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The paper is concerned with examples of Hilbert spaces whose

elements are entire functions and which have these properties:

(HI) Whenever F(z) is in the space and has a nonreal zero w, the

function Fiz)iz — w)/iz — w) belongs to the space and has the same

norm as Fiz).

(H2) For each nonreal number w, the linear functional defined on

the space by F(s)—>F(w) is continuous.

(H3) The function F*iz) = Fiz) belongs to the space whenever

Fiz) belongs to the space, and it always has the same norm as Fiz).

The theory of these spaces is related to the theory of entire func-

tions £(2) which satisfy the inequality

I E(x - iy) I   <  I E(x + iy) |

fory>0. If £(2) is such a function, we write £(2) = Aiz) — iB(z) where

Aiz) and 73(2) are entire functions which are real for real 2, and

K(w,z) = [B(z)l(w) - A(z)Bíw)]/[tt(z - w)].

Let 3C(£) be the set of entire functions £(2) such that

/+00

|f(/)/£(0|2^ < °°
-cc

and such that

|f(2)|2^||f||2a(2,2)

for all complex 2. Then X(£) is a Hilbert space of entire functions

which satisfies the axioms (HI), (H2), and (H3). For each complex

number w, Kiw, z) belongs to 3C(£) as a function of 2, and the

identity

F(w) = (Fit), Kiw, t))

holds for all elements Fiz) of 3C(£). A Hilbert space, whose elements

are entire functions, which satisfies the axioms (HI), (H2), and (H3),

and which contains a nonzero element is equal isometrically to a

space 3C(£).

The spaces now studied are finite dimensional spaces related to

Charlier's orthogonal polynomials. They are characterized by an
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CHARLIER SPACES OF ENTIRE FUNCTIONS 135

identity involving a positive parameter a. The identity implies a

recurrence relation for the defining functions Aiz) and Biz) of the

space.

Theorem 1. Let 3C(£) be a given space such that £(2) has a nonzero

value at the origin, and let a be a given positive number. Assume that the

functions z[F(z) —F(2—1)] and F(z + 1) — F(z) belong to the space

whenever F(z) belongs to the space, and that the identity

(t[F(t) - F(t - 1)] - <z2[F(* + 1) - F(t)], Git))

= (F(t), t[G(t) - G(t - 1)] - a2[G(/ + 1) - G(/)]>

holds for all elements F(z) and Giz) of the space. Then there exist real

numbers w+, v+, w_, v-. such that the functions

S+iz) = A(z)u+ + B(z)v+ andS-(z) = A(z)u- + B(z)v-

are linearly independent and satisfy the recurrence relations

\+S+(z) = z[S+(z) - S+(z - 1)] - a*[S+(z + 1) - S+(z)],

X_S_(z) = z[S-(z) - S-(z - 1)] - a2[5_(2 + 1) - S-(z)],

\+S-(z) = aS+(z + 1) - aS+(z),

S+(z) = a-]25_(2 - 1) - aS-(z),

for some real numbers X+ and X_ such that X+ = 1 +X_.

Rummer's confluent hypergeometric function

a a(a + 1)
F(a; c; 2) - 1 +-s + —- s2 + • • •

l!c 2\c(c+ 1)

is used to construct spaces satisfying the hypotheses of Theorem 1.

Theorem 2. If a>0 is given, then the polynomials $„(2) defined by

$„(2) = (-a)-"[T(n - 2)/r(-S)]F(-«; 1 + z - n; a2)

are real for real z and satisfy the identities

«$B(z) = *[*.(8) - $B(2 - 1)] - a2[$B(2 + 1) - *„(*)],

m*„_i(2) = a$niz + 1) — a$niz),

$n+i(z) = a~12$B(2 — 1) — a$B(2),

2*B(2) = a«4>„_!(2) + (n + a2)$„(z) + a$n+i(z).

There exist spaces 3C(£„), « = 1, 2, 3, • • ■ , satisfying the hypotheses

of Theorem 1, such that 3C(£„) is contained isometrically in 3C(£B+1)
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for every n, such that $0(2) spans 3C(£i), and such that <i>B(z) spans the

orthogonal complement of 3C(£n) in 3C(£„+i) for every «>0. The spaces

can be chosen so that ||3>B(/)||2 = r(l+») for every n. The identity

00

e°2||F(0||2 = 22 I Fin) |V"/r(l + n)
B—0

then holds for every polynomial Fiz).

These are essentially all the spaces which satisfy the hypotheses of

Theorem 1.

