzschild space-time. Do they perhaps
play a role now? If so, is there not a tension with the fact that all charges Q(0)

S [C] vanish?
Since these issues can cause unease, we will carry out explicit calculations to make the
results fully transparent.

Let us begin with the interplay between the dilation/supertranslation symmetries of ∆
and the space-time Killing fields of Kerr space-time. The problem neatly divides into two
parts because: (i) in the non-extremal case there is no Killing field — i.e., no constant linear
combination of t̄a and Ra — that is a supertranslation on ∆, while there is a unique linear
combination (modulo a constant rescaling) that it a dilation; and, (ii) in the extremal case
there is no Killing field that is a dilation on ∆, while there is a unique linear combination
(modulo a constant rescaling) that it a supertranslation.

Let us begin with the non-extremal case J < GM2. Then, our null boundary ∆ is a
Killing horizon for the following linear combination of the two Killing fields

K̄a = t̄a + Ω∆ R̄
a, with Ω∆ = J/G

2MG
(
M2 +

√
M4 − J2/G2) . (3.14)

As is well-known, ΩH has the interpretation of the angular velocity of the horizon which
vanishes in the Schwarzschild limit and equals 1/2GM in the extremal case J = GM2.
The Killing field K̄a becomes a dilation symmetry on ∆, given by

K̄a|∆ = da = k v`a where k =
√
M4 − J2/G2

2GM(M2 +
√
M4 − J2/G2)

. (3.15)

k is the surface gravity that the Killing field K̄a endows on the horizon, and v is the affine
parameter of the geodesic vector field `a ∈ [`a]. Now, from eq. (3.8) we have Q(0)

d [C] =
(k A[C])/(8πG). While in the Schwarzschild case this expression just gave us M/2, now is
a rather complicated function of M and J :

A∆ = 8πG2(M2 +
√
M4 − J2/G2) (3.16)
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However, using the expressions of Ω∆ and k, we can rewrite Q(0)
d [C] as the expected lin-

ear combination of the NEH energy and angular momentum, associated with the NEH
symmetries t̄a and R̄a respectively

Q
(0)
d [C] := kA∆

8πG = M

2 − Ω∆ J = Q
(0)
t̄

+ Ω∆Q
(0)
R̄
. (3.17)

Thus, although the initial expression (3.8) of the dilation charge Q
(0)
d [C] seems rather

opaque, it has precisely the value one would expect from the fact that da =̂ (t̄a + ΩHR̄
a).

Finally, let us consider the extremal Kerr solution. In this case ∆ is a Killing horizon
with zero surface gravity, whence the restriction of the Killing field K̄a to ∆ is a supertrans-
lation Sa rather than a dilation. But we saw in eq. (3.8) that charges Q(0)

S [C] associated
with all supertranslations vanish identically on the NEH! Is there then a tension with the
fact that the mass and the angular momentum of this solution are non-zero? Again, the
answer is in the negative. Using the fact that J = GM2 and Ω∆ = 1/2GM in the extremal
case, Sa =̂ t̄a + ΩH R̄

a yields:

Q
(0)
S [C] = Q

(0)
(t̄) [C] +Q

(0)
(R̄) [C] = M

2 −
M

2 = 0 . (3.18)

Thus, even though neither M nor J vanish, the horizon charge associated with the super-
translation Sa induced by K̄a on ∆ does vanish simply because the linear combination of
the two Killing fields for which ∆ is a Killing horizon is very specific. There is no tension
between the fact that the mass and angular momentum of the extremal Kerr are non-zero
and vanishing of all supertranslation charges.

We will conclude with a few remarks.

(i) Since one arrives at the expressions of charges using phase space methods, one has
direct control only on variations of charges. Thus, to begin with one only knows

δQξ[C] = δQN
ξ [C]− 1

8πG δ

∮
C
θ(`) ξ

a εabc (3.19)

for all permissible tangent vectors δg at the solution gab under consideration. To
arrive at the expression of the charges themselves, one needs to fix the integration
constant on the phase space. Normally, one eliminates this freedom by choosing a
preferred background, typically Minkowski space, and specifying the values of charges
at that solution. Minkowski space is not in our ΓNEH

cov . Instead, we can consider the
1-parameter family of Schwarzschild solutions and demand that all charges should
vanish in the limit M → 0. This requirement eliminates the freedom to add (the
ξ-dependent) constants to the charges, and leads us to the definition (2.10).

(ii) Since we have used some results from [2], to avoid potential confusion, let us note
points of difference between that framework and ours. First, as we have already
emphasized, we are primarily interested in the sub-manifold ΓNEH

cov of the covariant
phase space Γcov considered in [2]; thus our charges and fluxes refer only to non-
expanding horizons and perturbations thereof. The second point is a bit more subtle.
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We have restricted our null normals la and ˚̀a to ∆ to be affinely parametrized geodesic
vector fields. Therefore, in the notation of [2], their κ takes the value zero in our
analysis. Nonetheless, when we analyzed the symmetry vector fields that preserve
our universal structure, we were naturally led — in fact, forced — to admit dilations
da = k v̊˚̀a in our symmetry Lie algebra g. The acceleration of these vector fields on
any given ‘concrete horizon’ is non-zero and given by k (since ˚̀a is a geodesic vector
field on all ‘concrete’ horizons in our phase space Γcov). Thus, in our framework,
non-zero acceleration is associated only with symmetries; not with the null normals
that horizons come equipped with. (We labelled the dilations with the letter k rather
than κ to avoid potential confusion with formulas between [2] and our work.)

