
www.kuleuven.be

KU LEUVEN

Chasing Bulges or Rotations? A Metamorphosis of
the QR-Algorithm
Raf Vandebril

Raf Vandebril
Department of Computer Science

KU Leuven, Belgium
Raf.Vandebril@cs.kuleuven.be

Abstract

The QR-algorithm is a renowned method for computing all
eigenvalues of an arbitrary matrix. A preliminary unitary sim-
ilarity transformation to Hessenberg form is indispensable for
keeping the computational complexity of the subsequent QR-
steps under control. When restraining computing time is the
vital issue, we observe that the prominent role played by the
Hessenberg matrix is sufficient but perhaps not necessary to ful-
fill this goal. In this paper, a whole new family of matrices,
sharing the major qualities of Hessenberg matrices, will be put
forward. This gives rise to the development of innovative implicit
QR-type algorithms, pursuing rotations instead of bulges. The
key idea is to benefit from the QR-factorization of the matrices
involved. The prescribed order of rotations in the decomposition
of the Q-factor uniquely characterizes several matrix types such
as Hessenberg, inverse Hessenberg, and CMV matrices. Loosen-
ing the fixed ordering of these rotations provides us the class of
matrices under consideration. Establishing a new implicit QR-
type algorithm for these matrices requires a generalization of
diverse well-established concepts. We consider the preliminary
unitary similarity transformation, a proof of uniqueness of this
reduction, an extension of the CMV -decomposition to a dou-
ble Hessenberg factorization, and an explicit and implicit QR-
type algorithm. A detailed complexity analysis illustrates the
competitiveness of the novel method with the traditional Hes-
senberg approach. The numerical experiments show compara-
ble accuracy for a wide variety of matrix types, but disclose an
intriguing difference between the average number of iterations
before deflation can be applied.

Article information

• Vandebril, Raf. Chasing bulges or rotations? A metamorphosis of the QR-algorithm, SIAM Journal on Matrix
Analysis and Applications, volume 32, issue 1, pages 217-247, 2011.

• The content of this article is identical to the content of the published paper, but without the final typesetting
by the publisher.

• Journal’s homepage: https://www.siam.org/journals/simax.php

• Published version: http://dx.doi.org/10.1137/100809167

• KU Leuven’s repository url: https://lirias.kuleuven.be/handle/123456789/280648

http://www.kuleuven.be
mailto:Raf.Vandebril@cs.kuleuven.be
https://www.siam.org/journals/simax.php
http://dx.doi.org/10.1137/100809167
https://lirias.kuleuven.be/handle/123456789/280648

SIAM J. MATRIX ANAL. APPL. c© 2011 Society for Industrial and Applied Mathematics
Vol. 32, No. 1, pp. 217–247

CHASING BULGES OR ROTATIONS? A METAMORPHOSIS OF
THE QR-ALGORITHM∗

RAF VANDEBRIL†

Abstract. The QR-algorithm is a renowned method for computing all eigenvalues of an arbitrary
matrix. A preliminary unitary similarity transformation to Hessenberg form is indispensable for
keeping the computational complexity of the subsequent QR-steps under control. When restraining
computing time is the vital issue, we observe that the prominent role played by the Hessenberg
matrix is sufficient but perhaps not necessary to fulfill this goal. In this paper, a whole new family
of matrices, sharing the major qualities of Hessenberg matrices, will be put forward. This gives rise
to the development of innovative implicit QR-type algorithms, pursuing rotations instead of bulges.
The key idea is to benefit from the QR-factorization of the matrices involved. The prescribed order
of rotations in the decomposition of the Q-factor uniquely characterizes several matrix types such as
Hessenberg, inverse Hessenberg, and CMV matrices. Loosening the fixed ordering of these rotations
provides us the class of matrices under consideration. Establishing a new implicit QR-type algorithm
for these matrices requires a generalization of diverse well-established concepts. We consider the
preliminary unitary similarity transformation, a proof of uniqueness of this reduction, an extension
of the CMV -decomposition to a double Hessenberg factorization, and an explicit and implicit QR-
type algorithm. A detailed complexity analysis illustrates the competitiveness of the novel method
with the traditional Hessenberg approach. The numerical experiments show comparable accuracy for
a wide variety of matrix types, but disclose an intriguing difference between the average number of
iterations before deflation can be applied.

Key words. unitary similarity transformations, QR-type algorithms, Givens rotations, patterns
of rotations, eigenvalues, (lower) Hessenberg, CMV -matrix

AMS subject classifications. 15A18, 15A21, 15A23

DOI. 10.1137/100809167

1. Introduction. The prominent role of the Hessenberg matrix in nonsymmet-
ric eigenvalue computations has—to some extent—always bothered me. Restraining
computing time appears to be the driving force behind the ongoing investigations re-
lated to the Hessenberg structure and eigenvalue computations. We will see, however,
that the Hessenberg matrix is just a member of a huge family of condensed matrix
forms admitting a unified treatment of QR-type algorithms.

Among the so-called direct methods for eigenvalue computations, the QR-method
is the most popular and most used one for determining the eigenvalues of nonsymmet-
ric matrices. An extensive list of publications is devoted to this favorable technique.
Introductions appear in almost all numerical linear algebra textbooks [13,17,21] and
also more sophisticated books are available [19, 36, 41]. Detailed studies of the con-
vergence behavior linking the QR-algorithm with subspace iteration can be found
in [32,37,39]. There are articles on particular characteristics such as balancing, bulge
chasing, and maintaining well-focused shifts [34,38,40] and even very recently several
improvements to achieve speed-up and maintain high accuracy were proposed [6, 7].

∗Received by the editors September 20, 2010; accepted for publication (in revised form) by M. E.
Hochstenbach January 12, 2011; published electronically March 17, 2011. This work was supported
by the “Postdoctoraal Onderzoeker” from the Fund for Scientific Research–Flanders (Belgium). The
research was also partially supported by the Interuniversity Attraction Poles Programme, initiated
by the Belgian State, Science Policy Office, Belgian Network DYSCO (Dynamical Systems, Control,
and Optimization).

http://www.siam.org/journals/simax/32-1/80916.html
†Department of Computer Science, K.U.Leuven, 3001 Leuven (Heverlee), Belgium (raf.vandebril@

cs.kuleuven.be, http://people.cs.kuleuven.be/raf.vandebril/).

217

218 RAF VANDEBRIL

Also a wide variety of publications, both theoretical [11,12] and more practical, is re-
lated to studies on how to adapt the QR-algorithm to make it suitable for particular
matrix structures such as quasi-separable [15], semiseparable (plus diagonal) [26, 28],
unitary plus low rank [5, 23], Hermitian plus low rank [25], companion, comrade,
Hamiltonian [16, 35], and many other matrices.

Important, however, for applying a QR-algorithm is to perform a preprocessing
step transforming the involved matrix to a more economical format. This format is
assumed to have some prominent features: it admits a cheaper QR-step, generically
less memory is needed to store the matrix, and important is the preservation of the
economical format after a QR-step. Well-known convenient formats are the tridiag-
onal form (for a Hermitian matrix) and the Hessenberg matrix (for a nonsymmetric
matrix). The original matrix is brought, via unitary similarity transformations, to
this shape retaining thereby the eigenvalues [13, 17, 36]. Some other less widespread
formats are related to rank structured matrices [14, 22]. Also reduction algorithms
tuned for specific matrix cases, for example, unitary, Hamiltonian, and symplectic,
exist or are under investigation [3, 18].

In this article both the unitary similarity transformation and the QR-algorithm
are reconsidered, generalizing thereby the results for Hessenberg and Hessenberg-like
(inverses of Hessenberg) matrices. Examining the Q-factor in the QR-factorization
of Hessenberg(-like) matrices, we observe that it can be factored by n − 1 Givens
rotations. The resulting unitary matrix Q is referred to as being in compressed for-
mat. For a Hessenberg matrix this compressed format is built by n − 1 rotations in
descending order, whereas a Hessenberg-like matrix has n− 1 rotations in ascending
order. Studies [1,4,8,9,20,33] relating unitary matrices with orthogonal Laurent poly-
nomials on the unit circle reveal, however, the existence of a wide variety of possible
compressed factorizations of a unitary matrix. Instead of only considering ascending
or descending sequences of rotations, an arbitrary number of changes in direction can
be taken. For example, the nowadays popular CMV -decomposition presents a com-
pressed factorization of a unitary matrix, altering the direction after each of the n− 1
rotations.

Based on a prespecified pattern the compressed unitary matrix should satisfy, a
new algorithm for executing the similarity transformation is presented resulting in
a QR-factorization Â = QR, having Q in desired format. Overall, this method has
the same computational complexity as the transformation to Hessenberg form. Both
the Hessenberg and Hessenberg-like cases are contained as instances of this generic
reduction method. Another example has the resulting matrix QR-factored, with Q
decomposed in n− 1 rotations according to the CMV -pattern. A proof of uniqueness
of the reduction procedure based on Krylov subspaces is included [36]. Furthermore,
a generalization of the CMV -decomposition is devised, admitting a factorization in
two matrices having diagonal blocks of irreducible Hessenberg form of sizes exceeding
2×2. This decomposition gives rise to a product of a unitary upper and unitary lower
Hessenberg matrix.