Theorem 3. If 3C(£) is a space which satisfies the hypotheses of

Theorem 1, then there exists an entire function Siz) which is real for

real 2, has only real zeros, and is periodic of period one, and there exists

an index r in Theorem 2 such that the transformation Fiz)—>S(z)F(z)

is an isometry of 3C(£r) onto 3C(£).

These spaces, like those of previous work [2], are related to gen-

eralized spaces of square summable power series. Let a and c he num-

bers such that the coefficients of Rummer's series Fia; c; z) are all

positive. By Q(a; c; z) we mean the Hilbert space of power series

fiz) — 22 anz" with complex coefficients such that

11      n 11        l!c  1      1        2!c(c + 1) ,      ,

||/(2)||2= |a„|2+— |axl2+    ;        ; |a2|2+---< ».
a aia + 1)

The series which belong to Q(a; c; 2) converge in the complex plane

and represent entire functions. The series Fia; c; wz) belongs to the

space for all complex numbers w, and the identity

f(w) = (f(z),F(a;c;wz))

holds for every element f(z) of the space.

Theorem 4. 7« Theorem 2 if f(z) = ¿2 a»2n is a polynomial of degree

less than r, then its eigentransform F(z) = 22 *»$»(*) belongs to 3C(£r)

and

f°\F(t)/Er(t)\Ht = \\f(z)\\*
J -x

where the norm of f(z) is taken in 6(1; 1; 2). Every element of 3C(£r) is

¿>f this form. The identity

/% 00

r(Z)F(-z) = j   f(-a - t/a)e-'t'-ldt
J 0
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holds for x > 0 whenever f(z) is a polynomial and Fiz) is its eigentrans-

form. Let fiz) and giz) be polynomials, and let Fiz) and G (2) be their

eigentransforms. The condition

Giz) = z[F(z) - Fiz - 1)] - a2[F(z + 1) - Fiz)]

is necessary and sufficient that giz) =zf (2). The condition Giz)

= aF(z + l)—aFiz) is necessary and sufficient that giz) = fiz). The

condition Giz)=a~1zFiz — l)—aFiz) is necessary and sufficient that

giz)=zfiz). The condition Giz)=zFiz) is necessary and sufficient that

giz) = iz+a)f'(z)+a(z+a)f(z).

Proof of Theorem 1. Let L+, 7_, and D be the transformations

on entire functions defined by D: F(z)—>G(2) if

Giz) = z[F(z) - Fiz - 1)] - a2[F(2 + 1) - F(z)],

L-: F(2)->G(2) if

Giz) = aFiz + 1) - aFiz),

and L+: £(2)^(2) if

G(2) = a-hFiz - 1) - aFiz).

A straightforward calculation will show that the commutator

identities

7J>£_ - 7_7J> = - L-,    DL+ - L+D = L+,   L_L+ - L+L^ = 1,

are satisfied. By hypothesis the restriction of D to the space is a self-

adjoint transformation in the space. Since D is everywhere defined in

the space, it is bounded. The hypotheses also imply that £_ takes the

space into itself. Since the restriction of £_ to the space has a closed

graph, it is bounded. If £(z) belongs to the domain of multiplication

by 2 and if D: Fiz)—>Giz), then

D: zFiz) -> 2G(2) + 2F(2 - 1) - a2F(Z + 1).

It follows that the identity

(tFit - 1) - a2F(¿ + 1), G(0> = - (F(t), lG(t - 1) - a2G(¿ + 1))

holds whenever £(2) and G(2) belong to the domain of multiplication

by 2 in the space. Since D is selfadjoint, the identity

(tF(t - l),Git)) = a*(F(t),G(t + 1))

holds whenever F(2) and G(2) belong to the domain of multiplication

by 2 in the space. As in the proof of Theorem 1 of [2], this implies
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that L+ acts as a bounded transformation on the domain of multipli-

cation by 2. Since the action of D+aL++aL^ coincides with multi-

plication by 2, multiplication by 2 is a bounded transformation in the

space. An argument in the proof of Theorem 1 of [2] will show that

the space is finite dimensional.

Let r he the dimension of the space. Since we assume that £(2) has

a nonzero value at the origin, there exists an element of the space

which has a nonzero value at the origin. Since the transformation

Fiz)—*z[F(z) — Fiz — 1)] does not take the space onto itself, it has a

nonzero kernel. It follows that there exists a nonzero element Siz) of

the space which is periodic of period one. Since 2[£(2 + 1)—£(2)]

belongs to the space whenever £(2) belongs to the space, and since

£(2) has a nonzero value at the origin, the functions F(z+l) — F(z)

and £(2 + 1) belong to the space whenever £(2) belongs to the space.