(iii) As in [2], our symmetry vector fields ξa are ‘kinematical’, i.e, the same for all phase
space points g ∈ ΓNEH

cov . In particular, then, any given dilation da = k v̊˚̀a comes
with a fixed positive number k, which represents the acceleration of the null vector
field da in any concrete space-time in ΓNEH

cov . Now, the phase space Γcov admits, e.g.,
Schwarzschild solutions with any positive mass M , each with a static Killing field t̄a

normalized to be a unit time translation at infinity. While this t̄a is a dilation on
∆ for all values of M , its acceleration on ∆ — or surface gravity — is 1/4M and
thus varies from one solution to another. Therefore, there is no NEH symmetry ξa

to which static Killing fields of all Schwarzschild solutions can tend to on ∆. As a
result, as in [2], in our framework there is no NEH symmetry ξa such that Qξ = M/2
for all Schwarzschild metrics. On the other hand, this was possible in the covariant
phase framework of [17, 22] because that framework allowed ‘live’ vector fields ξa as
symmetries, i.e. ξa themselves could vary in a streamlined manner from one phase
space point to another. (Note that this is the analog of ‘live’ lapse and shift fields
used routinely on the canonical phase space.) A generalization of the phase space
framework used in this paper that allows the symmetry vector fields to be ‘live’ may
lead to a new definition of charges such that Qnew

ξ is the ADM mass for the entire
Kerr family, for suitably chosen live symmetry vector field ξa. It is worth exploring
this issue further.6

4 Charges and fluxes on perturbed NEHs

This section is divided into two parts. In the first, we collect results on first and second
order linearization and in the second part we discuss charges and fluxes.

4.1 First and second order perturbations

Let us now consider a 1-parameter family of solutions g(λ) ∈ Γcov (that depends smoothly
on λ) such that ◦gab := gab(λ)|λ=0 is in ΓNEH

cov (so that N is an NEH ∆ for ◦gab). We can
6Interestingly, this subtlety does not arise for rotations because there is a universal normalization for

the rotational symmetry vectors Ra: They have closed orbits and normalized so that their affine parameter
runs from 0 to 2π, irrespective of the angular momentum content of space-time. Consequently, our charge
QR yields the correct angular momentum J in any axisymmetric, asymptotically flat space-time.
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carry out a Taylor expansion in λ:

gab(λ) = ◦gab + λ
dgab(λ)

dλ |λ=0 + λ2

2
d2 gab(λ)

dλ2 |λ=0 + . . .

=: ◦gab + λ 1hab + λ2

2
2hab + . . . (4.1)

so that 1hab is a first order perturbation, 2hab, a second order perturbation, etc, on the
background solution ◦gab. As usual, indices will be raised and lowered using the background
metric ◦gab. We will use the structure on the boundary N made available by the fact that
it is an NEH of the background metric ◦gab, and express the symmetry vector fields ξa

using that structure as in section 3. We will also use the fact that, while N is perturbed
and no longer an NEH due to 1hab and 2hab, the perturbations are controlled by the fact
that 1hab satisfies the linearized Einstein’s equations on the ◦gab background as well as the
asymptotic conditions (in the distant future) introduced in section 2, and 2hab satisfies the
second order linearized equation. We will primarily use the implications of these equations
on the Raychaudhuri equation that governs properties of null geodesics on N .

On the NEH of the background metric ◦gab, the expansion and the shear of these
geodesics vanish:

◦θ(`) = 0 and ◦σ
(`)
ab = 0 . (4.2)

Furthermore, as we noted in section 2, because of our choice of the phase space Γcov the
expansion continues to vanish at the first order but the shear does not. Let us use the
notation F ′(g) = d

dλ F (g(λ))|λ=0, and similarly for double prime. Then to first order
we have:

ε′ab = 1
2 (◦qcd 1hcd) oεab =: 1

2 (1h) oεab and θ′(`) = 1
2

˙1h = 0 (4.3)

where the ‘dot’ denotes derivative w.r.t. v, and,

σ
′ (`)
ab = 1

2 (◦qac) (◦qbd) L` (1hbd) or, σ
′ (`)
AB = 1

2 (1ḣAB) . (4.4)

To second order, we will only need ε′′ab and θ′′(`), which are given by

ε′′ab = 1
2

(
2h − 1hab

1hcd
◦qac ◦qbd + 1

2 (1h)2
)
oεab

θ′′(`) = 1
2

˙2h − (1ḣab) (1hcd) ◦qac ◦qbd . (4.5)

Because of the asymptotic conditions in the distant future we imposed on solutions g ∈ Γcov
(and the Raychaudhuri and Einstein equations), the fields θ′′(`) and σ′ (`)AB fall-off at least as
fast as 1/|v|1+ε as |v| → ∞.

In the next subsection we will evaluate the first and second order corrections to the
chargesQ(0)

ξ . We will restrict ourselves to space-time metrics gab(λ) ∈ Γcov of the form (4.1).
Since N is an unperturbed NEH for the background solutions gab(0), we can use the
symmetry group G of the unperturbed NEH to compute fluxes and charges associated
with not only gab(0), but also those associated with the first and second order perturbations
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thereon. This is analogous to the fact that given a stationary space-time, we can use the
stationary Killing field to speak of energy associated with that solution as well as that
carried by perturbations about that space-time.

Let us fix a symmetry vector field ξa and its extension Xa. Neither has λ-dependence
as we move along our 1-parameter family of metrics. However ∇a, εabcd, εabc and θ(`) in
the integrand of charge integrals acquire a λ-dependence. Therefore, using (3.3) (or (3.1)
or (3.2)) that hold for any g ∈ Γcov, we obtain a 1-parameter family

(
Qξ [C]

)
(λ) of charges.

By evaluating the charge at λ = 0, and taking its first two derivatives with respect to λ at
λ = 0, we obtain:

(i) Charges Q(0)
ξ [C], evaluated in the background solution ◦gab. We already discussed

these charges in section 3. However, in the notation we just introduced to handle
perturbations, the fields ωc, εab and the area A [C] that appear in the expressions
of the NEH charges should be replaced by ◦ωc, oεab and ◦A [C], as they refer to the
background metric ◦gab.

