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Abstract

We describe Charm, an extensible framework designed for rapid prototyping of cryptographic systems
that utilize the latest advances in cryptography, such as identity and attribute-based encryption, as well
as the traditional cryptographic functions. Charm is designed to minimize code complexity, promote
code re-use, and to automate interoperability, while not compromising on efficiency.

Charm was designed from the ground up to support the implementation of advanced cryptographic
schemes. It includes support for multiple cryptographic settings, an extensive library of re-usable code,
and a protocol engine to aid in the development of interactive protocols. Our framework also provides a
series of specialized tools that enable different cryptosystems to interoperate.

We implemented over twenty cryptographic schemes using Charm, including some new ones that to
our knowledge have never been built in practice. This paper describes our modular architecture, which
includes a built-in benchmarking module that we use to compare the performance of primitives written
in Python to comparable C implementations. We show that in many cases our techniques result in a
potential order of magnitude decrease in code size, while inducing an acceptable performance impact.
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1 Introduction

Recent advances in cryptography utilize new settings, such as bilinear groups and lattices. These advances
include new paradigms for securely processing and protecting access to sensitive information such as iden-
tity and attribute-based encryption, privacy-preserving primitives such as group signatures and anonymous
credentials, and techniques for computing on encrypted data. The new cryptographic mechanisms are in-
creasingly complex. As these mathematically-based schemes become more intricate, adoption by the systems
security community is likely to decrease, unless developers are provided with proper code libraries.

While there have been some efforts to produce research prototype implementations of the new primitives,
there is a need for a robust, modular, efficient and usable framework for developers to fully utilize the
capabilities of the latest results from the theoretical cryptography community. The framework should provide
developers with the proper interface to shelter them from the low-level details of the algorithms and the
mathematical operations, while providing a powerful and flexible API to rapidly implement new protocols.
We believe that developers should utilize high-level languages with advanced type checking and memory
management features.

In performance-intensive fields such as animation and game development the trend seems to be towards
a hybrid architecture, where an optimized, native engine centralizes performance-critical operations, and
developers are encouraged to implement the remaining code in a high-level language (e.g., [4, 34]). Similarly,
a framework for implementing security systems based on advanced (and standard) cryptographic protocols
and algorithms should be designed this way.

There have been several elegant implementations of a small number of new primitives [52, 43, 11] as well
as some tools for protocol development [45, 5, 44, 32, 37, 39]. These systems serve their special purposes
well, but are not interoperable by design, and so developers wishing to build a system using multiple different
primitives must write awkward glue code to piece their implementation together.
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In this paper, we present Charm [1], a new, extensible and unified framework for rapidly prototyping

experimental cryptosystems. Our system is built around a well-supported high level language (Python),
and is designed to reduce development time and code complexity while promoting component re-use. While
Charm is based on an interpreted language, all of the performance-intensive mathematical operations are
implemented as native modules. We show that for some applications, even though the protocol logic is written
with the advantages of higher level languages, performance can be comparable to C implementations.

As shown in Figure 1, Charm provides a number of components to facilitate the development of crypto-
graphic schemes and protocols.

Adapters

Schemes Toolbox

Groups 
(Integer, Pairing, Elliptic Curve)

C Math Libraries (OpenSSL, GMP, PBC, MIRACL, etc.)

Protocol Engine & Compiler

Benchmark Module

PairingMath IntegerMath ECMath Cryptobase PROTOCOLS Infrastructure to support the
development of interactive protocols via a 
dedicated protocol engine.  A proof compiler 
provides support for protocols that use ZK 
proofs.

Python/C Base Modules

TOOLBOX Extensible library of common 
routines, including secret sharing, X.509 
certificate handling, parameter generation, 
policy parsing, and hash functions.

ADAPTERS Thin wrappers that alter the 
input/output or security properties of a 
scheme.  This promotes code re-use by 
removing incompatibilities between 
implementations.

SCHEMES A library of implemented
cryptosystems, accessed via standard 
scheme APIs.

Protocols

Figure 1: Overview of the Charm architecture.

Extensible code library. Charm provides an extensive library of cryptographic building blocks. Sup-
ported operations include secret sharing, interactive and non-interactive zero-knowledge proof proto-
cols, key and ciphertext serialization, certificate handling, and parameter generation. The library is
designed to be easily extended when new primitives are invented.

Protocol engine and protocol compilers. Charm contains all of the necessary infrastructure to rapidly
implement interactive cryptographic protocols. The Charm protocol engine embeds necessary logic re-
quired to execute a protocol, including message serialization, data transmission, state transitions, error
handling, and the execution of subprotocols. For protocols involving zero-knowledge proof statements,
Charm also embeds a compiler that converts Camenisch-Stadler form proof statements into Python
subprotocols that can be dynamically executed by the interpreter.

Adapter architecture. To address the incompatibilities between different schemes, cryptosystems are
annotated with details of their implementations. We use annotations and introspection to ‘label’
cryptographic schemes with properties including input and output specifications (e.g., plaintext and
ciphertext space), performance, and even security-related properties such as the complexity assump-
tions used in a security proof. Adapters are thin, object-oriented wrappers that provide for conversion
among incompatible schemes based on their labels.

Benchmarking and profiling tools. The framework includes sophisticated benchmarking tools, partic-
ularly useful for researchers, to measure the bandwidth and time complexity of implementations (in
terms of operations conducted or computation time). The benchmarking module can be extended to
record custom measurements, e.g., custom subroutines.

Application embedding. For interoperability, constructions implemented in our framework can be easily
incorporated into C/C++ programs by embedding the Python interpreter and the necessary supporting
modules.

We implemented several recent cryptographic results from the research literature using Charm. In ad-
dition to building protocols for which we believe there are no existing implementations, for the purpose of
comparison, we also coded several constructions that have existing C implementations. Our programs are

2



dramatically simpler than prior ones; in some cases the code size is an order of magnitude smaller, with
only a slight performance penalty. We believe that for many applications, even a more significant decrease
in the speed of the running code would be a worthwhile price to pay for a large reduction in the size and
complexity of the code, both from a security perspective as well as code maintainability.

2 Architecture

This section describes the architecture of Charm and provide details about its components, as shown in
Figure 1.

Components. We now describe the building blocks of the Charm framework. The lower level components,
at the bottom of Figure 1 are optimized for efficiency, while the ones at the top focus on ease of use and
interoperability. One of the primary drivers of our architecture is our objective to simplify the code written
by developers who utilize the framework. Our modular component architecture reflects this.