A QR-type algorithm is developed capable of dealing with the almost unlimited
number of patterns that a matrix can be reduced to. Both an explicit as well as an
implicit QR-type version suitable for the new structures are presented. Moreover, it
will be possible to alter the patterns during execution. We will show that these new
chasing algorithms share the computational complexity of their well-known instances:
the Hessenberg and Hessenberg-like case. A compelling characteristic of this approach
is that we will cease in chasing bulges but progress to a rotation chasing method.

A METAMORPHOSIS OF THE QR-ALGORITHM 219

Numerical experiments are conducted to test several variants of these new pro-
cedures. The accuracy for the presented approaches is comparable, but the execution
time differs significantly. It will be shown that the average number of iterations is
heavily dependent on the eigenvalue distribution.

The article is organized as follows. Section 2 presents preliminary results, defini-
tions, and assumptions required for understanding the article. Section 3 discusses the
algorithm for carrying out the similarity transformation to a prescribed matrix struc-
ture. In section 4, a factorization of a compressed unitary matrix in two Hessenberg
matrices, extending the well-known CMV -decomposition, is presented. Uniqueness of
the unitary similarity transformation is considered in section 5. In section 6 the new
QR-type algorithm is presented as an explicit calculation and some issues such as
the structure preservation and irreducibility are considered. In section 7 an implicit
version of the generalized QR-method is derived. Some comments on the software,
numerical issues, and tests are given in section 8. Conclusions and future work close
the article.

2. Preliminary results. To obtain a self-contained article some definitions and
techniques for factoring unitary matrices in rotations will be reviewed.

A Hessenberg matrix H has all elements below the subdiagonal zero. A
Hessenberg-like matrix Z has all submatrices taken out of the lower triangular part
of rank at most one: rankZ(i : n, 1 : i) ≤ 1 for all i = 1, . . . , n. In case of invertibil-
ity, the inverse of a Hessenberg matrix is of Hessenberg-like form. We tacitly assume
that the reader is familiar with a Givens rotation and its ability of creating zeros
in prescribed matrix positions by altering only two rows or columns of the involved
matrix [17].

Remark 2.1. Throughout the manuscript we will continually use 2× 2 rotations,
though all results remain valid when using 2× 2 unitary matrices instead. A rotation
has determinant equal to 1, whereas the determinant of a unitary matrix can reach
an arbitrary value of modulus equal to 1.

Rotations will be the building blocks for dealing with factorizations of unitary
matrices. To be able to benefit from rotational factorizations it is essential that an
elegant, intuitive, and compact manner is provided for keeping track of all information
accompanying an individual rotation. A graphical depiction presents us readily the
order of the rotations and indicates unambiguously the rows affected by the rotation.

This graphical representation is introduced by computing the QR-factorization
of a matrix A = (aij)ij ∈ C5×5. The matrix elements are depicted by the symbol
×; each rotation is represented by a square bracket with arrows. The arrows point
towards the rows affected when applying the rotation to the matrix. To compute the
QR-factorization by means of rotations, first the lower left element a51 is annihilated
by GH

51. The matrix GH
51A has therefore a zero element in position (5, 1). Graphically

we obtain

GH
51A =

��

⎡
⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
0 × × × ×

⎤
⎥⎥⎥⎦ .

The procedure is continued by eliminating all but the top element of the first column.
This results in GH

21G
H
31G

H
41G

H
51A = QH

1 A, graphically depicted as

220 RAF VANDEBRIL

QH
1 A =

��
��
��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

× × × × ×
0 × × × ×
0 × × × ×
0 × × × ×
0 × × × ×

⎤
⎥⎥⎥⎦ .

In turn all columns are brought to upper triangular form by a succession of rotations
QH

4 QH
3 QH

2 QH
1 A = QHA = R.

(2.1) QHA =

�
�

�
�

�
�
�

�
�

�
�
�

�
�

�
�� � � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × × ×
× × × × ×
× × × × ×
× × × × ×

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

× × × × ×
0 × × × ×
0 0 × × ×
0 0 0 × ×
0 0 0 0 ×

⎤
⎥⎥⎥⎦ .

Premultiplication by Q leads to the QR-factorization of A, graphically represented in
condensed format as (thereby not depicting zero elements anymore)

(2.2) A =

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�� � � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ .

This schematic representation contains all vital information for operating on the QR-
factorization of A. The brackets denote clearly on which rows the rotations act, and
also the mutual order of the rotations is available. Moreover, one can read from these
schemes which rotations (for example the two rotations in the third, fourth, or fifth
column of the factorization of Q) commute and can be applied on R simultaneously
or in either order. With a rotational factorization of Q we will refer to a factorization
of Q in rotations.

Remark 2.2. We note that possibly in (2.2) some rotations need not be performed,
since they equal the identity matrix. In the graphical schemes of rotational factoriza-
tions, rotations equal to the identity are, however, admitted. Only, when based on
preliminary knowledge, such as the matrix structure, rotations equal to the identity
will not be depicted in the schemes and as such reflect this particular structure.

Exploiting the matrix structure, a Hessenberg matrix H and a Hessenberg-like
matrix Z admit QR-factorizations of the form (for 5× 5 examples)

(2.3) H =

��
��
��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ and Z =

�
�
�

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ .

The sequence of rotations in the factorization of H is referred to as a descending
sequence of rotations. The Hessenberg-like matrix on the contrary admits a rotational
factorization of the involved unitary matrix consisting of an ascending sequence of
rotations. One can easily verify that an ascending sequence of rotations has a one to
one relation with a unitary upper Hessenberg matrix, whereas a descending sequence
of rotations agrees with a unitary lower Hessenberg matrix. As will be shown in
section 2.1, a rotational factorization is not always unique. When referring, however,
to a very specific ordering of the rotations, as for a descending or ascending sequence,
we will speak about the shape or the pattern of the rotations.

A METAMORPHOSIS OF THE QR-ALGORITHM 221

2.1. Manipulations with rotations. The algorithms presented in this paper
depend heavily on manipulating rotations. These operations are already described
and proved elsewhere (see, for example, [27, 28]). For completeness, however, we will
briefly reconsider the necessary ones in this section, without proofs.

Lemma 2.3 (fusion of rotations). Suppose two 2 × 2 rotations G1 and G2 are
given. Their product G1G2 = G3 is again a rotation. This operation is named the
fusion of rotations.

Graphically we depict this operation by a curly arrow as

�↪→ �� � = �� .

Lemma 2.4 (shift-through operation). Suppose three 3× 3 rotations Ǧ1, Ǧ2, and
Ǧ3 are given, such that the rotations Ǧ1 and Ǧ3 act on the first two rows of a matrix,
and Ǧ2 acts on the second and third row (when applied on the left to a matrix). Then
there exist three rotations Ĝ1, Ĝ2, and Ĝ3 satisfying the equality Ǧ1Ǧ2Ǧ3 = Ĝ1Ĝ2Ĝ3,
where Ĝ1 and Ĝ3 work on the second and third row and Ĝ2 operates on the first two
rows.

This is a common result, whose proof is based on two variants for factoring a 3×3
unitary matrix [29]. Schematically this operation is depicted with arrows such as �
indicating the position were the marked rotation will move to

�× � ��
�

�
� =

�
�
�
�×� � .

A shift-through operation of length � is the final important operation.
Lemma 2.5 (shift-through operation of length �). Suppose the following matrix

product ǦW̌ X̌ is given, where Ǧ denotes a rotation acting on rows 1 and 2. The
matrices W̌ and X̌ are unitary matrices, both having a rotational factorization in a
descending sequence of � rotations. The ith rotation ǦW

i of W̌ acts on rows i+1 and
i+ 2 and the ith rotation ǦX

i related to X̌ acts on rows i and i+ 1. Then the matrix

product ǦW̌ X̌ can be refactored as ǦW̌ X̌ = Ŵ X̂Ĝ, where Ĝ is a rotation acting on
rows �+1 and �+ 2. The unitary matrices Ŵ and X̂ are again descending sequences
of � rotations sharing the patterns of W̌ and X̌, meaning that the ith rotation ĜW

i of

Ŵ acts on rows i+1 and i+2 and the ith rotation ĜX
i of X̂ acts on rows i and i+1

In scheme (2.4) the rotations Ǧ and Ĝ are marked with a×. On the left, the matrix
product ǦW̌ X̌ is shown, with W̌ the lower descending sequence of rotations and X̌ the
upper sequence of rotations. A shift-through operation of a specified length is depicted
by adding a superscript to an arrow �, standing for the number of successive shift-
through operations that need to be performed. The arrow points to the final position
of the marked rotation.

(2.4)

�× �
4

��
�

�
��

�
�
��

�
�
��

�
�

�
=

�
�
�
��

�
�
��

�
�
��

�
�
�×� �

.