(ii) The first order perturbation Q(1)
ξ [C] of this charge; and,

(iii) The second order perturbation Q(2)
ξ [C] of this charge.

4.2 First and second order corrections to charges and fluxes

As in section 3, let us discuss divide the discussion of the perturbed charges and fluxes using
the decomposition of ξa into various parts. Then the expression (3.3) of charges on the full
phase space Γcov implies that the first order corrections to dilation and supertranslation
charges are given by:

Q
(1)
d [C] = k

8πG A′ [C] = k

16πG

∮
C

1h oεab and Q
(1)
S = 0 . (4.6)

where we have used the fact that ε′ab = 1
2 (◦qcd 1hcd) oεab =: 1

2 (1h) oεab and the fact that
the expansion vanishes to first order, i.e., θ′(`) = 0. Next, let us consider rotations and
boosts. From (3.3) we have:

Q
(1)
R [C] = − 1

16πG

∮
C
Rc
(
β′c + 1

2
1hβc

)
oεab

Q
(1)
B [C] = 1

16πG

∮
C

(
2φ̊ 1h− B̃c

(
β′c + 1

2
1hβc

))
oεab , (4.7)

where B̃a is the horizontal part of the boost vector field Ba. Thus, while for the dilation
and supertranslations the perturbed charges are expressed in terms only of perturbations of
the 2-metric qab, for rotations and boosts, they also involve perturbations of βa — the radial
derivative of perturbations of the ‘gvA part’ of the metric — just as one would expect from
the expression (3.9) of these charges on the NEH. Finally, note that L` 1h =̂ 0 on N because
θ′(`) =̂ 0 there and L`βc also vanishes by eq. (2.3). Under a generic perturbation, L`β′C and
β′c do not vanish on N . However, the Linearized Einstein’s equations R′ab `a ◦qbc =̂ 0 and
the fact that Ra and B̃a are conformal Killing fields of the physical metric imply that the
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integrals of Ra(L` β′a) and B̃a(L` β′a) over the cross-section C vanish. Hence to first order
all fluxes vanish, as they do for perturbations of stationary space-times at I+. Towards
the end of this subsection we will provide an alternate proof of vanishing of all fluxes to
first order that does not refer to coordinates or the metric component βA.

Next, let us consider second order corrections to charges and fluxes. Taking the second
λ-derivative of (3.3) and evaluating at λ = 0 we have, for the dilation and supertranslations,

Q
(2)
d [C] = 1

8πG

∮
C
k ε′′ab − θ′′(`) d

c oεabc and Q
(2)
S [C] = − 1

8πG

∮
C
θ′′(`) S

c oεcab (4.8)

where expressions of θ′′(`) and ε′′ in terms of the metric perturbations are given in (4.5).
For rotations and boosts, because Hcεc←ab

=̂ 0 when the indices ab are pulled back to the
cross-section C to which the vector field Hc is tangential, the second term in (3.3) does
not contribute and we obtain

Q
(2)
R [C] = − 1

16πG

∮
C
Rc
(
βc εab)′′

Q
(2)
B [C] = 1

16πG

∮
C

2φ̊ ε′′ab − B̃c (βc εab)′′ (4.9)

where B̃a is again the horizontal part of the boost Ba vector field.
As one would expect from the behavior of perturbations at I+, the second order fluxes

associated with these charges are non-zero. They provide the balance laws for the perturbed
charges. For the dilation and supertranslations, fluxes can be readily obtained using the
Raychaudhuri equation:

F (2)
d [N1,2] = − 1

4πG

∫
N1,2
|σ′ (`)mn |2 (ddnd) oεabc = − 1

16πG

∫
N1,2
| ˙1hmn|2 (ddnd) oεabc

F (2)
S [N1,2] = − 1

4πG

∫
N1,2
|σ′ (`)mn |2 (Sdnd) oεabc = − 1

16πG

∫
N1,2
| ˙1hmn|2 (Sdnd) oεabc .

(4.10)

Here, the dot denotes Lie derivative w.r.t. `a, we have set |σ′ (`)mn |2 = σ
′ (`)
mn σ

′ (`)
st

◦qms ◦qnt and
similarly for | ˙1hab|2, and na is any vector field such that gab`anb =̂ − 1. The expression
F (2)
d [N1,2] generalizes the formula for energy flux carried by gravitational waves across a

de Sitter horizon given in [36].
In the calculation of F (2)

d , there are terms with indeterminate sign in the intermediate
steps, but they all cancel out and the flux is non-negative (since dana is negative). It
vanishes if and only if the perturbation 1hAB of the 2-metric is time-independent. An
example of such a perturbation is provided by a 1hab that changes just the mass and/or
angular momentum along the Kerr family. If 1hab is time dependent, the charge Q(2)

d [C]
increases to the future. For supertranslations, the is flux also non-negative if s(xA) > 0,
i.e., Sa is a ‘time-like supertranslation’ that moves every cross-section C of N to a cross-
section C ′ that lies entirely to its future. One can interpret the 2F (2)

d and 2F (2)
s as the

‘energy and super-momentum’ carried by (weak) gravitational waves across the perturbed
NEH (after taking into account the factor of 2 associated with the Noether charge).
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Remarks. (i) The boundary conditions introduced in section 2 ensure that N becomes
an NEH in the distant future, i.e. the expansion θ(`) goes to zero as v →∞ for all g ∈ Γcov.
In binary coalescence or gravitational collapse, this is the NEH of the final remnant. At
late times, it is natural to regard the space-time metric as a perturbation of the final Kerr
black hole, and approximate the physical DH by a perturbation of the NEH of the Kerr
remnant. If we keep terms to second order, the Raychaudhuri equation (2.5) implies that
the time derivative L`θ(`) of the expansion of the perturbed NEH N is given by −|σ′ (`)mn |2 .
Since L`θ(`) is non-positive and vanishes in the remote future, θ(`) is non-negative on N .
Consider any cross-section C on which σ′ (`)mn is non-zero, i.e., there is gravitational radiation.
Then the area of any cross-section C ′ to its future satisfies A[C ′] > A[C]. Thus, the area
increases to the future, just as it does on a DH [16]. This is just what one would expect from
the fact that the perturbed N represents a weakly evolving DH. (With our conventions,
as with DHs, the positive flux across N is inward pointing; the radiation is falling into the
black hole.)