Base Modules. Charm contains four base modules that implement the core cryptographic routines. For
performance reasons these modules are written in C and include integermath, ecmath (elliptic curve sub-
groups), and pairingmath.1 The cryptobase module provides efficient implementations of basic cryptographic
primitives such as hash functions and block ciphers. These modules include code from standard C libraries
including libgmp, OpenSSL, libpbc and PyCrypto [30, 52, 43, 42].2 To maximize code readability, the mod-
ule interfaces employ language features such as operator overloading. Finally, Charm provides high-level
Python interfaces for constructs such as algebraic groups and fields.

Cryptographic Toolbox. The base modules implement only those lower level routines where implemen-
tation in C is crucial for performance. Charm also provides an extensive Toolbox of useful Python routines
including secret sharing, encryption padding, group parameter generation, certificate handling, message en-
coding, and ciphertext parsing. We are continuously adding routines to the Toolbox, and we hope that
future releases will include contributions from external developers.

Scheme Interfaces. To facilitate code re-use, Charm provides a set of APIs for common cryptographic
primitives such as digital signatures, bit commitment, encryption, and related functions. Schemes with
identical APIs are identified and are interchangeable in our framework. Thus, for example, DSA can be used
instead of RSA-PSS within a larger protocol with a simple, almost trivial change to the code.

Scheme interfaces are implemented using standard object-oriented programming techniques. The current
Charm interface hierarchy appears in Figure 2. This list is sufficient for the schemes we have currently
implemented (see Figure 5), but we expect it to expand with the addition of new cryptosystems.

PKEnc PKSig IBEnc IBSig

Protocol Commitment Hash ABEnc

SigmaProtocol

Scheme

ChHash

Figure 2: Listing of scheme types defined in Charm. Subtypes are indicated with dotted lines.

1A dedicated module to support lattice-based cryptography is in preparation for a future release.
2We plan to remove the dependencies on libgmp and PyCrypto and to add optional support for the MIRACL library [50] in

an upcoming release.
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Scheme Annotation and Adapters. In practice, implementations of different cryptosystems may be
incompatible even if their APIs are the same. For example, two systems might have different input and
output requirements. Consider that many public key encryption schemes require plaintexts to be pre-
encoded as elements of a cyclic group G, or as strings of some fixed size. These requirements frequently
depend on how the scheme is configured, e.g., depending on parameters used. Different developers are
unlikely to make all of the same choices in their implementations, so even if they build their code with a
standard API template, their systems are unlikely to interoperate cleanly.

More subtle incompatibilities may arise when schemes of a given class provide differing security guaran-
tees: for example, public-key encryption schemes may provide either IND-CPA vs. IND-CCA2 security. These
properties become relevant whenever the scheme is used as a building block for a more complex protocol.

To address these issues, Charm provides a mechanism to annotate schemes with meta-information that
describes their relevant characteristics, including (but not limited to) input/output space, security defini-
tion, complexity assumptions, computational model, and performance characteristics. Wherever possible
this information is derived automatically, e.g., from the scheme type or function definitions. Other charac-
teristics must be specified by the developer via a standard annotation interface. This information can be
programmatically evaluated at any point.

Capability matching. Charm uses this meta-information to facilitate compatibility among schemes. First, it
provides tools to programmatically interrogate a scheme in order to determine whether the scheme satisfies
certain criteria. This makes it easy to substitute schemes into a protocol at runtime, since the protocol can
simply specify its requirements (e.g., EU-CMA signature scheme) and Charm will ensure that they are met.
To make this workable, Charm includes a dictionary of security definitions and complexity assumptions, as
well as the implications between them.3

Adapters. Charm includes adapters to handle incompatibilities between schemes. Adapters are code wrappers
implemented as thin classes. They permit developers to bridge the gap between primitives with disparate
message/output spaces or security requirements. In our experience so far, the most common use of adapters
is to convert an input type so that a scheme can be used for a specific application. For example, we use
adapters to encode messages or in the case of hybrid encryption, to expand the message space of a public
key encryption scheme.

Adapters can perform even more sophisticated functions, such as modifying a scheme’s security properties.
In Figure 3 we illustrate an adapter using a hash function to perform a conversion from a selectively-secure
IBE into one that is adaptively secure (note here that the hash function is modeled as a random oracle).

Selective-ID IBE
(DBDH, SM)

Fully-secure IBE
(DBDH, ROM)

Boneh-Boyen 
IBE

ID-hash 
Adapter

Hash function

IBE-to-Sig 
Adapter

EU-CMA Signature
 (DBDH, ROM)

Figure 3: Example of an adapter chain converting the Boneh-Boyen selective-ID secure IBE [14]
into a signature scheme using Naor’s technique [16]. The scheme carries meta-information
including the complexity assumptions and computational model used in its security proof.

Adapters can also combine schemes to produce entirely different cryptosystems. Thus, there are implicit

schemes in Charm that do not physically appear in the scheme library.

Protocol Engine Interactive protocols implementations must include network communications, data se-
rialization, error handling and state machine transition. Charm simplifies development by providing all of
these features as part of a re-usable protocol engine. Thus, an implementation in our framework consists

3Thus a protocol that requires only an EU-CMA signature scheme will be satisfied if instantiated with an SU-CMA signature,
but not vice versa.
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of a list of parties, a description of states and transitions, and the core logic for each state. Serialization,
transmission and error handling are handled at the lower levels and are available for free to the developer.

Our protocol engine provides native support for the execution of sub-protocols and supports recursion. We
have found subprotocols to be particularly useful in constructions that use interactive proofs of knowledge.

Given a protocol implementation, an application executes it by selecting a party type and optional initial
state, and by providing a collection of socket connections to the remote parties. Sockets in Python are an
abstract interface and can be extended to support various communication mechanisms.

2.1 Benchmarking System

To measure the performance of a prototype implementation, Charm incorporates a native benchmark module
to collect information on a scheme’s performance. This module collects and aggregates statistics on a set
of operations defined by the user. All of the operations in the core modules are instrumented separately,
allowing for detailed profiling including total operation counts, average operation time for various critical
operations, and network bandwidth (for interactive protocols). Users can define their own measurements
within a given implementation (e.g., a scheme or subroutine). When these measurements involve timing, the
benchmarking module automatically performs and collects timing information. Many of our experiments in
Section 4 were performed using the benchmarking system. The benchmarking system is easy to switch on
or off and has no impact on the system when it is not in use. An example of using the benchmarking system
is provided in Section 3.3.

