CHARM: An Efficient Algorithm for Closed Itemset Mining

Authors: Mohammed J. Zaki and Ching-Jui Hsiao Presenter: Junfeng Wu

28/10/2004

Outline

- Introductions
- Itemset-Tidset tree
- CHARM algorithm
- Performance study
- Conclusion
- Comments

28/10/2004

Introductions

When we are mining association rules in a database, a huge number of frequent patterns (itemsets) will be generated.

- Database: {(1,2,3,4),(1,2,3,4,5,6)}
- Minimum support = 50%
- 63 frequent itemsets
 ({(1),(2),(3),(4),(5),(6),(1,2),(1,3),...,(1,2,3,4,5,6)})

Introductions

Closed frequent itemsets are nonredundant representations of all frequent itemsets.

Mining association rules on closed frequent itemsets is a much easier task.

In the previous database, the number of closed frequent itemsets is only 2, (1,2,3,4) and (1,2,3,4,5,6).

1

Closed frequent itemsets

- A frequent itemset X is closed if and only if there is no itemset Y such that
 - Y subsumes X
 - every transaction that contains X also contains Y

Database: $\{(1,2,3,4),(1,2,3,4,5,6)\}$ Itemset (1,2) is not a closed itemset. Itemset (1,2,3,4) is a closed itemset.

28/10/2004

Example Database

DISTINCT DATABASE ITEMS

Jane Austen		Agatha Christie	Sir Arthur Conan Doyle	Mark Twain	P.G. Wodehouse	
А	A C		D	T W		
DAT	ГАВ	ASE	ALL FREQUENT ITEMSETS MINIMUM SUPPORT = 50%			
Transaction	Ite	oms				
1	Α,0	C,T,W	Support	Itemsets		
2	C,D,W		100%(6)	С		
3	A,C,T,W		83%(5)	W,CW		
4	A,C,D,W		67%(4)	A,D,T,AC,AW,CD,CT,ACW		
5	A,C,D,T,W		50%(3)	AT,DW,TW,ACT	r,atw,cdw,c	
6	C,E),Т		TW,ACTW		

28/10/2004

Horizontal/Vertical format database

- Horizontal format database
 - Each record is a set of items.
 - Each record is assigned a distinct number named transaction id.
- Vertical format database
 - Each record is a set of transaction id about an item.
 - This item occurs in these transactions.

Vertical format database

5

28/10/2004

Notations

Given an itemset *X*, *t*(*X*) is the set of all tids that contains *X*. For example: t(ACW) = 1345

Given a tidset *Y*, *i*(*Y*) is the set of all common items to all the tids in *Y*. For example: *i*(12) = CW

Given an itemset X, c(X) is the smallest closed set that contains X.

For example: c(A)=c(C)=C(W)=ACW

Itemset-Tidset Search Tree (IT-tree)

- Each node in the IT-tree is an itemsettidset pair, X×t(X).
 For example: AT×135
- All the children of node X share the same prefix X and belong to an equivalence class

Theorem 1

- Let $X_i \times t(X_i)$ and $X_j \times t(X_j)$ be any two members of a class [p], with $X_i \leq_f X_j$, where f is a total order. The following four properties hold:
 - 1. If $t(X_i) = t(X_j)$, then $c(X_i) = c(X_j) = c(X_i \cup X_j)$
 - 2. If $t(X_i) \subset t(X_j)$, then $c(X_i) \neq c(X_j)$, but $c(X_i) = c(X_i \cup X_j)$
 - 3. If $t(X_i) \supset t(X_j)$, then $c(X_i) \neq c(X_j)$, but $c(X_j) = c(X_i \cup X_j)$
 - 4. If $t(X_i) \neq t(X_j)$, then $c(X_i) \neq c(X_j) \neq c(X_i \cup X_j)$

28/10/2004

Complexity issues

Comparing two itemset's tidsets becomes a time consuming task when tidset gets very large.

Keeping all tids of itemsets in memory needs lots of space.

Solution: using diffsets

Diffset and Tidset

Let $m(X_i)$ and $m(X_j)$ denote the number of mismatches in the diffsets $d(X_i)$ and $d(X_j)$

For example: $X_i=D$, $X_j=T$, then $d(X_i)=2456$, $d(X_j)=1356$, $m(X_i)=|(13)|=2$, $m(X_j)=|(24)|=2$

$m(X_i) = 0$	and	$m(X_j)=0,$	then	$d(X_i) = d(X_j)$	or	$t(X_i) = t(X_j)$
$m(X_i) > 0$	and	$m(X_j)=0,$	then	$d(X_i) \supset d(X_j)$	or	$t(X_i) \subset t(X_j)$
$m(X_i) = 0$	and	$m(X_j) > 0,$	then	$d(X_i) \subset d(X_j)$	or	$t(X_i) \supset t(X_j)$
$m(X_i) > 0$	and	$m(X_j) > 0,$	then	$d(X_i) \neq d(X_j)$	or	$t(X_i) \neq t(X_j)$

28/10/2004

Performance study Performance study Datasets T40I10D100K T40110D100K Database # Items Avg. Length Std. Dev. # Records 3000 7637 3,196Apriori 🗖 Closet chess 0 160 2500 Ćlose —× Charm connect 130430 67,557Pascal ----∂ 140 120230 8,124 mushroom 2000 Mafia —o ê 120 7117 502 pumsb* 49,046 Charm -Fotal Time 1500 100 74pumsb 7117 0 49.046Ē gazelle 4982.54.959,6011000 10۵ T10I4D100K 10003.7100,00060 500 T40I10D100K 1000 408.5100,00010 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 Minimum Support (%) Minimum Support (%) 28/10/2004 21 28/10/2004

Performance study

Scalability

Linear increasing in the running time with increasing number of transactions at a giving support.

Memory usage

The memory usage is 50 times smaller by using diffsets than using tidsets.

Memory usage (using diffsets)

ſ	DB	50%	20%	DB	0.1%	0.05%	DB	1%	0.5%
	$\operatorname{connect}$	$0.68 \mathrm{MB}$	1.17 MB	gazelle	0.13 MB	$1.24 \mathrm{MB}$	T40I10D100K	0.39 MB	0.52 MB

28/10/2004

Conclusion

- Advantage of CHARM
 - Faster than other algorithm at low support threshold
 - Faster than other algorithm on a database with very long closed patterns
- Disadvantage of CHARM
 - Slower than Closet when most of closed sets are 2-itemset

Comments

- Strength
 - The ideas in the paper are intuitive.
 - The authors first introduced an efficient data structure (ITtree) for closed itemset mining.
 - The authors demonstrated the algorithm on various datasets.
 - The experimental studies are convincing.
- Weakness
 - The algorithm requires the conversion of database from horizontal format to vertical format.
- Follow-up
 - Closet+ (Wang et al, 2003) beats CHARM one year later.

28/10/2004

THANK YOU!

Questions or comments?

28/10/2004