(ii) Since the flux F (2)
d ≥ 0, the (second order truncated) dilation charge

Qd(λ) = Q
(0)
d + λQ

(1)
d + 1

2λ
2Q

(2)
d (4.11)

increases with time. Consider a compact binary coalescence (or gravitational collapse) and
let us start from the final remnant and move to the past along N . Then the area and the
dilation charge decrease (to second order). However, when the decrease is non-negligible
relative to the values associated with the final remnant, the second order truncation be-
comes inadequate and one can no longer regard the perturbed NEH as a reliable substitute
for the full DH. Close to the merger, for example, one would have to abandon N as the
internal boundary, and use the DH instead.

(iii) For the supermomentum charge, within the domain of validity of the second order
perturbation theory we have that, for supertranslations Sc = s̊˚̀a with s̊ ≥ 0

QS(λ) = Q
(0)
S + λQ

(1)
d + 1

2λ
2Q

(2)
S = − λ2

16πG

∮
C
θ′′(`) S

c oεcab ≤ 0 , (4.12)

where in the last step we have used the fact that θ′′(`) is non-negative on N . Note that even
when the perturbed shear is zero to the past of a cross section C, the perturbed expansion
does not go to zero there; we do not have an unperturbed NEH in the past. This may seem
counter-intuitive at first since one might consider starting with an unperturbed NEH in
the past and then sending in a perturbation. In that case, the expansion would be non-zero
in the asymptotic future, whence that space-time would not be in the phase space Γcov we
considered. For space-times in Γcov all supermomentum charges vanish in the asymptotic
future and those with s > 0 are negative on N , given by (4.12).

Finally let us consider the fluxes associated with rotations and boosts. A direct calcu-
lation would require equations of motion relating the time derivatives of perturbations of
βA on N with expansion and shear. A more convenient approach is provided by the flux
formula (2.11) in which the equations of motion are ‘built-in’. Using the pullback to N
of Θabc one obtains that for any g ∈ Γcov the flux Fξ[N1,2] for any symmetry vector field
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ξa ∈ g is given by

Fξ[N1,2] = − 1
16πG

∫
N1,2
LXqmn

(
σ(`)
mn −

1
2θ(`)qmn

)
oεabc (4.13)

(see, e.g., eq. 6.26 of [2]). Here, as before, indices are raised and lowered using the back-
ground 2-metric ◦qmn. Note that this expression is independent of the choice of `a, and
the choice of inverse of ◦qmn. Moreover it is manifest that the flux vanishes if g ∈ ΓNEH

cov , as
expected. To obtain the flux on the perturbed NEH, as before, we take a parameter family
of solutions g(λ) ∈ Γcov passing through a ◦g ∈ ΓNEH

cov , differentiate with respect to λ and
evaluate the result at λ = 0. As an independent check on results we already obtained, let
us begin by examining the first order flux. Taking the first derivative with respect to λ,
and evaluating at λ = 0 using the fact that ◦θ(`) =̂ 0 =̂ θ′(`) we obtain

F (1)
ξ [N1,2] = − 1

16πG

∫
N1,2
LX◦qmn

(
σ′ (`)mn

)
oεabc . (4.14)

Now, because X is a conformal Killing vector of ◦qab and ◦qmnσ
′ (`)
mn = −q′mn ◦σ(`)

mn =̂ 0
on ΓNEH

cov , this term vanishes. Therefore, to the first order the flux vanishes for all NEH
symmetries ξa, confirming our earlier result, now without reference to a chart and without
having to explicitly invoke Einstein’s equations (since they are already built-in at the start).

Hence the leading order contribution to the flux comes at the second order. To the
second order the only non-zero terms that contribute to the flux are

F (2)
ξ [N1,2] = − 1

16πG

∫
N1,2

[
LX◦qmn

(
σ′′ (`)mn −

1
2θ
′′
(`)qmn

)
+ 2(LXqmn)′σ′ (`)mn

]
oεabc . (4.15)

All other terms vanish since ◦σ(`)
ab ,

◦θ(`) and θ′(`) vanish on N . Using again the relations
LXqmn =̂ − 2φqmn and qmnσ′′ (`)mn = −2qmn ′σ′ (`)mn , we obtain

F (2)
ξ [N1,2] = − 1

16πG

∫
N1,2

[
−2φ

(
2hmnσ′ (`)mn −

1
2θ
′′
(`)qmn

)
+ 2(LXhmn)′σ′ (`)mn

]
oεabc ,

(4.16)

= 1
16πG

∫
N1,2

[
(Lξ1hmn) ( ˙1hmn) + φ ˙(2h)

]
oεabc , (4.17)

where we have used eq. (4.4) and eq. (4.5), and where indices are raised and lowered using
the background 2-metric ◦qab. In particular, we see that for supertranslations and dilations
we recover eq. (4.10), previously obtained using the Raychaudhuri equation on source-free
solutions to Einstein’s equations. For rotations (4.16) implies

F (2)
R [N1,2] = 1

16πG

∫
N1,2

[
(LR1hmn) ( ˙1hmn) − 1

2 (DmR
m) ˙(2h)