The right term in (2.4) admits now a rotational factorization Ŵ X̂Ĝ with Ĝ appearing
in the bottom right; again Ŵ is the bottom and X̂ the upper descending sequence of
rotations.

222 RAF VANDEBRIL

In this article we will not limit ourselves to unitary matrices. For handling arbi-
trary matrices we will utilize their QR-factorization; this requires us to characterize
also the interaction between rotations and upper triangular matrices R. For simplic-
ity, we will confine ourselves to nonsingular matrices.1 The next lemma specifies how
sequences of rotations change when transferring them through an upper triangular
matrix.

Lemma 2.6. A nonsingular n×n matrix A with RQ-factorization A = R̂Q̂ admits
a QR-factorization A = QR, where the rotational factorizations of Q and Q̂ obey the
same pattern.

A proof of this Lemma is available in [24]. In practice, transferring rotations
through an upper triangular matrix affects the rotations themselves, but not the
mutual positions nor the rows/columns they act on.

3. Unitary similarity transformations. A prescribed rotational pattern gov-
erns the flow of the similarity transformation. Operating on the QR-factorization of
a matrix, the result will be a new QR-factorization, with the unitary factor in the
desired shape. In the remainder of the text when speaking about a similarity trans-
formation, a unitary similarity transformation is meant.

3.1. Admissible outcomes and compressed unitary matrices. Some par-
ticulars and extra notation are needed to specify without ambiguity the patterns of
rotations of the Q-factor admitted as outcomes of the similarity transformation.

It is well-known that every unitary matrix is similar to a unitary Hessenberg
matrix, admitting a Schur parameterization [8]. The Schur parameterization is a mul-
tiplicative factorization into a descending sequence of n − 1 rotations. The coming
definition of a compressed unitary matrix is a sort of extension of this factorization.

A vector p of length n − 2 containing the characters � (left) and r (right) will
define the strict order of the rotations. Suppose n − 1 rotations Gi, i = 1, . . . , n − 1
are given where Gi operates on rows i and i + 1. The ith element pi of the position
vector p specifies the relative position of the factor Gi w.r.t. the factor Gi+1 in the
product of these rotations.

For example, the Q-factor in the QR-factorization of a Hessenberg matrix H
can be factored in a descending sequence of rotations. This means that Gi always
appears on the left of Gi+1; hence Q = G1G2 . . . Gn−1 and the corresponding p =
[�, . . . , �]. The matrix Q itself is a unitary upper Hessenberg matrix. A Hessenberg-
like matrix, however, is related to an ascending sequence of iterations; therefore Q =
Gn−1 . . . G2G1 and p = [r, . . . , r]. The matrix Q is now a unitary Hessenberg-like
matrix or, because of the unitarity, a unitary lower Hessenberg; this is also how we
will address these matrices in the rest of the article.

The CMV -decomposition [9, 20] of a unitary pentadiagonal matrix P = UV
factors the matrix in two block diagonal matrices U and V , where the blocks are 2×2
rotations

(3.1) P = UV =

� :�
: �

� :
�

�
: �

� :
�

�
:

.

1We note that Lemma 2.6 remains valid also in the singular case [24]. But, to exclude some
technical and troublesome cases in the next parts on unitary similarity transformations and the
QR-type method, this restriction is posed in this article.

A METAMORPHOSIS OF THE QR-ALGORITHM 223

Corresponding to our notation2 P = G5G3G1G2G4, where U = G5G3G1 and V =
G2G4. The position vector p equals [�, r, �, r].

In the rest of the article we refer to a compressed unitary matrix as a unitary
matrix admitting a factorization of n − 1 rotations Gi acting on rows i and i + 1,
according to a prescribed ordering p. The similarity transformation proposed in the
next section admits all types of compressed unitary matrices Q̂ in theQR-factorization
of the resulting matrix Â = Q̂R̂, covering thereby the Hessenberg, lower Hessenberg,
and the CMV case as particular examples. When speaking of a compressed QR-
factorization, the word compressed alludes to the unitary factor. A top to bottom
transversal of a pattern of rotations from the factorization of a compressed unitary
matrix often involves a change of direction; hence we will refer to any of these patterns
as zigzag patterns.

Factorizations of a unitary matrix in rotations were discussed before in several
articles [1, 2, 4, 8, 9, 33]. The origin lies in the so-called Schur parameterization [8].
Already in these manuscripts results related to other types of patterns [1] were pro-
posed. The relations between orthogonal Laurent polynomials and the corresponding
unitary matrices were studied in [4, 9, 33]. Depending on the order of the monomials
for constructing an orthogonal basis of Laurent polynomials, the recurrences are given
by a compressed unitary matrix. Both the order of the monomials as well as the shape
of the corresponding compressed unitary matrix are determined by a position vector p
(see also section 5). In [4], these factorizations are referred to as snake-shaped matrix
factorizations owing to the zigzag form of the pattern of rotations.

Remark 3.1. Though not explicitly mentioned, it is tacitly assumed that all uni-
tary matrices have determinant equal to 1. Otherwise, an extra unimodular factor
appears when building the factorization of a compressed unitary matrix. This uni-
modular factor does not pose any difficulties; all deductions remain valid just as the
shift-through operations and the fusions, only all theorems need the incorporation
of an additional unimodular factor. Instead of considering rotations one can also use
2× 2 unitary matrices solving the problem immediately.

3.2. The algorithm. One can consider the pyramid shaped factorization of a
generic unitary matrix Q in (2.2) as made up by four descending sequences (2.1), or
as made up by four ascending sequences of rotations. This two-folded interpretation
enables us to reduce any matrix to the desired compressed format specified by p. First
the algorithm is presented, followed by a justification in sections 3.2.1–3.2.3.

In each step i (for i = 1, . . . , n − 2) of the algorithm the following similarity
transformation is executed:3

• (if pi = r) annihilate the outer n − 1 − i rotations of the rightmost yet
untreated sequence of descending rotations by a similarity transformation;

• (if pi = �) annihilate the outer n−1−i rotations of the leftmost yet untreated
sequence of ascending rotations by a similarity transformation.

The outcome of these n − 2 steps results in a similar matrix Â = Q̂R̂, where the
factorization of Q̂ in rotations obeys the pattern identified by p.

There are two building blocks in the design of this algorithm: annihilation of
rotations on the left or either on the right. First, in sections 3.2.1 and 3.2.2 a single
left and right annihilation step is considered on a pyramid pattern coming from the

2Another interpretation could lead to a factorization P = G1G3G5G4G2, which is, however,
owing to commutativity equivalent to P = G5G3G1G2G4.

3Of course, in case a matrix is already structured, some transformations need not be performed.
Assume therefore a generic full pyramid shaped factorization of the matrix Q.

224 RAF VANDEBRIL

QR-factorization of a 5× 5 matrix. The combination of several steps is presented in
section 3.2.3.

3.2.1. Left annihilation of a sequence. Consider A = A(0) = Q(0)R(0), fac-
tored as in (2.2). Assume p1 = �, requiring the annihilation of the three leftmost

iterations. The product of these three rotations G
(0)
1 G

(0)
2 G

(0)
3 in the pyramid shaped

factorization of Q(0) defines the similarity transformation

A(1) = G
(0)
3

H
G

(0)
2

H
G

(0)
1

H (
Q(0)R(0)

)
G

(0)
1 G

(0)
2 G

(0)
3 = Q(1)R(1),(3.2)

where Q(1)R(1) is the QR-factorization of A(1). Note that Q(1) must admit a rotational
factorization without the three leftmost rotations and with no extra rotations on the
right remaining.

The new QR-factorization of A(1) = Q(1)R(1) is computed as follows. The rota-
tions determining the similarity transformation are marked by × and separated from
the QR-factorization by a vertical dashed line. In the graphical representation (3.3)
formula (3.2) is depicted.

(3.3) A(1) =

: �
�×↪→ : �

�
��

�×↪→ : �
�
�
�
��

�×↪→ : �
�
�
�
�
�
��

:
� � � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦

:
: �×
: �×

�

: �×
�

:
�

.

Since the marked rotations are constructed to annihilate three rotations in the left of
the pyramid shape, six rotations in total will vanish. The rotations on the right are
transferred through the upper triangular matrix R(0) by Lemma 2.6:

(3.4) A(1) =

� :�
� : �

2

�×
�
�
� : �

1

�×
�

�
�
�
�
�↪→ : �×

�
� � �

:
�

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ .

In scheme (3.4) three more undesired rotations (marked by×) are present. The bottom
rotation can be incorporated in the rotation preceding it by a fusion. The remaining
two rotations are moved downwards by, respectively, a single and a double shift-
through operation. The result is a QR-factorization of the form

(3.5) A(1) =

��
�

�
�

�
�↪→ �×

�
�↪→ �×

�
�� � � � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ .

Two more fusions in scheme (3.5) are required to obtain the desired rotational fac-
torization of the matrix Q(1), which has now three rotations less than Q(0). The
QR-factorization of A(1) = Q(1)R(1) equals

A(1) =

��
�

�
�
�

�
�
�
�
�� � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ .

A METAMORPHOSIS OF THE QR-ALGORITHM 225

Important to observe is that the top rotation of the pyramid remains unaltered (it
does not even change) during the whole process. We will see that also in the right
annihilation process the top rotation remains untouched.

3.2.2. Right annihilation of a sequence. Take A(0) = Q(0)R(0) again as in
(2.2). Now p1 = r, implying the removal of three rotations on the right. Whereas in
the left annihilation step the rotations determining the similarity transformation are
readily available, this is not the case here. A preliminary step needs to be performed,
transferring the rotations designated for removal to the right of the upper triangular
matrix. By Lemma 2.6, scheme (2.2) is refactored and thereby transformed in A(0) =

Q(0)R(0) = Q̃(0)R̃(0)G
(0)
3

H
G

(0)
2

H
G

(0)
1

H
.

(3.6) A(0) =

�
�
�

�
�
�

�
�
�
�
�� � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦

��
��
��

.

The three rotations on the right G
(0)
3

H
G

(0)
2

H
G

(0)
1

H
determine the similarity transfor-

mation

A(1) = G
(0)
3

H
G

(0)
2

H
G

(0)
1

H (
Q(0)R(0)

)
G

(0)
1 G

(0)
2 G

(0)
3(3.7)

= G
(0)
3

H
G

(0)
2

H
G

(0)
1

H
(
Q̃(0)R̃(0)G

(0)
3

H
G

(0)
2

H
G

(0)
1

H
)
G

(0)
1 G

(0)
2 G

(0)
3(3.8)

= G
(0)
3

H
G

(0)
2

H
G

(0)
1

H (
Q̃(0)R̃(0)

)
= Q(1)R(1),

where Q(1) must admit now a rotational factorization without the three rightmost
rotations. The operations are quite similar to the ones for a left annihilation step and
provide us the new rotational QR-factorization of A(1) = Q(1)R(1). Schematically the
following equation is obtained corresponding to factorization (3.8):

A(1) =

: �
�× �

2
: �

�
�

�× � : �
�
��

�×↪→ : �
�
�
�
��

:
� � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦

:

�↪→ : �×�
�↪→ : �×

�
�
�↪→ : �×

�
�
:
�

.

The six rightmost rotations vanish after the fusions. The undesired rotations on the
left are dealt with similarly as in section 3.2.1: after a fusion, some shift-through
operations, and two more fusions, they disappear and as a result the new factorization
of A(1) = Q(1)R(1) is retrieved, with Q(1) satisfying the constraints

A(1) =

�
�
�

�
�
�

�
�
�
�
�� � �

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ .

Again we note that the rotation on top of the pyramid is not altered by any of the
performed operations.

226 RAF VANDEBRIL

3.2.3. Generic algorithm. The generic algorithm is illustrated by a simple
example. The clue is that after each annihilation step the top rotation stays in place.
Not considering this top rotation leaves us with a new pyramid of height4 diminished
by one, on which we can again apply one of the two annihilation steps described before.
Once more the top of the smaller pyramid remains and the procedure continues.

A formal proof of the algorithm producing the exact desired output is done by
induction. For a left annihilation in step i, the smaller pyramid is located on the right
of the remaining top rotation. Hence, the rotation Gi is positioned on the left of the
top rotation Gi+1 of the smaller pyramid. Note that the position is fixed now, since
Gi+1 will stay in place. For a right annihilation obviously Gi will be positioned on
the right of the next remaining rotation Gi+1. Hence, after n − 2 steps, the order of
the rotations is fixed and the requested outcome is obtained.

Let us consider, for example, a 6 × 6 matrix and a reduction process specified
by the vector p = [r, r, l, r]. For simplicity, only the rotational factorizations of the
unitary matricesQ(i) are depicted. In each step i the rotations to be removed (specified
by pi) are marked by an ×.

Q(0) =

�
�
�
�×

�
�
�
�
�×

�
�
�
�
�
�
�×

�
�
�
�
�
�
�
�
�×� � � � �

→ Q(1) =

�
�
�

�
�
�×

�
�
�
�
�×

�
�
�
�
�
�
�×� � � �

→ Q(2) =

�
�
�

�
�

�×
�
�

�×
�
�
�
�� � �

Q(3) =

�
�
�

�
�

�
�

�
�
�×� �

→ Q(4) =

�
�
�

�
�

�
�

�
�

�
.

As a result we obtain a QR-factorization A(4) = Q(4)R(4), where Q(4) is factored by
n− 1 = 5 rotations satisfying the desired pattern.

4. A double Hessenberg factorization of a compressed unitary matrix.
Section 6 presents an alternative type of QR-algorithm suitable for any type of matrix
A = QR with Q in compressed format. To make the description of the algorithm
comprehensible and compact, two particular factorizations of a zigzag pattern in two
Hessenberg matrices will be introduced.

A compressed unitary matrix Q admits a rotational factorization decomposed in
two factors Qd and Qa: Q = QdQa, where Qa consists of a single sequence of ascending
rotations and Qd consists of a single sequence of descending rotations.

The mutual position between two successive rotations Gi and Gi+1 regulates the
factorization. The unitary matrix Qd contains the rotation Gi if rotation Gi precedes
Gi+1 (Gi is located on the left of Gi+1; hence pi = �), otherwise Gi is stored in Qa.
Since the trailing rotation Gn−1 has no successor, it can be put in either unitary
matrix.

Example 4.1. Consider the unitary matrix Q in (4.1) with the given zigzag pat-
tern of rotations. The two possible factorizations, depending on the position of the
trailing rotation, of Q are shown. The rotations belonging to Qd are on the left of the
dashed line; the rotations of Qa are on the right. Based on commutation properties

4The height of pyramid agrees with the dimension of the associated matrix.

A METAMORPHOSIS OF THE QR-ALGORITHM 227

the rotations can be slightly reordered such that visually a single descending and a
single ascending sequence of rotations is obtained:

Q =

�
�
�

�
�

�
�

�
��
��
�

�
�

�
�

�

=

: �
: �

�

: �
�

� :
�

�
� :�
� :�
: �
: �

�

: �
�

:
�

=

: �
: �

�

: �
�

� :
�

�
� :�
� :�
: �
: �

�

� :
�

�
:

.(4.1)

Another example of a descending-ascending (DA-)factorization is the CMV -
decomposition (see (3.1)).

In matrix terms this factorization states that every compressed unitary matrix
can be factored in a product of a unitary upper Hessenberg and a unitary lower
Hessenberg matrix, or briefly a double Hessenberg factorization. More precisely, the
upper and lower Hessenberg matrices consist of nonoverlapping diagonal blocks of
irreducible Hessenberg matrices. Comparing, however, the blocks of the lower and the
upper Hessenberg matrices, interaction between the top and bottom rows of these
blocks takes place. This factorization can be seen as a generalization of the CMV -
decomposition towards diagonal blocks of sizes exceeding 2× 2.

Remark 4.2. Any compressed unitary matrix admits also an ascending-descending
(AD-)factorization Q = QaQd. The unitary matrix Qa contains the rotation Gi if
rotation Gi precedes Gi−1 (Gi is positioned on the left of Gi−1). Otherwise Gi is
stored in Qd. Since the first rotation G1 has no predecessor, it can be put in either
unitary matrix. This is a factorization of a compressed unitary matrix in a product
of a unitary lower Hessenberg and a unitary upper Hessenberg matrix.

Remark 4.3. The QR-type algorithm presented in section 6 relies on the DA-
factorization, but also the AD-factorization can be used without any essential changes
taking place. For example, the chasing technique (see section 7) based on a DA-
factorization goes from top to bottom and based on a DA-factorization it runs from
bottom to top. Up to a certain sense the links are similar to the ones between GR-type
and RG-type iterations.

There is another intriguing link with eigenvalue computations. Consider unitary
matrices. The algorithm proposed in [2] transforms a regular or generalized eigenvalue
problem involving unitary matrices to a generalized eigenvalue problem, where both
matrices are block diagonal matrices having 2 × 2 unitary blocks on the diagonal.
The structure of these matrices coincides with the one from the matrices U and
V in the CMV -decomposition of a pentadiagonal unitary matrix P = UV . Taking
now advantage of the DA-factorization, we can generalize this and get a generalized
eigenvalue problem where both matrices are unitary upper Hessenberg matrices. These
unitary upper Hessenberg matrices inherit the structure from the factors in the DA-
factorization, and consist therefore of overlapping blocks of irreducible Hessenberg
matrices. Both the pencil in [2] and the pencil of irreducible Hessenberg matrices use
the same number of parameters, namely n− 1 rotations.

To avoid the cumbersome and even misleading wording “QR-type method,” we re-
fer to the next iterative algorithm for computing the eigenvalues as the DA-algorithm.