2.2 ZKP Compiler

Many advanced cryptographic protocols (e.g., [20, 15, 21]) employ zero-knowledge or witness-indistinguishable
proofs as part of their protocol structure. The notation of Camenisch and Stadler [22] has become the de
facto standard in the Crypto literature. This notation, while elegant, stands in for a complex interactive or
non-interactive subprotocol that must be derived before the base protocol can be implemented.

To handle such complex protocols, Charm includes an automated compiler for common ZK proof state-
ments. Such compilers are not new, and have been implemented by Meiklejohn et al. (ZKPDL) [45] and
Bangerter et al. (CACE) [8]. Our compiler interprets Camenisch-Stadler style proof descriptions at runtime
and derives an executable honest-verifier protocol. At present our compiler handles a limited set of discrete-
log statements, and is not currently as rich as ZKPDL or CACE. However, it offers some advantages over
those systems.

First, as Python is an interpreted language, we do not require a custom interpreter for the compiled
proofs, as ZKPDL does. Instead, we exploit Python’s ability to dynamically generate and execute code at
runtime. We employ this feature to convert Camenisch-Stadler proof statements into Charm code, which we
feed directly to the interpreter and protocol engine.4 Second, since our compiler has access to the public and
secret5 variables at compile time, Charm can use introspection to determine the variable types, settings and
parameter sizes. This information forms the bulk of what is provided in a ZKPDL or CACE PSL program.
Thus, from a developer’s perspective, executing a ZK proof is nearly as simple as writing a Camenisch-Stadler
statement. We provide an example in Section 3.7.

3 Implementation

In this section, we describe our Python implementation and provide more detail on certain components
of our architecture. In Section 3.5 below, we reference an example comparing a protocol description from
the literature to one implemented in our system. The code fragment shown in Figure 4 is a good overall

4In practice, we first compile to bytecode, then execute. This reduces overhead for proofs that will be conducted multiple
times.

5Clearly the verifier does not have access to the secret variables. We address this in Section 3.7.
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 def encrypt(self, pk, M, policy_str):        
     policy = util.createPolicy(policy_str)
     Y = []; util.getAttributeList(policy, Y)
     s = group.random(ZR)
     share = util.calculateShares(s, policy, dict)        
     C_y, C_yp = {}, {}
     for i in Y:
         C_y[i] = pk['g'] ** share[i]
         C_yp[i] = group.hash(i, G2) ** share[i]
         
     return { 'C_tilde': (pk['e_gg_alpha'] ** s) * M,
              'C': pk['h'] ** s, 
              'Cy': C_y, 'Cyp':C_yp, 
              'policy':policy,'attributes':Y }
  

Let, Y be the set of leaf nodes in T . The ciphertext
is then constructed by giving the tree access structure
T and computing

CT =
(

T , C̃ = Me(g, g)αs, C = hs,

∀y ∈ Y : Cy = gqy(0), C ′
y = H(att(y))qy(0)

)

.

Encrypt(PK,M, T ). The encryption algorithm en-
crypts a message M under the tree access structure T .
The algorithm first chooses a polynomial q for each. . .

def decrypt(self, pk, sk, ct):
    pruned_list = util.prune(ct['policy'], sk['S'])
    z = {}; util.getCoefficients(ct['policy'], z) 
       
    A = group.init(GT, 1) 
    for i in pruned_list:
        A *= ( pair(ct['Cy'][i],sk['Dj'][i])
             / pair(sk['Djp'][i],ct['Cyp'][i]) ** z[i]    

    return ct['C_tilde'] / ((pair(ct['C'], sk['D']) / A)

DecryptNode(CT, SK, r) =
∏

!∈L
i=att(!)

(

e(Di, C!)

e(D′
i, C

′
!)

)z!

z! =
∏

x∈ρ(!)
x "=r

∆i,S(0) where i=index(x)
S={ index(y) | y ∈ sibs(x) }

T

et A = DecryptNode(CT, SK, R) =
g)rs. The algorithm now decrypt
C̃/(e(C,D)/A) = C̃/

(

e
(

hs, g(α+r)/β
)

/e(g, g)rs
)

= M.

Decrypt(CT,SK).
cedure as a recursiveDirect computation of DecryptNode (optimization):

Figure 4: Encryption and decryption in the Bethencourt, Sahai, Waters ABE scheme [12]. The Charm
toolbox provides several utility routines that are shared by different ABE schemes.

example of using Charm and is worth skimming at this point to understand our approach. After reading
the remainder of the implementation section, our code should be easier to understand.

3.1 Language Features

Python provides many useful features that simplify development for programmers using Charm. Benefits
include support for object-oriented programming, dynamic typing, overloading of mathematical operators,
and automatic memory allocation and garbage collection.

The language also provides useful built-in data structures such as tuples and dictionaries (essentially,
key-value stores) useful for common tasks such as storing ciphertexts and public keys. These values can be
automatically serialized and deserialized, eliminating the need for custom parsing code. To read legacy files
with a specific binary format we use the python struct module, which performs packing and unpacking of
binary data. Our decision to use Python is supported by the fact that much of the effort in a typical C
implementation relates to defining and serializing data structures.

Python also supports dynamic generation of code. This feature is particularly useful in constructing a
Zero-Knowledge proof compiler (see Section 3.7) The features discussed here are not unique to Python and
can be found in other high-level languages.6 However Python has a large and devoted user base and provides
a good balance between usability, stability and performance.7

3.2 Low-level Python/C Modules

As discussed in Section 2, for performance reasons, our implementation of Charm depends on a few open-
source C math libraries including OpenSSL [52], GMP [30] and the Stanford Pairing-Based Crypto li-
brary [43]. We provide Python/C extensions for these libraries.

Our base modules expose arithmetic operations using standard mathematical operators such as ∗, + and
∗∗ (exponentiation).8 Besides group operations, our base modules also perform essential functions such as
element serialization and encoding.

6Nor are we the first to import cryptographic operations into Python. See for example [25].
7It is also well-supported. Our experiments show that there have been significant performance improvements between Python

2.x and 3.x. For this reason Charm supports the more recent version.
8For consistency, group operations are always specified in multiplicative notation, thus ∗ is used for EC point addition and

∗∗ for point multiplication. This makes it easy to switch between group settings.
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In addition to the base modules just described, we provide a cryptobase module that includes fast routines
for bitstring manipulation, evaluation of block ciphers, MACs and hash functions. Supported ciphers include
AES, DES and 3DES. Moreover, this module implements several standard modes of operation (drawn from
PyCrypto [42]) that facilitate encryption of arbitrary amounts of data.