]
oεabc . (4.18)

The first term in F (2)
R has the same form as in the angular momentum flux formula at

I+ for perturbations off a stationary background. However, unlike in the expression of
the supermomentum flux, there is now an extra term, proportional to DaR

a which is
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generically non-zero because, while Ra is a Killing field of the round 2-sphere metric q̊ab,
it need not be a Killing field of the physical metric qab. At I+, this term vanishes because
in the parallel calculation qab = q̊ab there. Returning to perturbed NEHs, note that if Ra

were to be a Killing field of the physical metric qab, and if the perturbations were also
to be axisymmetric, then the flux F (2)

R [N1,2] vanishes even when the perturbation is time
dependent, just as one would expect. Similarly, even if Ra is not a Killing field of qab,
the flux vanishes if the perturbations are time independent, again as one would expect on
physical grounds. Both these properties mirror what happens at I+.

For a boost vector field Ba let us denote, as before, by B̃a the ‘horizontal part’ — i.e.,
the part that is tangential to the v = const cross-sections of N — and by na the 1-form
orthogonal to these cross-sections. Then the flux is given by

F (2)
B [N1,2] = 1

16πG

∫
N1,2

[
(LB 1hmn) ( ˙1hmn) − 1

2 (DmB̃
m) ( ˙2h)

]
oεabc . (4.19)

Again, the flux vanishes if the perturbations are time independent, as one would expect
physically.

5 Discussion

While there is significant literature on NEHs, by and large the focus has been on the
structure and symmetries of individual NEHs. Just as generic space-times do not admit
any symmetries and, in 4-dimensions, the dimension of the isometry group of any given
metric is less than 10, a generic NEH does not admit any symmetry and the symmetry
group of any given NEH can not exceed 5 [37]. In the companion paper [1], we shifted the
focus from the structure and symmetries admitted by individual NEHs to a structure shared
by all NEHs, and the group that preserves that ‘universal structure’. We found that the
universal structure is closely related to — but slightly weaker — than that at null infinity,
I, of asymptotically flat space-times. Consequently, the NEH symmetry group G turned
out infinite dimensional, a 1-dimensional extension of the BMS group B. The extension
consists of adding a dilation symmetry that, in a certain sense, extends the 4-dimensional
translation subgroup of B to a 5-dimensional group. Examples of some of the physically
most interesting NEHs — with zero as well as positive cosmological constant — show that
this extension is inevitable.

In this paper we used a covariant phase space framework to compute charges and
fluxes associated with generators ξa of the symmetry group G on unperturbed as well as
perturbed NEHs. In recent years the standard covariant phase space-framework of general
relativity [32–34] has been extended to space-times admitting null boundaries N (see in
particular [2–6]). We worked in that general paradigm but with several modifications
motivated by the fact that we are primarily interested in the late stages of gravitational
collapse and black hole mergers. Most important among these is our focus on the sub-
manifold ΓNEH

cov of the full phase space Γcov, consisting of those solutions ◦gab ∈ Γcov for
which the null boundary N is an NEH, ∆. However, we allowed first and second order
perturbations that do not preserve the NEH character of the boundary. As a result we
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were able to obtain charges and fluxes both for the background solution ◦gab for which N is
an NEH, as well as generic first and second order perturbations of ◦gab under which it is no
longer an NEH. To obtain the charges Qξ[C] associated with any symmetry vector field ξa

on 2-sphere cross-sections C of N , one needs to extend the symmetry vector fields ξa from
the boundary N to vector fields Xa in a neighborhood of N in the space-time manifold
M . In appendix B we discuss this extension and its important properties; in particular,
the extensions preserve the symmetry algebra g.

As one would expect on physical grounds, all the fluxes vanish for the background ◦gab
for which the boundary N is an NEH ∆, whence the charge integrals are independent
of the 2-sphere cross section of ∆ on which they are evaluated. The background charge
Q

(0)
d [C] associated with the dilation vector da on ∆ is positive. In the case when da is

the restriction to ∆ of a Killing vector, it equals the Komar integral (modulo a fixed
multiplicative constant). The same is true for a rotation vector field Ra in g. The charges
associated with all supertranslations vanish. As one would expect, non-trivial fluxes arise
when we keep terms that are second order in perturbations. To this order, generically all
charges and fluxes are non-zero. The flux associated with the dilation vector field is non-
negative and vanishes only if the perturbation is time-independent — just as one would
hope, since it can be interpreted as “energy carried by perturbations across ∆”. Fluxes
associated with supertranslations Sa = s̊(θ, ϕ)˚̀a are also positive if s̊(θ, ϕ) is positive.
Charges and fluxes associated with vector fields generating Lorentz transformations in G

also have physically expected properties. For example, fluxes vanish for the background as
well as to first order in perturbations, and they vanish also to second order if the linearized
shear vanishes. Similarly, for rotations, the flux vanishes even in presence of shear if the
background and the perturbations are axi-symmetric

These physically expected properties hold because the boundary N is required to be an
NEH or a perturbed NEH. On the full phase space Γcov considered in [2], for example, the
positivity properties just mentioned fail. Also, in that framework one can take (M, gab) to
be the exterior of the null cone of a point in Minkowski space (or a part thereof), with the
null cone (or part thereof) serving as the boundary N . Then the charge and flux associated
with the dilation vector field (which is also a symmetry in the Lie-algebra of [2]) are non-
zero. Given that space-time under consideration is flat, it is difficult to associate physical
significance to these charges and fluxes, and similarly, at generic points the phase space
Γcov that requires the boundary only to be null. These awkward situations do not arise on
ΓNEH

cov . Thus, the NEH framework carves out a sector of the full phase space framework
where formulas for charges and fluxes are physically meaningful.