228 RAF VANDEBRIL

5. Uniqueness of the similarity transformation. An important, yet unan-
swered question is the one of uniqueness. The theorem formulated in this section
is sort of an extension of the implicit Q-theorem, since also the Hessenberg case is
covered. The proof provided here is based on Krylov matrices as in [36], which is
more appealing than direct calculations as in [17, 27] for Hessenberg(-like) matrices.
As mentioned before, for simplicity, we restrict ourselves in this article to nonsingular
matrices.

Theorem 5.1 (implicit Q-theorem). Consider a nonsingular matrix A and a
position vector p. Let V1 and V2 be two unitary matrices sharing the same first column
(up to a unimodular factor) such that

Q1R1 = A1 = V H
1 AV1 and Q2R2 = A2 = V H

2 AV2,

where the unitary factors Q1 and Q2 in the QR-decompositions of A1 and A2 obey the
pattern specified by p and, in addition, all rotations appearing in these factorizations
of Q1 and Q2 differ from the identity.5 Hence the matrices A1 and A2 are essentially
identical.

The zigzag patterns arising in the various factorizations of compressed unitary
matrices have a close relation to the ordering of monomials when considering the
recurrence relations for orthogonal Laurent polynomials [4]. Here the ordering of mul-
tiplication with A or A−1 will play a key role in the construction of the involved
rational Krylov matrices.

We consider rational Krylov spaces Kp,k(A,v) of length k with starting vector v
spanned by k vectors out of the sequence

(5.1) . . . , A3v, A2v, Av, v, A−1v, A−2v, A−3v,

The order in which the vectors appear in the sequence is determined by the position
vector p. The first vector in the Krylov space is always the middle vector v. If pi = �,
the next vector on the left is taken to fill up position i + 1; if pi = r, one takes the
next one on the right. Since pn−1 is not specified, the last vector—the one in the
nth position—can either be taken from the left or from the right; this is an optional
choice.6 The associated Krylov matrix Kp,k(A,v) has these just determined vectors
as columns of an n× k matrix. When k = n, k is omitted as subscript in K and K.

For example, the CMV -pattern in scheme (3.1) is determined by p = [�, r, �, r].
The corresponding rational Krylov space is Kp,5(A,v) = span{v, Av, A−1v, A2v,
A−2v}. Since n = 6, the space Kp,6(A,v) equals span{v, Av, A−1v, A2v, A−2v,
A3v} or span{v, Av, A−1v, A2v, A−2v, A−3v}.

The proof of Theorem 5.1 is decomposed in two parts. Consider a matrix A
reduced via the similarity transformation from section 3 to a matrix factorization
V HAV = Â = Q̂R̂ according to a position vector p. Crucial in the proof of Theo-
rem 5.1 is the observation that Kp(Â, e1) is upper triangular, which forms the first
and most technical part of the proof (see subsection 5.1). Once this is known, the
second part proceeds identical as in [36] (see subsection 5.2).

5.1. Upper triangular Krylov matrix. All rotations in the rotational factor-
ization of the compressed unitary matrix Q̂ are required to be different from the

5This is related to irreducibility and we will come back to this in section 6.1. When an identity
rotation is encountered, uniqueness is only guaranteed up to this position, just like the standard
implicit Q-theorem.

6We point out that freedom of the trailing items is recurring throughout the article.

A METAMORPHOSIS OF THE QR-ALGORITHM 229

identity. Otherwise the proof will break down and essential uniqueness can only
be guaranteed up to a certain point. To prove that Kp(Â, e1) is upper triangular

the DA-factorization of Q̂ = Q̂dQ̂a is utilized. Both Q̂d and Q̂a are built up by
nonoverlapping diagonal blocks, in which each block contains a sequence of rotations
(see (4.1)); the location of these blocks is vital for the proof.

We will investigate the zero-structure of the vectors Âke1, using the DA-
decomposition of Q̂. The analysis of Â−ke1 proceeds similarly, since Q̂−1 = Q̂−1

a Q̂−1
d

is a DA-decomposition of Q̂−1, and by Lemma 2.6 it is known that the DA-
decomposition of the Q-factor of the QR-factorization of Â−1 has the same pattern
as the DA-decomposition Q̂−1

a Q̂−1
d .

As before, the vectors ei denote the standard basis vectors; the vectors ẽi stand for
vectors having the element in position i different from zero, the elements below i are
zero, and the elements above might be nonzero. In fact ẽi equals a linear combination
of the ej , 1 ≤ j ≤ i, where the coefficient of ei is nonzero; the other coefficients are
unspecified.

The study of the structure of Kp(Â, e1) is quite technical; therefore the flow of
the proof will be accompanied by an example in which p = [�, �, �, r, r, r, �, �, r]. A
DA-decomposition of Q̂ corresponding to the example is of the form

Q̂ =

��
��
��
�

�
�

�
�

�
�

�
��
�

�
�

�

=

� :�
� :�
� :�
: �
: �

�

: �
�

� :
�

�
� :�

: �
: �

�

:
�

.(5.2)

The indices ij are defined as follows: i1 = 1 and ij is the position k such that
the (j − 1)th transition from � to r or r to � takes place between pk−1 and pk. The
list is closed by a trailing ij = n, where n is the dimension of Q̂. In the example
i1 = 1, i2 = 4, i3 = 7, i4 = 9, and i5 = 11. For simplicity we assume that p1 = �; if
it equals r, only a change between even and odd in the upcoming part is required.
Based on this indexing, we can identify diagonal blocks in the matrices Q̂a and Q̂d:
the submatrices7 Q̂d(ij : ij+1) (for odd j) are of Hessenberg form; the submatrices

Q̂a(ij : ij+1) (for even j) are of lower Hessenberg form; the remaining diagonal blocks

in Q̂a and Q̂d equal the identity. Please note that for both matrices Q̂d and Q̂a the
elements in the positions (ij, ij) are included in a Hessenberg (for Q̂d) and a lower

Hessenberg structure (for Q̂a).
The derivations in the next part are only valid when all rotations are nonidentical.

Based on the DA-factorization and the index set, one can verify that (thereby using
several times Lemma 2.6)

Âke1 = ẽk+1 for i1 ≤ k ≤ i2 − 1,

since the entire block Q̂a(i1 : i2 − 1) equals the identity.

7Since only square subblocks are considered, the notation Q(i : j) is a shorthand for Matlab

style notation Q(i : j, i : j).

230 RAF VANDEBRIL

Considering, however, Âi2 , the matrix Q̂a will come into play since it has a lower
Hessenberg block on the diagonal, ranging from position i2 to i3. This interaction
with Q̂a will smear out nonzero elements promptly until position i3. This means that
we get (there is a little abuse in notation by considering R̂ẽi2 = ẽi2 , but in the spirit
of the undefinedness of some elements in the vector ẽi2 this is appropriate)

Âi2e1 = Â ẽi2 = Q̂d Q̂a R̂ ẽi2 = Q̂d Q̂a ẽi2 = Q̂dẽi3 = ẽi3+1.

The action of Q̂d on ẽi3 is properly defined because of the Hessenberg block
Q̂d(i3 : i4). Roughly speaking one can say that the diagonal block in Q̂a shifts down
the nonzero elements quite dramatically until position i3. From this position there is
temporarily again no impact of Q̂a, signifying that the Hessenberg structure of Q̂d

can again shift down the nonzero elements in the vector one by one. The Hessenberg
part in action is now Q̂d(i3 : i4). Yet, once position i4 is reached, Q̂a comes in action
again. Combining all this information the following formulas are retrieved:

Âk−i3+i2e1 = ẽk+1 for i3 ≤ k ≤ i4 − 1,

indicating that the powers from Â continue to grow from i2, but the nonzero elements
have shifted down extra positions until the next ij for j odd.

Putting all things together the following formula predicts the nonzero-structure
of the powers of Â applied on e1 (take i0 = 1):

Âk+
∑

ĵ odd & ĵ≤j(iĵ−1−iĵ) e1 = ẽk+1 for ij ≤ k ≤ ij+1 − 1, where j is odd.

In words this simply states the following: when an ij is reached for even j, there
is a downward shift of the nonzeros up to position ij+1. The somehow complicated
notation of the power just expresses that the power keeps increasing by one each step.
For our particular example the following relations are obtained:

Âe1 = ẽ2, Â2e1 = ẽ3, Â3e1 = ẽ4, Â4e1 = ẽ8, Â5e1 = ẽ9, and Â6e1 = ẽ11.

For the inverse powers Â−k similar formulas are acquired:

Â−(k+
∑

ĵ even & ĵ≤j(iĵ−1−iĵ)) e1 = ẽk+1 for ij ≤ k ≤ ij+1 − 1, where j is even.

The example leads to the following equalities:

Â−1 e1 = ẽ5, Â−2 e1 = ẽ6, Â−3 e1 = ẽ7, Â−4 e1 = ẽ10, and Â−5 e1 = ẽ11.

Gluing all the results for the powers and inverse powers together, taking thereby the
ordering of the position vector p into account, one gets Kp,k(Â) = [ẽ1, . . . , ẽk], which
is obviously upper triangular.