3.3 Benchmark Module

As described in Section 2.1, we provide a benchmark module for measuring computation time and counting
operations, such as exponentiation and multiplication, in a given snippet of code at runtime. Our benchmark
module provides a consistent interface that developers can use to perform these measurements. Each base
module inherits the benchmark interface and is incorporated into a cryptographic scheme as follows:

bID = InitBenchmark()

# select benchmark options

StartBenchmark(bID, [RealTime, Exp, Mul, Add, Sub])

... code ...

EndBenchmark(bID)

# obtain results

print(GetBenchmark(bID))

As stated earlier, benchmarking can be easily removed or disabled after measurements are complete and
introduces negligible overhead.

3.4 Algebraic Groups and Fields

While our base modules provide low-level numerical functions, there are still differences in how each module
handles serializing elements, encoding messages, and generating group parameters. For instance, for the
ecmath module we employ subgroups of elliptic curves over a finite field, whereas the integermath imple-
ments integer groups, rings and fields. To reconcile these differences, we provide a thin Python interface to
encapsulate differences in group/field parameter generation, serialization, message encoding, and hashing.
This interface allows us to standardize calls to the underlying base modules from a developer’s perspective.

With this approach, cryptographers are able to adjust the algebraic setting (standard EC, integer or
pairing groups) on the fly without having to re-implement the scheme. For instance, our implementations
of DSA, El Gamal and Cramer-Shoup [46, 28, 26] can be instantiated in any group with an appropriate
structure.

3.5 Schemes

To demonstrate the potential of our framework, we implemented a number of standard and experimental
cryptosystems. For space reasons we provide only a partial listing of these in Figure 5, however the full
collection can be obtained from [1]. The complete list includes a variety of encryption schemes, signatures,
commitments and several interactive protocols. Most of the implementations required fewer than 100 lines
of code.

We provide several examples to illustrate code in Charm. Figure 4 shows the encryption and decryption
algorithms for the Bethencourt, Sahai and Waters [12] CP-ABE scheme along with the corresponding Charm
code. We provide the remaining algorithms, along with some additional examples, in Appendix A. We note
that our framework was designed to minimize the differences between published algorithms and code, in the
hope of lowering the barriers to implementation.

3.6 Protocol Engine

Every protocol implementation in Charm is a subclass of the Protocol base class. This interface provides
all of the core protocol functionality, including functions to support protocol implementations, a database
for maintaining state, serialization, network I/O, and a state machine for driving the protocol progression.
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Scheme Type Setting Comp. Model Lines

Encryption

RSA-OAEP [9] Public-Key Encryption Integer ROM 46
CS98 [26] Public-Key Encryption EC/Integer Standard 50
CHK04 [24] Public-Key Encryption - Standard 27
ElGamal [13] Public-Key Encryption EC/Integer Standard 48
Paillier99 [51] Public-Key Encryption Integer Standard 47
BF01 [16] Identity-Based Encryption Pairing ROM 58
BB04 [14] Identity-Based Encryption Pairing Standard 45
Waters05 [53] Identity-Based Encryption Pairing Standard 77
SW05 [48] Fuzzy Identity-Based Encryption Pairing Standard 79
BSW07 [12] Attribute-Based Encryption Pairing ROM∗ 63
LSW09 [40] Attribute-Based Encryption Pairing ROM∗ 72
Waters08 [54] Attribute-Based Encryption Pairing ROM∗ 67
LW10 [41] MA Attribute-Based Encryption Pairing ROM∗ 84

Digital Signatures

Schnorr [18] Signature Integer Standard 27
IBE-to-Signature [16] Signature - Standard 27
RSA-PSS [10] Signature Integer ROM 53
DSA [46] Signature EC/Integer n/a 34
BLS03 [17] Short signature Pairing ROM 25
HW09 [33] Signature Integer Standard 71
BBS04 [15] Group signature Pairing ROM 47

Miscellaneous

GS07 [31] Commitment Pairing Standard 41
Pedersen [47] Commitment EC/Integer Standard 17
AdM05 [6] Chameleon Hash Integer ROM 33
RSA HW09 [33] Chameleon Hash Integer Standard 44

Protocols

Schnorr91 [49] Zero-Knowledge proof EC/Integer Standard 54
ECMQV [38] Key Agreement EC ROM 95
CNS07 [21] Oblivious Transfer Pairing Standard 160

Figure 5: A selected (due to space considerations) listing of some of the cryptographic schemes we imple-
mented. “Code Lines” indicates the number of lines of Python code used to implement the scheme (excluding
comments and whitespace), and does not include the framework itself. ROM indicates that a scheme is se-
cure in the Random Oracle Model. A “-” indicates a generic transform (adapter). ∗ indicates a choice made
for efficiency reasons.

Creating a new interactive protocol is straightforward. The implementation provides a description of
the parties, protocol states and transitions (including error transitions for caught exceptions), as well as
the core functionality for each state. State functions accept and return Python dictionaries containing the
passed parameters — socket I/O and data serialization is handled transparently before and after each state
function runs. Developers have the option to implement their own serialization functionality for protocols
with a custom message format. Public parameters may either be passed into the protocol or defined in
the init function. Finally, we provide templates for some common protocol types (such as Σ-protocols).
Figure 6 contains an example of a machine-generated Protocol subclass.

Executing protocols and subprotocols. From an application’s perspective, executing a protocol consists of
two calls to the Protocol interface. First, the application calls Setup() to configure the protocol with an
identifier of one of the parties in the protocol, optional initial state, public parameters, a list of remote
parties, and a collection of open sockets. It then calls Execute() to initiate communication.

We also provide support for the execution of subprotocols. Launching a subprotocol is simpler than an
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initial execution, since the protocol engine already has information on the remote parties. The caller simply
identifies for the server the role played by each of the parties in the subprotocol (e.g., the Server party may
be remapped to be the Prover for the subprotocol), and instructs the protocol engine to run the subprotocol
via the Execute() method.

Our engine currently supports only synchronous operation. Asynchronous protocol runs must be handled
by the application itself using Python’s threading capabilities. Callback functions may be supplied by
passing function pointers as part of the public parameters. We plan to provide more complete support for
asynchronous execution in future releases.

3.7 ZK compiler

Zero-knowledge proofs allow a Prover to demonstrate knowledge of a secret without revealing it to a Verifier.
Such proofs are common in privacy-preserving protocols such as the idemix anonymous credential system
and Direct Anonymous Attestation [23, 19]. These proofs may be interactive or non-interactive (via the
Fiat-Shamir heuristic, or using new bilinear-map based techniques [29, 31]). Regardless of the underlying
mechanism, it has become common in the literature to describe such proofs using the notation of Camenisch
and Stadler [22]. For instance,

ZKPoK{(x, y) : h = gx ∧ j = gy}

denotes a proof of knowledge of two integers x, y that satisfy both h = gx and j = gy. All values not enclosed
in parentheses are assumed known to the verifier.