Ref. [1] also extended the known results on NEHs in another direction by introducing
the notion of multipole moments, without having to assume axisymmetry as in previous
discussions (see, e.g., [38, 39]). These moments are a set of numbers — calculated without
using any extraneous structures such as coordinates, frames or gauge choices — that pro-
vide an invariant characterization of the intrinsic geometry of the horizon, and its angular
momentum structure. By now there have been multiple studies [13–15, 40] of numeri-
cal simulations of binary black hole coalescences which show, through a study multipole
moments, that soon after the common DH is formed, it can be well approximated by a
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perturbed NEH. The rate of change of multipole moments provides an invariant description
of horizon dynamics both for DHs and perturbed NEHs. Using the close similarity between
structures on perturbed NEHs and those at null infinity, a forthcoming work will show that
this horizon dynamics can be deduced directly from the post-merger waveforms at null in-
finity, I+. The idea that the horizon dynamics in the strong field region could perhaps
be read-off from waveforms in the weak field region has been put forward [7] and pursued
in some detail in the literature [10, 13–15]. The goal of a forthcoming work is to provide
concrete steps to develop this gravitational wave tomography in a systematic fashion.

However, using perturbed NEHs one cannot hope to describe the regime in which fully
non-linear, dynamical effects are important, e.g., during or immediately after a black hole
merger. As discussed in [1], the ‘obvious’ strategy of replacing perturbed NEHs with event
horizons is unlikely to work because, as the Vaidya metric illustrates, event horizons can
also grow in regions where the space-time metric is flat [7]. Therefore, charges associated
with event horizons will also have spooky features. In our view, to describe the strongly
non-linear phase close to the merger itself, it would be more fruitful to consider the covariant
phase space of solutions of Einstein’s equations that admit a DH as the inner boundary.
Thus, the boundary would no longer be null; it would be space-like in the strongly non-linear
phase, but can be approximated by a null NEH soon after the merger. While construction
of the corresponding phase space framework would be non-trivial, thanks to the rich set of
results on DHs, it is within reach.

In quantum considerations, on the other hand, the exact DH describing black hole evap-
oration would be time-like and its area would therefore shrink in time [16, 41]. Nonetheless,
it would be approximated extremely well by a perturbed NEH for a very long time, e.g.,
over the ∼ 1076 years it takes a solar mass black hole to shrink to a lunar mass through
Hawking evaporation. It is only when the black hole enters a genuinely quantum gravity
regime that this description would fail; but so would any description based on classical
general relativity! The perturbed NEH framework developed in this paper is likely to be
useful in the very long phase during which semi-classical approximation holds. The multi-
pole moments of section 2 of [1] — particularly, their slow evolution due to perturbations
— as well as the close similarity between the NEH symmetry group G and the BMS group
B are likely to be useful in analyzing (at least) this phase of the evaporation process. This
approach is in the same spirit as the one in [42] that was developed independently, albeit
some important technical differences.
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A Charges and fluxes: the conceptual framework

For convenience of the reader, in this appendix we begin by briefly recalling the relevant fea-
tures of the covariant phase space framework for general relativity [32–34]. This summary
will provide a broader perspective for our results on the charges and fluxes on perturbed
NEHs, and also for the more recent discussions of the covariant phase space in presence of
internal null boundaries [2–6].

Consider first the covariant phase space of globally hyperbolic solutions of Einstein’s
equations without internal boundaries (and satisfying the standard asymptotic fall-off con-
ditions). It admits a pre-symplectic structure Ω which can be derived systematically start-
ing from the Lagrangian. Thus, given any vacuum solution (M, g) of Einstein’s equations,
and two linearized solutions δ1g and δ2g on this background, Ω|g(δ1g, δ2g) is the action of
the pre-symplectic structure on the tangent vectors δ1g, δ2g at the point g of the covariant
phase space. Since Ω is an exact 2-form, it admits 1-form potentials Θ; Θ|g(δg) is the
action of the potential on a tangent vector δg at g. Thus, on the phase space we have:
Ω(δ1g, δ2g) = Lδ1g (Θ(δ2g)) − Lδ2g (Θ(δ1g)) − i[δ1g, δ2g] Θ, where i denotes the contraction
of a vector field with a 1-form on the phase space, and the bracket denotes the Lie bracket
of two tangent vector fields thereon. Our primary interest lies in the Hamiltonians and
charges that correspond to symmetry vector fields Xa in space-time, evaluated at specific
points g in the phase space. We will follow the practice adopted in the literature and work
in a neighborhood of the point g of interest and consider vector fields δg in that neigh-
borhood which: (i) commute with a given vector field δX g ≡ LX gab on the phase space,
and, (ii) span the tangent space at each point in that neighborhood. In this case, one has
Ω(δg, δXg) = Lδg (Θ(δX g)) − L(δX g) (Θ(δg)) . Now, if the 1-form i(δXg) Ω is exact, i.e., if
Ω(δg, δXg) = LδgHX(g) for some function HX(g) on the phase space, then (modulo an ad-
ditive constant) HX(g) would be the Hamiltonian generating the canonical transformation
defined by the symmetry vector field Xa. For example, if one considers solutions (M, gab)
that are asymptotically flat at spatial infinity ( and with no internal boundaries), then
the Hamiltonians HX(g) are 2-sphere integrals at spatial infinity, representing conserved
charges Qξ(g) associated with asymptotic symmetries [32, 33].

The situation is more involved in our case since space-times in Γcov have an internal
boundary N : in presence of this boundary, the analog of the 1-form i(δXg) Ω generically
fails to be exact on Γcov (unless Xa vanishes on the boundary). Nonetheless, as shown
in [2–6], one can systematically associate charges Qξ[C] with each symmetry vector field
ξa and a cross-section C of N . We will now summarize this procedure.