Indeed testing it on our example we retrieve

Kp(Â, e1) = [e1, Ae1, A
2e1, A

3e1, A
−1e1, A

−2e1, A
−3e1, A

4e1, A
5e1, A

−4e1, A
−5e1]

= [e1, Ae1, A
2e1, A

3e1, A
−1e1, A

−2e1, A
−3e1, A

4e1, A
5e1, A

−4e1, A
6e1]

= [ẽ1, . . . , ẽ11].

This concludes the technical part for proving that Kp(Â, e1) is upper triangular.

A METAMORPHOSIS OF THE QR-ALGORITHM 231

5.2. Uniqueness based on the QR-factorization. By the definition of the
rational Krylov matrices and using Â = V HAV we have

V Kp(Â, e1) = Kp(V ÂV H , V e1) = Kp(A, V e1).(5.3)

Using the notation of Theorem 5.1 the following equalities are obtained (σ is a uni-
modular factor):

V1Kp(A1, e1) = Kp(V1A1V
H
1 , V1e1) = Kp(A, V1e1)

= σKp(A, V2e1)

= σKp(V2A2V
H
2 , V2e1) = σV2Kp(A2, e1).

The left and the right terms are QR-factorizations. The essential uniqueness of the
QR-factorization implies that V1 and V2 are essentially identical proving thereby The-
orem 5.1.

We will not elaborate on this, but the above relations show that the correspond-
ing Krylov spaces uniquely determine the similarity transformation to bring A to Â
format. This indicates that the Q-factor from the QR-factorization of the rational
Krylov matrix is also suited to unitarily transform the matrix to the desired format.

6. Eigenvalue computations. Given a matrix A and a suitable shift μ chosen
to enhance the convergence, a single shifted QR-step is determined by two equations:

A− μI = QR,(6.1)

Â = RQ+ μI,(6.2)

where I stands for the identity matrix and Â is the outcome and new iterate. Execut-
ing (6.1) and (6.2) corresponds to the explicit version of the QR-algorithm, where the
matrices Q and R are really computed explicitly before the reverse product is calcu-
lated. The implicit version determines the unitary matrix Q on the fly and performs
the following transition, without ever explicitly forming the unitary matrix:

Â = QHAQ.(6.3)

One can also define the matrix Â as

Â = RAR−1;(6.4)

this formula is, however, merely of theoretical interest for proving, for instance, the
preservation of the structure of the matrix A.

6.1. Irreducibility. A matrix A with QR-factorization A = QR, where the
unitary matrix Q is in compressed format, is said to be irreducible if and only if the
upper triangular matrix has all diagonal elements, except the trailing one, different
from zero and if the rotations involved in the factorization of the unitary matrix Q
differ from the identity. This definition is equivalent with the standard definitions
of irreducibility of Hessenberg and Hessenberg-like matrices. A rotation equal to the
identity implies that the matrix is block upper triangular and as such can be split in
submatrices for computing the eigenvalues.

232 RAF VANDEBRIL

6.2. Explicit version of the new iteration. Consider a matrix A with a
QR-factorization having the unitary matrix in compressed form and DA-factored:
A = QdQ̃aR̃�. The shifted DA-iteration proposed here consists of the following steps.
First, the ascending sequence of rotations Q̃a is brought to the right of the upper
triangular matrix R̃� by Lemma 2.6: Q̃aR̃� = RrQa. For a shifted matrix A we have

A− μI = QdQ̃aR̃� − μI =
(
QdRr − μQH

a

)
Qa = QRQa,(6.5)

where the product QR represents the QR-factorization of the term between the brack-
ets. This unitary matrix Q determines the similarity transformation of the DA-step.
The new iterate is of the form Â = QHAQ. In a certain sense this is sort of a URV -
factorization of the matrix A− μI, where U determines the next similarity transfor-
mation. We remark that the DA-factorization admits two variants, depending on the
position of the final rotation. As a result there are also two variants for executing a
DA-step.

Let us elaborate a little on the structure of Q. The number of rotations appearing
in the rotational factorization of the unitary matrix Q is essential for keeping the
computational complexity under control; here Q admits a factorization in a single
descending sequence of rotations, since QdRr − μQH

a is an irreducible Hessenberg
matrix. Descending sequences of rotations applied on an upper triangular matrix result
in a Hessenberg matrix. Hence, two Hessenberg matrices are obtained: H� = QdRr

and Hr = μQH
a . Based on the diagonal blocks in the matrices Qa and Qd, one can

partition the matrices H� and Hr. It is easily verified that the diagonal blocks of
upper triangular form in H� correspond with diagonal blocks of Hessenberg form in
Hr and vice versa. Therefore, the summation of both Hessenberg matrices leads to a
Hessenberg matrix H = H� + Hr. In case A is irreducible and μ is no eigenvalue of
A, the Hessenberg matrix is irreducible as well, admitting thus an essentially unique
QR-factorization composed of n− 1 rotations.

Before proceeding with the analysis of this iteration, the formulas equivalent to
(6.1), (6.3), and (6.4) are presented. Straightforward calculations imply the following
relations, using thereby (6.5):

(6.6) Â = (RQa)Q + μI, Â = QHAQ, and Â = RQaAQ
H
a R−1.

Both the QR-algorithm for Hessenberg matrices and the rational driven QR-
iteration for Hessenberg-like matrices fit nicely in this framework. Consider for ex-
ample a Hessenberg matrix H = Q̃R̃. Take the DA-decomposition Qd = Q̃ and
Q̃a = I, implying that the final rotation is incorporated in the descending se-
quence. Reconsidering (6.5) for the Hessenberg matrix H gives us R̃� = R̃ leading
to A− μI = Q̃R̃−μI = QR. As a result Â = QHAQ, which is a step of the standard
QR-algorithm. For a Hessenberg-like matrix A = Q̃R̃, the matrix Q̃ is an ascending
sequence of rotations. The DA-decomposition considered is Q̃ = IQ̃a, with the final
rotation put in the ascending part of the factorization. Rewriting the formulas from
(6.5) gives us R̃� = R̃ and thus A − μI = IQ̃aR̃� − μI =

(
Rr − μQH

a

)
Qa = QRQa.

The new iterate Â corresponds to a step of the QH-algorithm [30,31] or the rational
driven QR-iteration on the matrix A.

6.3. Structure of the rotational factorization pattern after an iteration.
One of the crucial features of the QR-iteration applied on Hessenberg and Hessenberg-
like matrices is the preservation of the structure. Consider, however, a nonsingular
matrix A = QR with Q in compressed format. Based on (6.4) and Lemma 2.6 it is

A METAMORPHOSIS OF THE QR-ALGORITHM 233

trivial to prove that the patterns in the factorization of the matrix Q are preserved
under QR-steps. For a general treatment of structures preserved under QR-iterates
we refer to [12]; the singular case is treated thoroughly in [11].

We did not focus on the development of QR-algorithms for these various types
of patterns because the number of rotations needed for determining the similarity
transformation is too high. Executing, for example, a step of the traditional QR-
method on a Hessenberg-like matrix involves the computation of 2n− 3 rotations. A
single shifted QR-step for a Hessenberg matrix only needs n − 1 rotations. One can
roughly claim that for dealing with an ascending sequence of rotations the double
amount of rotations in a QR-step is entailed. Another reason is that these matrices
belong to the more general class of quasi-separable matrices (both Hessenberg and
Hessenberg-like matrices can be considered as quasi-separable matrices). For quasi-
separable matrices explicit QR-algorithms, determined by much more than n − 1
rotations each step, are readily available [10, 15, 28].

The DA-algorithm proposed here is not precisely the same as the QR-method;
hence we cannot rely on the structure preserving theorems from [12] and [11]. It will
be shown that generically the matrix structure and the shape of the rotations are not
preserved under an iteration, but alter after each step. We are particularly interested
in the shape of the rotational factorization of the matrix Q̂ in the QR-factorization of
the matrix Â = Q̂R̂ as the result of a DA-step, since this fully determines the matrix
structure. Even though the patterns might vary, we will see that the Q-factors remain
in compressed format.

Given a matrix A, the result Â after a step of the DA-iteration is of the form
Â = RQaAQ

H
a R−1. Using Lemma 2.6, we know that the upper triangular matrices

R and R−1 have no impact on the pattern of the Q-factor in the QR-factorization of
the matrix Â. It remains to investigate the structure of QaAQ

H
a . Using A = QdRrQa,

we get that the Q-factor in the factorization of Â shares the pattern of QaQd.
So, the original pattern in the rotational QR-factorization of A equals the pattern

ofQdQa, whereas the new pattern coming from Â is equivalent to the pattern ofQaQd.
A close look at the reverting of the order reveals that the pattern moves up one position
(consider, for example, (4.1) and an example is given in (7.5)), with the position of the
last rotation determined by the variant of the DA-factorization taken to determine
the DA-step. The flexibility of the position of the last rotation in the decomposition
of QdQa implies that one can alter the pattern on the fly, since both choices determine
also slightly different resulting structures. This flexibility of the final rotation in the
DA-factorization appears also in the final column of the Krylov matrices and in the
position of the final rotation in the structure preservation. Moreover, it will again pop
up when discussing the implicit version of the DA-algorithm.