Converting these statements into working protocols is challenging, even for expert developers. To assist
implementation, Charm borrows from the techniques of ZKPDL and CACE [45, 5], providing native support
for honest verifier Schnorr-type proofs via an automated protocol compiler.

Our compiler, implemented in Python itself, outputs Python code. The interface to the compiler closely
resembles a Camenisch-Stadler proof statement. The caller provides two Python dictionaries containing the
public and secret parameters, as well as a string describing the proof goal. In some cases, such as when
configuring the Verifier portion of an interactive proof, the secret values are not available. We currently deal
with this by providing “dummy” variables of the appropriate type. Our runtime compiler can examine the
variables and automatically generate appropriate code on the fly. The compiler produces one of two possible
outputs: a routine for computing a non-interactive protocol via the Fiat-Shamir heuristic, or a subclass of
Protocol describing the Prover and Verifier interactions, in the case of interactive protocols.

In the interactive case, we provide support routines to generate the class definition, compile the generated
code into Python bytecode, initialize communication with sockets provided by the caller, and execute the
proof of knowledge. The code below illustrates a typical interactive proof execution from the Prover:

# prover

pub = {’h’:g ** x, ’g’:g, ’j’:g ** y}

sec = {’x’:x, ’y’:y}

result = executeIntZKProof(pub, sec, "(h = g^x) and (j = g^y)", party_info)

Figure 6 shows a generated Protocol subclass for the proof goal h = gx.
We believe that the runtime technique will be extremely useful for developers who require compact,

readable code. However, we note that since our protocol produces Python code, it can also be used to
compile static protocol code which may be added to a project. We provide some performance numbers on
the compilation process in Section 4.2.

At present our compiler is intended as a proof of concept because it lacks support for many types
of statement (e.g. Boolean-OR) and proof settings. Our compiler is less sophisticated than CACE and
ZKPDL. For example, in addition to supporting more complex conjunctions and statement types, CACE
includes formal verification of proofs. We believe that our approach is complementary to these projects, and
we hope to establish collaborations to extend Charm’s capabilities in future versions.
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class ZKProof(Protocol):
    def __init__(self, groupObj, common_input=None):
        Protocol.__init__(self)
        # ... init of party, states and transitions ...
        # ... setup group object ...
        # ... init of base class db ...

    def prover_state1(self):
        pk = Protocol.get(self, ['h','j','g'], dict) 
        (x,) = Protocol.get(self, ['x']) 
        k0 = self.group.random(ZR) 
        val_k0 = pk['g'] ** k0
        Protocol.store(self, ('k0',k0),('x',x)) 
        Protocol.setState(self, 3)
        return {'val_k0':val_k0, 'pk':pk } 

    def verifier_state2(self, input):
        c = self.group.random(ZR)
        Protocol.store(self, ('c',c), 
                   ('pk',input['pk']), 
                   ('val_k0', input['val_k0']) )
        Protocol.setState(self, 4)
        return {'c':c}                                ...

 

  ...
    def prover_state3(self, input):
        c = input['c'] 
        val = Protocol.get(self, ['x','k0',], dict) 
        z0 = val['x'] * c + val['k0'] 
        Protocol.setState(self, 5)
        return {'z0':z0,} 

    def verifier_state4(self, input):
        z0 = input['z0']; 
        val = Protocol.get(self, ['pk','val_k0','c'], dict) 
        if (val['pk']['g'] ** z0) == 
           ((val['pk']['h'] ** val['c']) * val['val_k0'] ): 
            result = 'OK'
        else: 
            result = 'FAIL' 
        Protocol.setState(self, 6)
        Protocol.setErrorCode(self, result) 
        return result 

Figure 6: A partial listing of the generated protocol produced by our Zero-Knowledge compiler for the
honest-verifier proof ZKPoK{(x) : h = gx}.

3.8 Meta-information and Adapters

Charm provides the ability to label schemes so that they carry meta-information about their input/output
space and security definitions. Optionally, developers can provide other details such as the complexity as-
sumption and computational models used in the scheme’s security proof. This information allows developers
to compare and check compatibility between schemes.

All schemes descend from the Scheme class, which provides tools to record and evaluate meta-information.
Developers use the setProperty() method to specify important properties. For example, the init function
of an Identity-Based Encryption scheme might include a call of this form:

# Set the scheme’s security definition, ID space,

# and message space.

setProperty(self, secdef=IND_ID_CPA, id=str, msg=str)

Schemes with more restrictive parameters, e.g., group elements and/or strings of limited length, can
specify these requirements as well. In some cases, evaluation of a scheme depends on the scheme’s public
key. Once each scheme is labeled with the appropriate metadata when defined, we can programmatically
extract this information at run-time to verify a given set of criteria.

Adapter example. To illustrate how this functionality works in practice, we consider the process of con-
structing adapters between different schemes. In Section 2 we proposed an adapter chain to convert the
Boneh-Boyen IND-sID-CPA-secure signature scheme [14] into an EU-CMA signature (see Figure 3). This
transformation requires two adapters: one to convert the selectively-secure IBE scheme into an adaptively-
secure IBE scheme (in the random oracle model), and another to transform the resulting IBE into a signature
using the technique of Naor [16]. Let us now describe the core functionality of these adapters.

The Hash Identity adapter has an explicit and implicit function. Explicitly, it applies a hash function to
the Boneh-Boyen IBE, which accepts identities in the group Zr,

9 thus altering the identity-space to {0, 1}∗.
Implicitly, it converts the security definition of the resulting IBE scheme from IND-sID-CPA to the stronger
IND-ID-CPA definition and updates the meta-information to note that the security analysis is in the random
oracle model.10 The adapter itself is implemented as a subclass of IBEnc (see Figure 12 in Appendix A). It
accepts the Boneh-Boyen IBE (also an IBEnc class) as input to its constructor. At construction time, the

9The value r is typically a large prime.
10On a call to encrypt or keygen the adapter simply hashes an arbitrary string into an element of Zr, then passes the result

to the underlying IBE scheme. This technique and its security implications are described in [14].
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adapter must verify the properties of the given scheme using the checkProperty() call. It then advertises
its own identity space and security information. This code is contained within the adapter’s init routine
and appears as follows:

...

if IBEnc.checkProperty(scheme, {’scheme’:IBEnc, ’secdef’:IND_sID_CPA, ’id’:ZR}):

self.ibenc = scheme

IBEnc.setProperty(self, secdef=IND_ID_CPA, id=str, secModel=ROM)

...