Since the space is finite dimensional, there exists no zero w of Siz)

such that Siz)/iz+n—w) belongs to the space for every w = 0, 1,

2, • • • . It follows that there exists no zero w of Siz) such that

Siz)/iz—w) belongs to the space. By Problem 88 of [l], 5(2) and

S* (2) are linearly dependent, and the elements of the space are the

entire functions £(2) such that Fiz)/Siz) is a polynomial of degree

less than r. We assume that Siz) is chosen of norm one and real for

real 2.

Let So(z), Si(z), S2(z), • • • be the entire functions defined induc-

tively by £0(2) = S(z) and

L+:Sn(z)^Sn+i(z).

The commutator identities imply that

D: Sn(z) -* nSn(z)

for every « and that

7_: Sn(z) —>»SB_i(3)

for every « > 0. It follows that the identity

zSn(z) = anS„-i(z) + (n + a2)Sn(z) + aSn+i(z)

holds for «>0, and for « = 0 with the term in Sn-i(z) omitted. It is

clear that Sn(z)/Siz) is a polynomial of degree n. So S„iz) belongs to

X(£r) when n<r. The functions Soiz), • • • , Sr-iiz) are orthogonal in

3C(£r) since they are eigenfunctions of a selfadjoint operator for dis-

tinct eigenvalues. Since multiplication by 2 is a symmetric transfor-

mation, the identity

(tSn-l(t),Sn(t))=   (Sn-l(t),tSn(t))

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i969] CHARLIER SPACES OF ENTIRE FUNCTIONS 139

holds when 0<w<r. It follows that 11Sn(t)¡|2 = m||S„_i(/)|[2. Since we

assume that ||So(¿)|| = 1> we can conclude that ||.S„(£)||2 = r(l-r-w).

As in the proof of Theorem 1 of [2], there exists a space 3C(£r+i),

satisfying the hypotheses of Theorem 1, which contains 3C(£r) iso-

metrically, such that Sriz) spans the orthogonal complement of

3C(£r) in 3C(£r+i). The theorem now follows from Theorem 23 and

Problem 87 of [l].

Proof of Theorem 2. It is clear from the definition of Rummer's

series that i>B(2) is a polynomial of degree n which is real for real z.

The stated identities for i>B(z) follow from the well-known relations

between contiguous hypergeometric series, Erdélyi [3]. Consider the

unique inner product on polynomials with respect to which the func-

tions 3>n(z) are an orthogonal set and ||<t>B(i)||2 = r(l+«) for every «.

Define L+, £_, and D as in the proof of Theorem 1. It is easily verified

that the identities
(DF, G) = (F, DG),

(L+F, G) = (F, LJS),

(tF(t),G(t)) = (F(t),tGit))

hold for all polynomials £(2) and G(z). For every r = 1,2,3, ■ ■ • , the

polynomials of degree less than r are a Hilbert space of entire func-

tions which satisfies the axioms (HI), (H2), and (H3). By Theorem

23 of [l], the space is equal isometrically to a space 3C(£r). The func-

tion £r(z) has a nonzero value at the origin since the space contains a

constant function which has a nonzero value at the origin. The poly-

nomials 2 [£(2) — £(z — 1)] and £(z+l) — £(2) belong to the space

whenever £(z) belongs to the space since their degrees do not exceed

the degree of £(z). The restriction of D to the space is selfadjoint

since the space admits an orthogonal basis of eigenfunctions of D

corresponding to real eigenvalues. From this we see that 3C(£r) satis-

fies the hypotheses of Theorem 1 for every r.

To complete the proof of the theorem, we consider a new inner

product on polynomials defined by

(F(t),G(t))i = £ £(«)G(«)a2Vr(l + «).
n—0

It is easily verified that the identity

(tF(t - l),G(t))i = a*(F(t),Git + l))i

holds for all polynomials Fiz) and Giz). It follows that the identities

(DF, G)i = (F, DG)i,       (L+F, G)i = (F, LJB)U
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hold for all polynomials Fiz) and Giz). The proof of Theorem 1 will

show that

(F(t),G(t))i = K(Fit),Git))

for all polynomials F(z) and G(z), where a is a constant. When

F(z) = G(z) = 1, we obtain

00

k = J2 a2n/T(l + n) = ea\
n-l

Proof of Theorem 3. This more general result follows from the

above proofs of Theorems 1 and 2.

Proof of Theorem 4. The theorem follows by a routine calcula-

tion once it is known that the formula

/i  CO

(-a - t/aYe-H'-Ht
o

holds for every « when x>0. The formula is true when « = 0 by the

definition of the gamma function. A straightforward calculation will

show that the functions defined by this integral formula satisfy the

recurrence relations of Theorem 2. These functions must therefore

coincide with the functions of Theorem 2.
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