7. Implicit version of the new iteration. The most elegant form for execut-
ing steps of the QR-algorithm on a Hessenberg matrix performs these steps implicitly.
Instead of computing the entire sequence of rotations determining the similarity trans-
formation, the first rotation is sufficient (for a single shifted step) and the remaining
rotations are determined on the fly. Applying the similarity transformation deter-
mined by this rotation on the matrix perturbs its structure in the upper left corner
(initialization step). Since the final structure after the similarity transformation is
known beforehand one can apply a sequence of n− 2 structure restoring transforma-
tions (chasing steps) such that the resulting matrix meets the structural constraints.
Accomplishing a QR-step in this manner does hence not require the computation of
the complete unitary matrix, determining the similarity transform, in advance.

234 RAF VANDEBRIL

Implicit QR-algorithms for Hessenberg(-like) matrices are common knowledge
[31, 36, 38, 40]. The most popular method is the bulge chasing method, where the
elements perturbing the Hessenberg structure are chased downwards until they slide
off the matrix. When exploiting the rotational QR-factorization for studying the bulge
chasing algorithm, a rotation chasing method is obtained. In this case a perturbing
rotation is chased downwards until it vanishes.

Performing a DA-iteration on a zigzag pattern exploits chasing techniques from
both ascending (lower Hessenberg) and descending (Hessenberg) sequences. A brief re-
capitulation of these techniques, followed by a strategy to combine both, is considered
next and results in an implicit DA-iteration.

7.1. Purely descending and ascending sequences. Only the single shifted
case is considered, implying that the initialization step is composed of a single rotation.
To pinpoint the difference between descending and ascending sequences both cases are
discussed simultaneously. The major difference lies in the determination of the chasing
rotations. In the descending case these rotations pop up on the left side, whereas in the
ascending case they appear on the right side of the factorization. The initial rotation
is determined by the first column of the Hessenberg matrix QdRr − μQH

a from (6.5).

7.1.1. Initialization. Consider a Hessenberg matrixH and Hessenberg-like ma-
trix Z factored as in (2.3). The next graphical scheme depicts the initialization step
applied on H and Z, where G1 and G̃1 are suitably constructed: H(1) = GH

1 HG1 and
Z(1) = G̃H

1 ZG̃1. The rotations involved in the similarity transformation are marked
by an ×.

H(1) =

�× �� �
��
��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦

�×�
and Z(1) =

�× ��
�
�

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦

�×�
.

Updating the representation starts by transferring the rotations on the right in both
cases through the upper triangular matrix (Lemma 2.6):

H(1) =

�×↪→ � ��×� �
�

�
�

��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ and Z(1) =

�× � �↪→ �×�
�

� �

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ .

Removal of one of the two perturbing rotations is done by a fusion on the left in
the Hessenberg case and a fusion on the right of the Q-factor in the Hessenberg-
like case. After the fusion, a shift-through operation is performed (to the left for the
Hessenberg, to the right for the Hessenberg-like); as a result one obtains the following
factorizations:

H(1) =

�
�×
�
�� �
��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ and Z(1) =

�
�
�
�×

�
� �

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ .

A METAMORPHOSIS OF THE QR-ALGORITHM 235

To finalize this initialization step we transfer the marked rotation in the middle of
Z(1) back to the right:

Z(1) =

�
�
�

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ �×�

.

The result of the initialization step gives us for H(1) the QR-factorization of a Hes-
senberg matrix H(1) = G2

(
Q(1)R(1)

)
, perturbed on the left with a rotation G2 and

the QR-factorization of Z(1) =
(
Q̃(1)R̃(1)

)
G̃H

2 , which is the one of a Hessenberg-like

matrix perturbed on the right by a rotation G̃H
2 . Both disturbing rotations act on

rows 2 and 3.

7.1.2. Chasing the rotations. Chasing the rotations in both cases is quite
simple. The following two similarity transformations will chase the perturbing rotation
down one position:

H(2) = GH
2 H(1)G2 = Q(1)R(1)G2,(7.1)

Z(2) = G̃H
2 Z(1)G̃2 = G̃H

2 Q̃(1)R̃(1).(7.2)

To deal with H(2), first G2 is transferred through the matrix R(1) to the left and
then a shift-through operation is executed resulting again in a matrix factorization
H(2) = G3Q

(2)R(2), where the perturbing rotation G3 acts now on rows 3 and 4.
Dealing with Z(2) proceeds sort of in inverse order. First the shift-through operation
to the right is performed, followed by transferring the newly obtained rotation through
the upper triangular matrix R̃(1). The result is a factorization Z(2) = Q̃(2)R̃(2)G̃H

3 with
G̃3 acting on rows 3 and 4. Graphically these transitions look as follows, starting with
the factorizations (7.1) and (7.2):

H(2) =

��
��
��
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦

�×�
, Z(2) =

�
�× � �

�
�

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ ,

H(2) =

��
� ��×�

�
�

�
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ , Z(2) =

�
�
�

�
�

�×
�
� �

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ ,(7.3)

H(2) =

��
�

�×
�
�� �
��

⎡
⎢⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎥⎦ , Z(2) =

�
�
�

�
�

�
�

�

⎡
⎢⎢⎣

× × × × ×
× × × ×

× × ×
× ×

×

⎤
⎥⎥⎦ �×� .(7.4)

After n − 2 chasing steps one is not able to perform a shift-through operation
anymore because the end of the sequence is reached. The perturbing rotation can now
be fused with the trailing rotation from the sequence and vanishes. As a result one
retrieves again the proper rotational factorizations in a descending or an ascending
sequence.

236 RAF VANDEBRIL

The sequences of rotations considered in the next section are not purely of de-
scending or ascending form. Performing an implicit step on a zigzag pattern will
therefore be constituted of both techniques. Executing a similarity transformation to
remove an undesired rotation as in the left of (7.4) will be referred to as the removal
of a left rotation, whereas a similarity transformation and the corresponding steps to
get rid of the perturbing rotation in (7.3) will be referred to as the removal of a right
rotation.

7.2. Zigzag patterns. The result of a DA-step on a QR-factorization of a ma-
trix A, where Q is factored in a zigzag pattern, results in a new upwards shifted
pattern (see section 6.3). Based on this knowledge, it is possible to perform a DA-
step implicitly. The remaining issue is, however, the transition from descending to
ascending sequences and, conversely, from ascending to descending.

A generic zigzag pattern is constituted of parts which are descending, ascending
or turns from ascending to descending and vice versa. The previous section explained
purely ascending or descending parts. Here focus will be put on the change of di-
rection and on the determination of the final (flexible) rotation. A global implicit
version simply combines all the building blocks from the previous subsections and
this subsection.

The upward move of the pattern means that for the connections between ascend-
ing and descending sequences the patterns on the left of the arrow in (7.5) turn into
the patterns on the right of the arrow. The transitions for both <- and >-corners
are shown in (7.5). The upward move of the pattern leaves the position of the final
rotation undetermined; only one of the rotations marked by the ∼ sign (7.5) in a
sequence can remain:

�
�
�

�
�

�
��
��

→

�
�
�

�
��
�

�∼
�
�∼� �

and

��
��
�

�
�

�
�

�
→

��
�

�
�

�
�

�∼
�
�∼� �

.(7.5)

From subsection 7.1.2 the removal of either a left or right perturbing rotation is
known. In the next graphical flow of the transition from left to right we will omit
the upper triangular matrix. This matrix does not complicate matters; only the extra
transferring of rotations through the matrix should not be forgotten when implement-
ing the method.

7.2.1. Initialization. The matrix corresponding with a >-pattern is denoted
as H(0) and the matrix Z(0) corresponds to the <-pattern. The initial similarity
transformations H(1) = GH

1 H(0)G1 and Z(1) = G̃H
1 Z(0)G̃1 are carried out just as in

subsection 7.1; as result we get

Z(1) =

�× : � : �×�
: �

�
:
�

: �
�

:
:
�
� :

:
�
� :

:
�
:

=

� :

�
�
: �×

�
�

:
�

�
� :�
� :�
:

and H(1) =

�× : � : �×�
:
�
� :

�

:
�
� :

: �
�
:

: �
�

:
:
�

:

=

: �
�× :

�
��

:
�
�

: �
�

: �
�

:
�

.

In these figures an extra vertical dashed line is drawn to separate the matrix from its
perturbing rotations. For the matrix Z(1) the remaining disturbing rotation appears
on the right; for H(1) it is spotted on the left.

A METAMORPHOSIS OF THE QR-ALGORITHM 237

7.2.2. Chasing the rotations. The chasing starts, another time, just as for the
purely descending or ascending case. The similarity transformations to obtain H(2)

and Z(2) are determined analogously as in subsection 7.1.2. In scheme (7.6) the full
similarity transformation is depicted; for Z(2) this is based on the removal of a right
rotation, and for H(2) this is based on the removal of a left rotation.