The IBE-to-Sig adapter converts any adaptively-secure IBE scheme into an EU-CMA signature.11 This
adapter is implemented as a subclass of PKSig. It accepts an object derived from IBEnc and verifies that it
advertises at least IND-ID-CPA security (IND-sID-CPA is not sufficient, hence our use of the previous adapter)
and possesses an appropriate message space. With this check satisfied, this adapter inherits the security
model of the underlying IBE, adopts the IBE’s identity space as the message space for the signature, and
advertises the EU-CMA security definition.

In future versions of the library, we hope to significantly extend the usefulness of this meta-data, to include
detailed information on performance (gathered through automatic testing). We also intend to provide tools
for automatically constructing useful adapter chains based on specific requirements. At present adapters
must be manually configured by the application.

3.9 Type checking and conversion

Python programs are dynamically typed. In general, we believe that this is a benefit for a rapid prototyping
system: dynamic typing makes it possible to assemble and modify complex data structures (e.g., ciphertexts)
“on the fly” without the need for detailed structure definitions.

Of course, the lack of static typing has disadvantages. For one thing, type errors may not be detected
until runtime. Furthermore, it can limit the utility of adapters that depend on having a priori knowledge
about a scheme’s input or output characteristics.

To address these issues Charm provides optional support for static typing using the Python annotation
interface. When it is provided, Charm uses this type information to validate the inputs provided to a
cryptographic algorithm and, in cases where the inputs are of the wrong type, to automatically convert
them. For the latter purpose, Charm provides a standard library designed to encode values to and from
a variety of standard types, including bit strings and various types of group element. An example of the
Charm typing syntax is provided below:

pk_t = { ’g1’ : G, ’g2’ : G, ’c’ : G, ’d’ : G, ’h’ : G }
c_t = { ’u1’ : G, ’u2’ : G, ’e’ : G, ’v’ : G }
def encrypt(self, pk : pk_t, M : str) -> c_t: ...

We believe that support for explicit typing also provides a foundation for adding formal verification techniques
to Charm, though we leave such verification to future work.

4 Performance

Charm is primarily intended for rapid prototyping, with an emphasis on compactness of source code and
similarity between standard protocol notation and code. These properties all favor the developer and are
qualities designed to produce more correct, robust and secure code. We recognize that our approach to
achieving these properties is likely to involve some tradeoff in performance.

This section describes some representative performance measurements that we performed using Charm’s
built-in benchmarking system. For comparison purposes we also conducted experiments on two existing C

11Naor [16] observed that adaptively-secure IBE can be converted into a signature scheme by using the IBE key extraction
algorithm for signing.
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implementations. We observe that the performance cost of using Charm is variable, and depends significantly
on the nature of the scheme being implemented. Finally, we conducted some experiments to demonstrate
the capabilities of our benchmark module, and to examine the performance of our ZK proof compiler.

4.1 Comparison with C Implementations

We conducted detailed timing experiments on two of the cryptosystems we implemented: ECDSA and a CP-
ABE scheme due to Bethencourt, Sahai, Waters [12]. We chose these because of available C implementations
that we could compare against. Our experiments comprise two different points on a spectrum: our ECDSA
experiment considers Charm’s performance in an algorithm with very fast operation times, and our CP-ABE
experiment considered a scheme with a high computational burden (to stress this, we instantiated the scheme
with a 50-element policy).

Experimental setup. We used the benchmark module to collect timings for our Charm implementation of the
ECDSA Sign and Verify algorithms. This provided us with total operation time for both algorithms. We
then collected total operation times for OpenSSL’s implementation of the same algorithms using the built-in
speed command.

For CP-ABE we again used benchmark to collect measurements for our ABE key generation, encryption
and decryption implementations (omitting the setup routine). For key generation, we extracted a key
containing 50 attributes (1, . . . , 50). We next encrypted a random message (in the group GT ) under a policy
consisting solely of AND gates: (1 and 2 and . . . and 50). Finally, we decrypted the message using
the extracted key. For each experiment we measured total time and number of numerical operations. We
repeated these experiment using John Bethencourt’s library (available from [2]).

We conducted our experiments on a Macbook Pro with an 2.4Ghz Intel i5 with 4GB of RAM running Mac
OS 10.6. All of our experiments were performed on a single core of the processor. For all experiments (Charm
and C) we used either OpenSSL v1.0.0d library or libpbc 0.5.11 to perform the underlying mathematical
operations. Our ECDSA experiments used the standard NIST P-192 elliptic curve. For CP-ABE we used
a 512-bit supersingular curve (with embedding degree k = 2) from libpbc. All of our timing results are the
average of ten experimental runs.

Commentary. The results of our experiments are presented in Figure 7. Unsurprisingly, our Charm imple-
mentation of ECDSA suffered a substantial performance penalty when compared to the OpenSSL version.
This is unavoidable given the relatively low overall time required for ECDSA operations — even small in-
terpretation inefficiencies add up to a large percentage of the total cost. However, some of this extra time
can be attributed to inefficiencies in our module implementation, which should be optimized to reduce the
amount of C-Python interaction. Even with this overhead, the overall performance is still acceptable for
many applications.

Our results with CP-ABE (and 50 attributes) are encouraging. For key generation and decryption, Charm
is competitive with the C implementation. For encryption we noticed a significant additional overhead in
the Charm implementation. We believe that this is due to an inefficient policy parser, which we intend to
replace in future versions.

4.2 Additional Performance Measurements

We also conducted timing experiments on two additional schemes for which we did not have C implementa-
tions. The schemes we tested include the Cramer-Shoup scheme [26] (in Integer groups with 1024-bit keys),
and a more recent CP-ABE scheme (with 50 leaves in policy tree) due to Waters [54].

Finally, to provide some insight into the performance impact of our ZK proof compiler we compiled a
protocol for the proof ZKPoK{(x, y) : h = gx and j = gy}, and measured the time for our compiler, as well
as the time required by Python to compile the resulting protocol to bytecode. We present the results of our
benchmarks in Figure 8.
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Figure 7: For EC-DSA, we select the NIST P-192 elliptic curve and for CP-ABE [12], we measure 50
attributes for keygen and 50 leaves in the policy tree for encrypt and decrypt.