Note first that the action of the pre-symplectic 2-form Ω on tangent vectors δ1g and
δ2g at the point g in the phase space is given by the integral over any Cauchy surface
of a closed 3-form Jabc(g; δ1g, δ2g) in space-time, that depends on g and δ1g, δ2g. The
Lagrangian formulation of general relativity provides us with the explicit expression of this
symplectic current, which is spelled out in appendix B. The pre-symplectic potentials Θ
are also expressible as integrals of 3-forms Θabc(g; δg) over a Cauchy surface. Thus, while
Θ is a 1-form in the phase space, Θabc(g; δg) is a 3-form in space-time (that depends on
the given solution gab, and a linearized solution δgab on that background). To arrive at the
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expression of charges, one works directly with the 3-forms Jabc(g; δ1g, δ2g) and Θabc(g; δg),
rather than the pre-symplectic structure Ω and its potentials Θ. Secondly, although charges
are associated with symmetry vector fields ξa defined just on N , the procedure requires us
to extend them to vector fields Xa in a neighborhood of N in the space-time manifold M .
This issue is discussed in detail in appendix B.7

Consider now a partial Cauchy surface Σ that intersects N in a cross-section C = ∂Σ
(as in figure 1 where N is assumed to be an NEH ∆). Although

∫
Σ Jabc(g; δg, δXg) is

generically not of the form LδgHX(g), one can add to it a surface term
∮
C X

a Θabc(g; δg)
so that

∫
Σ Jabc(g; δg, δXg) +

∮
C X

aΘabc(g; δg) is the exact variation of a phase space
function QX(g),∫

Σ
Jabc(g; δg, δXg) +

∮
∂Σ
XaΘabc(g; δg) = LδgQX(g) [C] ≡ δQX(g) [C] , (A.1)

provided Θabc(g; δg) is chosen covariantly (see eq. (A.2)). As the notation QX(g)[C] sug-
gests, QX(g) does not depend on what Σ does away from N , but depends only on fields
evaluated on the cross-section C at which Σ intersects N . It is the charge associated with
the symmetry Xa, evaluated at C. The charge does not generate a canonical transforma-
tion that implements the symmetry on Γcov but there is a proposal [43, 44] to modify the
phase space structure to improve on this situation.

Thus, as mentioned in section 2.2, one requires two inputs to arrive at the expres-
sion (A.1) of charges. First, one needs to choose a certain extension Xa of our symmetry
vector fields ξa on N to the space-time interior, that is discussed in appendix B. The second
input is a pre-symplectic potential Θ(g; δg) that appears in the second term on the left side
of (A.1) (as well as in the expression of QX that appears on the right side, which is spelled
out in section 2.2). As on any phase space, these potentials are not unique; one can add to
Θabc(g; δg) a term of the type δfabc(g). The procedure requires us to uniquely single out a
preferred 3-form Θabc(g; δg) on the boundary N by eliminating this freedom. The required
choice was provided in [45] in a somewhat different context, and obtained independently
in [2] by a generalization of the set of conditions laid out in [34] to accommodate the fact
that N is an internal null boundary rather than I+. On our Γcov, the key conditions that
select a canonical Θabc(g; δg) are the following:

(i) Covariance, locality and analyticity: Θabc should depend only locally and analytically
on gab, δgab and a finite number of their derivatives, and fields made available by our
boundary conditions defining Γcov. (Thus, it cannot depend on any non-dynamical
structures introduced by hand, such as coordinates, tetrads or a choice of an `a in the
equivalence class [`a]). In particular, given a vector field Xa on M that is tangential
to the boundary N , the 3-form Θabc on N must satisfy:

L(δXg) Θabc(g; δg) ≡ δX Θabc(g; δg) = LX
(
Θabc(g; δg)

)
, (A.2)

7One needs this extension only to a neighborhood of the internal boundary. In calculations of charges
and fluxes on N , it is convenient to work with extensions that vanish away from this neighborhood. In
terms of figure 1, this strategy enables one to ignore the boundary of partial Cauchy surfaces Σ at infinity
and focus just on their interior boundaries ∂Σ.
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where, as before, Xa is an appropriate extension to space-time of the symmetry vector
field ξa on N .

(ii) Time independence on an NEH: if N is an NEH for a given g, then L` Θabc(g; δg) = 0
for arbitrary tangent vectors δg at that g. This condition is motivated by the fact
that freely specifiable fields that determine the NEH geometry -and physics on NEHs-
is time independent.

This preferred 3-form Θabc (g; δg) on N is constructed by the following two step proce-
dure. First, one notes that the ‘obvious’ symplectic potential Θabc(g; δ1g, δ2g) in the bulk,
obtained applying the variational principle to the Einstein-Hilbert Lagrangian density, is:

Θabc(g; δg) = 1
16πG εabc

d (gef∇d δgef −∇eδged) . (A.3)

Denote its pull-back to N by Θ
←abc

(g, δg). As noted in section 2.2, the desired potential
Θabc(g, δg) can then be expressed as [2, 45]

Θabc(g; δg) := Θ
←abc

(g; δg)− 1
8πG δ

(
(θ(l) ε

◦
abc)(g)

)
. (A.4)

As in section 2.2, θ(`) denotes the expansion of any geodesic null normal `a to N , and
εabc, the intrinsic volume 3-form on N defined in terms of the space-time volume 4-form
εabcd via

εabc := ndεdabc where na is any vector field on N s.t. lanb gab = −1 . (A.5)

B Extension of symmetry vector fields on the boundary ∆ to the bulk

As noted in section 2.2, to calculate the Noether charge, one needs the ‘radial’ derivative
of the symmetry vector field, requiring us to extend the symmetry vector fields ξa on the
null boundary to the interior to leading order in r. In this appendix we will provide the
expression of this extension Xa in Newman-Unti type chart introduced in section 2.1.1,
and discuss its most useful properties.