Scheme Time Pairs Exps Muls w/o

CS98-Enc 9.3ms · 5 3 8.4ms
CS98-Dec 7.1ms · 3 3 6.4ms
Waters08-Enc 1532ms · 152 345 1531ms
Waters08-Dec 415ms 101 100 296 414ms

Protocols Gen. Comp. Exec.
ZK Compiler 2.6ms 3.5ms 22.2ms

Figure 8: At top, benchmark results for Cramer-Shoup and the Waters09 CP-ABE. From left, results include
total time, number of pairings, exponentiations and multiplications, and time with benchmark module deac-
tivated. At bottom, time required to generate, compile, and execute (excluding network communications)
the proof ZKPoK{(x, y) : h = gx ∧ j = gy}.

4.3 Application Example

To demonstrate the usefulness of Charm in more complex applications, we integrated Charm into TLS
Lite [3]. TLS Lite is an efficient Python-based implementation of the TLS protocol, complete with support
for a variety of ciphersuites. We first modified the standard TLS Lite handshake to replace its existing
(PyCrypto) RSA encryption and signature verification routines with the Charm equivalents.12 We also
prepared another version that swaps both schemes with standard-model alternatives: Cramer-Shoup [26]
and the Waters signature scheme [53].13

We first measured the standard handshake using the original (unmodified) version of TLS Lite with
client certificates enabled, using self-signed certificates and in all cases averaging over 10 experimental runs.
Within each run we recorded the total encryption and decryption time on server and client, then summed
these. We repeated the same process to obtain a total time for signing and verification. We then measured
our modified TLS Lite, which is identical to the standard version but configured to use Charm for RSA
encryption and signing. Finally, we measured our version with Cramer-Shoup and Waters signatures (using
appropriately generated certificates).14 Figure 9 presents the results of our experiments.

12Because Charm does not support the older RSA-PKCS #1v1.5 encryption and signature padding schemes used by TLS
Lite, we replaced them with RSA-OAEP and RSA-PSS respectively.

13Note that this simple substitution does not produce a “standard model-secure” version of TLS along the lines of [35] —
such a modification would require substantially greater changes to the TLS handshake. Rather, this informal experiment was
intended to demonstrate the usefulness of Charm in experimenting with different cryptosystems.

14We implemented Cramer-Shoup in the NIST p192 elliptic curve, and the Waters signature in a 224-bit MNT elliptic curve
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Version Total Enc/Dec Total Sig/Ver

Unmodified TLS Lite (RSA/RSA) 4.15ms 4.05ms
Charm TLS Lite (RSA/RSA) 3.8ms 3.62ms
Charm TLS Lite (CS98/Waters05) 6.0ms 17.0ms

Figure 9: Timing results for our modified versions of TLS Lite. Total time measurements represent the sum
of time measurements on the server and client.

5 Related Work

Our work builds upon previous efforts to provide software libraries for people wishing to develop systems
that use cryptography. We describe four different types of libraries below.

Cryptographic (primitive) libraries

The first widely available general purpose library for cryptographic functions was Jack Lacey’s CryptoLib [36].
This software package provided programmers with an API to call many of the commonly used cryptographic
functions in 1993, at the time when CryptoLib was released. The package included a big arithmetic function
for performing operations on integers larger than can be represented using standard programming languages.
It also included Chinese Remainder Theorem speedup of exponentiation, and many other efficiently imple-
mented primitives for such functions as DES, RSA, El Gamal, and MD5. The package was designed to be
portable and cross platform with some sacrifices made to efficiency for the sake of portability. By linking to
CryptoLib, people interested in implementing cryptographic functions could focus on their protocols and to
not worry about the low level primitives. The package was supported and improved for several years by its
author.

Following CryptoLib, many other packages were developed by different people, including Peter Guttman’s
similarly named CryptLib (http://www.cs.auckland.ac.nz/~pgut001/cryptlib/), RSA’s Bsafe Crypto-
C (http://www.rsa.com/rsalabs/node.asp?id=2301), and more recently JAVA libraries such as Cryptix
(http://www.cryptix.org/) and BouncyCastle (http://www.bouncycastle.org/). There are too many
API’s available today for standard cryptographic functions to list them all here.

There have not been as many implementations of ABE and its related primitives. Of note is the im-
plementation by Bethencourt, Sahai and Waters [12], which provides an API for ciphertext policy ABE.
This package is part of the Advanced Crypto Software collection (http://acsc.cs.utexas.edu/) at the
university of Texas [2], which in addition to the ABE code, includes packages for the Paillier public key
cryptosystem, forward-secure signatures, pairing-based cryptography (implemented in C), and several other
application-based primitives.

Math libraries

The Gnu Multiple Precision Arithmetic Library (GMP) [30] is a free, high-precision mathematics library,
specifically optimized for speed of cryptographic algorithms. It was initially released in 1991 and, new
improved versions have been released on a yearly basis. Pairing-Based Cryptography library (PBC) [43] is
a free library written in C and built on top of GMP. PBC was built for speed and portability with the goal
of enabling implementation of pairing-based cryptosystems.

The Multiprecision Integer and Rational Arithmetic Library (MIRACL) [50] is free and is written in C
and C++. It provides an API for big number arithmetic needed to implement cryptographic operations.
It supports elliptic curve cryptography, AES, SHA-160/256/384/512. In addition to the API, MIRACL
exposes some of the lower level functions with the aim of allowing programmers to develop new cryptographic
functions from low level primitives.

using SHA256 is the hash function. A wrinkle in using the Cramer-Shoup scheme is that the plaintext space of Cramer-Shoup
is dramatically smaller than that of RSA-1024, hence we used a shorter pre-master secret.

14



Cryptographic compilers and frameworks

Ben Laurie’s Stupid programming language [37] compiles into C and Haskell and is intended for things like
ciphers and hash functions. Cryptol [39] compiles to a VHDL circuit for use with an FPGA. Yehuda Lindell
et. al. at Bar Ilan University is building a framework for rapid prototyping of cryptographic primitives.15

At the time of this writing, they have not yet released nor published about their system.

Protocol and Secure Function Evaluation compilers

The authors of the Zero Knowledge Proof Descriptive Language (ZKPDL) [45] offer a language and an
interpreter for developers who wish to implement privacy-preserving protocols. Their example application
is electronic cash, but their descriptive language is more general. A similar approach is provided by Fair-
Play [44], which provides a language-based system for secure multi-party computations. The authors of
FairPlay provide a Secure Function Definition Language (SFDL), which can be used by programmers to
specify code for multi-party computations.

The Computer Aided Cryptography Engineering (CACE) project has also developed a system that speci-
fies a language for zero knowledge proofs [8, 7]. In this system, a compiler translates zero knowledge protocol
specifications into JAVA code or Latex statements that can be incorporated into a research paper. In a sim-
ilar vein, a software package called Tool for Automating Secure Two-Party Computations (TASTY) [32]
allows protocol designers to specify a high-level description of a computation that is to be performed on
encrypted data. TASTY then generates protocols based on the specification, and compares the efficiency of
different protocols.

6 Conclusion and Future Work

This paper describes a programmer-focused software development methodology for cryptographic systems.
We designed and built the Charm framework to reduce the load on the cryptographer. Low-level math-
ematical code, often a performance bottleneck, is written in C, and is called from the high level Python
code. Developers build their protocols in Python and enjoy benefits of the built in features of that high level
language, as well as the framework Toolbox and other mechanisms provided by Charm.

Charm contains a protocol engine that takes care of the communications, serialization and other house-
keeping that is integral to implementing a multi-party protocol. Thus, developers are shielded from the
minutia that is not relevant to the cryptographic theory in their protocol. We show in detail how a cryptog-
rapher can build a system implementing a ZK proof system based on a specification in the most commonly
found academic notation.

Charm is extensible, and we are continuing to add schemes. We believe that the framework is simple
enough to understand that we hope to develop an active user group. It is our aim to encourage others to
develop schemes and to contribute them to the framework, and we will support a user community, if we
are successful. In the coming months we plan to expand the capabilities of our library, and to optimize the
existing code which should produce significant performance benefits while reducing dependencies.

This work leaves us with a number of open problems. We plan to investigate mechanisms for automatically

discovering and configuring adapter chains according to constraints provided by the application. We also
intend to enhance our zero knowledge proof compiler to support more complex proof statements, as well as
bilinear Groth-Sahai proofs [31] (which to our knowledge have not been implemented in an open library).
Additionally, we believe that there may be other applications of dynamic code generation in a cryptographic
framework, including inline compilation of Secure Multiparty Computation circuits (as in [44, 32]).

Finally, we accept that there may be instances where development requirements cannot support Python.
To address this we plan to examine the possibility of compiling Charm code directly to C, using tools such
as Shedskin [27].

15personal communications
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 def encrypt(self, pk, M):
     r = group.random()
     u1    = (pk['g1'] ** r)
     u2    = (pk['g2'] ** r)
     e     = group.encode(M) * (pk['h'] ** r)
     alpha = group.hash((u1, u2, e))
     v     = (pk['c'] ** r) * (pk['d'] ** (r * alpha))

     return { 'u1' : u1, 'u2' : u2, 'e' : e, 'v' : v }

 def decrypt(self, pk, sk, c):
     alpha = group.hash((c['u1'], c['u2'], c['e']))        
     v_prime = (c['u1'] ** (sk['x1'] + (sk['y1'] * alpha))) * 
                 (c['u2'] ** (sk['x2'] + (sk['y2'] * alpha)))
     if (c['v'] != v_prime):
          return False 
     return group.decode(c['e'] / (c['u1'] ** sk['z']))

CS98 Scheme

Encryption. Given a message m ∈ G, the encryption algorithm runs as
follows. First, it chooses r ∈ Zq at random. Then it computes

u1 = gr1, u2 = gr2, e = hrm, α = H(u1, u2, e), v = crdrα.

The ciphertext is (u1, u2, e, v).

Decryption. Given a ciphertext (u1, u2, e, v), the decryption algorithm runs
as follows. It first computes α = H(u1, u2, e), and tests if

ux1+y1α

1 ux2+y2α

2 = v.
If this condition does not hold, the decryption algorithm outputs “reject”;
otherwise, it outputs

z

m = e/uz

1.

Algorithm

Figure 10: Encryption and Decryption in the Cramer-Shoup scheme [26]. We exclude group parameter
initialization and keygen.

def setup(self):
    g, gp = group.random(G1),group.random(G2)
    alpha = group.random(ZR)
    beta = group.random(ZR)
    g_alpha = g**alpha

    pk = {'g':g, 'g2':gp, 'h':g**beta, 
           'f':g**~beta, 
           'egg_alpha': pair(g, g_alpha)}
    mk = {'beta':beta, 'g2_alpha':g_alpha}
    return (pk, mk)

Setup. The setup algorithm will choose a bilinear
group G0 of prime order p with generator g. Next
it will choose two random exponents α,β ∈ Zp. The
public key is published as:

PK = G0, g, h = gβ , f = g1/β , e(g, g)α

and the master key MK is (β, gα). (Note that f is used
only for delegation.)

def keygen(self, pk, mk, S):
  r = group.random(ZR); g_r = (pk['g2']**r)    
  D = (mk['g2_alpha'] * g_r) ** ~mk['beta']        
  D_j, D_j_pr = {}, {}
  for j in S:
     r_j = group.random(ZR)
     D_j[j] = g_r * (group.hash(j,G2)**r_j)
     D_j_pr[j] = pk['g'] ** r_j        

  return {'D':D,'Dj':D_j,'Djp':D_j_pr,'S':S}
   

)

KeyGen(MK, S). The key generation algorithm
will take as input a set of attributes S and output a
key that identifies with that set. The algorithm first
chooses a random r ∈ Zp, and then random rj ∈ Zp

for each attribute j ∈ S. Then it computes the key as

SK =
(

D = g(α+r)/β ,

∀j ∈ S : Dj = gr ·H(j)rj , D′
j = grj

)

.

BSW07 Scheme Algorithm

Figure 11: Setup and Keygen in the Bethencourt, Sahai, Waters scheme [12]. We exclude group parameter
generation.
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class Sig_Generic_ibetosig_Naor01(PKSig):
    def __init__(self, scheme, groupObj):
        PKSig.__init__(self)
        global ibe, group
        # ... verify scheme properties ...
        ibe = scheme; group = groupObj

    def keygen(self, secparam=None):
        (mpk, msk) = ibe.setup(secparam)
        return (mpk, msk)

    def sign(self, sk, message):
        return ibe.extract(sk, str(message))

    def verify(self, pk, m, sig):
        if hasattr(ibe, 'verify'):
            result = ibe.verify(pk, sig)
            if result == False: return False
        message = group.random(GT)

        C = ibe.encrypt(pk, sig['id'], message) 
        if (ibe.decrypt(sig, C) == message):
            return True
        else:
            return False

IBE-to-Sig Adapter

Figure 12: The entire IBE to signature adapter scheme [16] implemented in Charm.
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