Let us begin with the obvious geometric conditions on Xa stemming from the fact
that, being an extension of ξa on ∆, Xa has to be tangential to ∆. Since ∆ is given by
r = 0 in our chart, in a neighborhood of ∆, Xa must have the form

X = Xv∂v +HA∂A + rX̃r∂r, (B.1)

where Xv, HA, X̃r are all smooth functions of v, r, xA. (Ha is ‘horizontal’ in the sense that
it is tangential to the constant v and r 2-spheres.) Since the restriction of X to ∆ is, by
definition, an NEH symmetry ξa, from (3.4) we have

Xv =̂ (k + φ(xA)) v + s(xA), HA
,v =̂ 0, and LHqab =̂ 2φ(xA) qab . (B.2)

In particular, H : =̂HA∂A is a conformal Killing field of qAB on the NEH.
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As eq. (3.1) shows, to define the Noether charge we also need the leading part of X̃r|∆,
in addition to Xa|∆ = ξa. We will now show that this leading term is determined by
the following condition that is satisfied by all g ∈ Γcov: given any null geodesic normal
la, the restriction to ∆ of the 1-form gabl

a obtained by lowering its index by the metric
is independent of g ∈ Γcov (see section 2.1.1). The desired extension Xa generates a 1-
parameter family of diffeomorphisms on the space-time manifoldM that leaves ∆ invariant.
The extension must be such that the 1-parameter family of metrics gab(λ) and geodesic
null normals la(λ), obtained starting from any fiducial g◦ ∈ ΓNEH

cov must be in ΓNEH
cov and

satisfy gab(λ)lb(λ) =̂ g◦abl
b(λ). Therefore, the extension must satisfy(

LXgab
)
lb =̂ 0, and hence LX la =̂ − (k + φ) la . (B.3)

Using the form (2.1) of the metric in a neighborhood of N it is easy to verify that this
condition determines X̃r to leading order:

X̃r =̂ − (φ+ k) that is, X̃r = −(φ+ k) +O(r) (B.4)

Thus, in our chart, the extension must have the form:

X =
(
(k + φ)v + s

)
∂v +HA∂A + r

(
− (k + φ) ∂r + X̃v ∂v + X̃A ∂A

)
+ r2 ˜̃Xr ∂r . (B.5)

Here φ and s are functions only of angular coordinates xA defined by the NEH symmetry
vector field ξa, and X̃v X̃A and ˜̃Xr are arbitrary, smooth functions of all 4 coordinates.
As is clear from our discussion in sections 3 and 4, the charges and fluxes are insensitive
to the choice of these undetermined functions.

We will conclude by noting three interesting properties of this extension.

(i) If a g ∈ Γcov admits a Killing vector Ka that is tangential to the horizon, then its
restriction to ∆ is of course an NEH symmetry vector field ξa. The extension Xa of
ξa is such that Ka agrees with Xa to O(r). Thus, a desired interplay between the
form of Xa and the space-time symmetries holds. This result implies that ∆ happens
to be a Killing horizon for Ka with surface gravity k, then X := k(v∂v−r∂r) +O(r2).

(ii) The vector fields δXg on ΓNEH
cov also have a desirable property that involves the sym-

plectic current. In this discussion we will only need first order perturbations. There-
fore, to simplify notation, let us set δgab = hab (rather than 1hab as in section 4).
Given a solution gab to the vacuum Einstein’s equations (possibly with a cosmological
constant) and two linearized solutions hab and h′ab that satisfy the linearized Einstein
equations, the Einstein-Hilbert Lagrangian leads us to a symplectic current vector
field Ja(g; h, h′) in space-time [32–34]:

Ja(g; h, h′) = 1
16πG P abcdef

(
h′bc∇dhef − hbc∇dh′ef

)
, (B.6)

where

P abcdef = gaegbfgcd − 1
2g

adgbegcf − 1
2g

abgcdgef − 1
2g

bcgaegdf + 1
2g

bcgadgef . (B.7)
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The symplectic 3-form Jabc of appendix A is the dual of this current: Jabc = Jdεdabc.
The second property of the extension is that, for all g ∈ ΓNEH

cov , and time independent
perturbations h, the pull-back to N of the symplectic 3-form vanishes identically

J
←abc

(g; h,LXg) =̂ 0 . (B.8)

Consequently, the symplectic flux
∫
P Jabc(g; h,LXg) vanishes across any patch P

of N .

(iii) The third property has to do with the Lie algebra structure of the extended symme-
tries. In view of the fact that charges and fluxes depend only on the ‘values of Xa

and their first transversal derivatives’ at N , we are led to introduce an equivalence
relation on these vector fields: X1 ≈ X2 if and only if:

X1 =̂X2 and Xr
1 =̂Xr

2 in eq. (B.1)

Let us denote by {X} the equivalence class to which X belongs. Then it is easy to
check that the Lie-bracket on the space of these equivalence classes induced by the
commutator is well-defined:

[{X1}, {X2}] := {[X1, X2]} for any choice of X1 ∈ {X1} and X2 ∈ {X2} .
(B.9)

Furthermore, this Lie algebra of equivalence classes {X} of extensions is isomorphic
with the Lie algebra g of symmetry vector fields ξa.

To summarize, conditions used to define the phase space Γcov imply that there is a class
of natural extensions of the NEH symmetry vector fields ξa to a neighborhood of ∆. The
charges and fluxes depend only on the information in Xa that is completely contained in
the vector field ξa on ∆. This class of extensions has three physically desirable properties;
the first related to Killing fields that may be present in a neighborhood of ∆, the second
related to the symplectic 3-form, and the last related to the Lie algebra structure of the
extended Xa. Therefore, the explicit form (B.5) of these vector fields may be useful also
in other contexts, in addition to the discussion of charges and fluxes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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