(7.6)

Z(2) =

: � :

�× : �
�
: �×↪→ �×�

: �
�

:
� �

:
�
� :

:
�
� :

:
�
:

=

�
�
�

�
�
�×� �
��
��

and H(2) =

: � :

�×↪→ �× :
�
� : �×� �

:
�
� :

�

: �
�
:

: �
�

:
:
�

:

=

��
�

�×
�
�

�
� �

�
�

�
.

Looking again at the desired result in (7.5), we see that after this step the resulting
matrix on the right has a change of direction in both patterns. Indeed, after this sim-
ilarity transformation (7.6), we notice that the rotations conventionally determining
the upcoming chasing step (marked by ×) are not free anymore, which means that
they are blocked by other rotations. This is also reflected in the schemes, as it is
impossible to separate the perturbing rotation from the remaining pattern by a single
vertical dashed line. The change of direction of the corresponding patterns created a
sort of barrier blocking these rotations.

The problem is easily solved by changing the undesired rotation. Since the blocked
rotation satisfies the final pattern, this rotation is kept and the other outer rotations
are now marked

Z(2) =

: �
:�

�

�× :
�
��

:
�
�

:
�
�

:
�

and H(2) =

� :�
� :

�
�
: �×

�
�

:
�

�
�

:�
:

.

In the adapted patterns one can again draw the vertical dashed line disconnecting
the unwanted rotation from the others. At this point the order of removal is changed.
When the first perturbing rotation was on the right (resp., left) it is now on the
left (resp., right). These new undesired rotations can be removed once more by the
standard techniques for removing a left or a right perturbing rotation. The process
continues by the standard routines for either descending or ascending sequences as
put forward in section 7.1.

7.2.3. Options for the final rotation. After the initial step and n−3 chasing
steps the matrices Z(4) and H(4) are of the form (7.7). The rotation marked by × is
the rotation intuitively popping up as the perturbing one after a left or right removal
of a rotation by a similarity transformation

Z(4) =

�
�
�

�
��
�

�×
�
�� �

and H(4) =

��
�

�
�

�
�

�
�
�×� �

.(7.7)

238 RAF VANDEBRIL

A closer look at the bottom rotations shows that for both cases, however, the left as
well as the right rotation is free. This implies that we can remove either of the bottom
rotations. So instead of annihilating the rotation marked in (7.7), one can also remove
the ones marked in scheme (7.8):

Z(4) =

�
�
�

�
��
�

�
�
�×� �

and H(4) =

��
�

�
�

�
�

�×
�
�� �

.(7.8)

After having removed the undesired rotation in H(4) and Z(4) from either (7.7) or
(7.8), the patterns as presented in (7.5) are retrieved. The flexibility with the final
rotation was already observed in the study of the structure of DA-factorization and
also appeared in the explicit version of the DA-algorithm.

Based on the implicit Q-Theorem 5.1 one can prove that the outcome of the
implicit DA-version is essentially identical to the outcome of the explicit DA-version.
Both the explicit and the implicit methods applied on A result in two unitary
similar matrices, admitting a QR-factorization with an identical pattern for fac-
toring their Q-factors. Theorem 5.1 then states that these matrices are essentially
identical.

Remark 7.1. Proofs of convergence exist for both ascending as well as descending
sequences. Unfortunately, for the moment theoretical results on the convergence for
a generic zigzag pattern are not available. Since the chasing involves a swapping be-
tween ascending and descending sequences, its convergence seems, however, somehow
natural. In the numerical experiments section it will be shown that the combined
approach converges neatly and inherits properties from both techniques.

8. Implementation details and numerical examples. Due to the almost
unlimited choice of possible positions p for a compressed unitary matrix it is im-
possible to test all algorithms and see how they behave numerically for computing
eigenvalues. In the upcoming numerical experiments some selected approaches are
used studying the implicit DA-algorithm as presented in this paper.

8.1. Software package. Together with this article a software package is pro-
vided for studying the patterns and the flexibility of working with rotational factoriza-
tions of unitary matrices. The package provides, for instance, routines for computing
the rotational factorization of a unitary matrix, performing a similarity transformation
on an arbitrary matrix to obtain a similar QR-factored matrix Â, where Q satisfies a
previously defined pattern, computing the DA- and AD-factorization of a compressed
unitary matrix, and executing implicit DA-steps on a QR-factored matrix with Q in
compressed form. It also contains a tool for visualizing the pattern of a rotational
factorization (see Figure 8.1).

In Figure 8.1 patterns for factoring a unitary matrix are shown, visualized with
the routine Gplot. The left shows the standard pyramid factorization of a unitary
matrix Q ∈ C

20×20 . The right figure shows the CMV -decomposition of a 20 × 20
pentadiagonal unitary matrix.

The Matlab software can be downloaded from the author’s website at
http://people.cs.kuleuven.be/∼raf.vandebril/.

A METAMORPHOSIS OF THE QR-ALGORITHM 239

0 5 10 15 20 25 30 35
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

0 0.5 1 1.5 2 2.5 3
20
19
18
17
16
15
14
13
12
11
10

9
8
7
6
5
4
3
2
1

Fig. 8.1. The left figure is a graphical pyramid shape decomposition of a unitary matrix. The
right figure shows the CMV -decomposition of a pentadiagonal unitary matrix.

8.2. Implementation issues.

8.2.1. Deflation in the DA-algorithm. The possibility of subdividing a ma-
trix after a step of the QR-method into two or more problems, which can be treated
independently, is referred to as deflation. In the standard Hessenberg case possible
deflation is monitored by checking the relative sizes of the subdiagonal elements.
Conveying this technique towards the rotations present in the QR-factorization indi-
cates that deflation should be checked by searching for rotations numerically equal
to the identity. Indeed, some calculations reveal that a rotation equal to the identity
corresponds to a subdivision of the matrix into two submatrices, whose eigenvalues
can now be computed independently.

8.2.2. Computational complexity and storage count. Each rotation is
stored by two parameters (cosine and the sine), though strictly speaking only a single
parameter suffices. For each rotation two additional integers are required for determin-
ing the order of appearance in the sequence and the row they act on. Hence, globally
storing the QR-factorization of a matrix A = QR, with Q in compressed format, uses
1/2n2 + 9/2n− 6 parameters.

Important operations in the process are the computation of a Givens rotation, the
shift-through operation, and a fusion. Computing a rotation takes cr = 6 operations
[17]; a shift-through operation uses 14 operations plus the computation of 2 rotations
leading to a cost of cs = 14 + 2cr = 26 operations. Executing a fusion needs cf = 6
operations.

Complexity count of the unitary similarity transformation. Assume that the QR-
factorization of a matrix A is given (roughly 2/3n3 operations [17]). Each similarity
transformation for annihilation on either the right or the left side uses the same
number of operations, so we do not distinguish between those. Assume a single left
annihilation step is executed on a matrix of size �× �. This means that �− 2 rotations
are subjected to removal. To remove the top rotation � − 3 shift-through operations
and a single fusion are performed; annihilation of the next rotation uses � − 4 shift-
through operations and a fusion, and this continues. Transition of a rotation through
the upper triangular matrix takes ct(�) = 6(�+1)+ cr = 6(�+2) operations. Globally
this gives for a left or right annihilation step the following cost:

ca(�) =

�−2∑
i=1

(�− 2− i)cs + cf + ct = 19�2 − 59�+ 42.

240 RAF VANDEBRIL

Based on the execution of n− 2 annihilation steps of diminishing sizes a global com-
plexity count is retrieved:

cu =

n−2∑
�=1

ca(�) =
19

3
n3 − 58n2 +

515

3
n− 162.

Taking into consideration the complexity for reducing a matrix to Hessenberg form via
rotations (approximately 5n3 operations), one can see that the traditional reduction
method is about 25% faster than the alternative version based on the rotational QR-
factorization.

Complexity count of the DA-method. Consider next an �× � matrix on which we
want to perform an implicit step of the new DA-method. Again, the left and right
annihilation steps are equally expensive, so we will focus only on left annihilations.
The initial step, computation of the shift, and the final step are contributing only to
the lower order terms in the complexity count so we will neglect them. Each chasing
step involves a transferring through the upper triangular matrix, computation of a
rotation, and a shift-through operation. So executing � − 2 chasing steps leads to a
complexity of

cs = (� − 2)(ct(�) + cf) = (� − 2)(6�+ 36).

The complexity of a traditional chasing step applied on a Hessenberg matrix takes

(� − 2)(6�+ 24),

which is just few operations cheaper than the new approach.
Deriving the computational complexity of the global DA-procedure is quite cum-

bersome, since it involves parameters estimating when deflation will take place and
so forth. Since all variants are equally expensive, we will therefore in the numerical
experiments focus on the number of iterations it takes before deflation can be applied.
This is one possible measure for deducing the speed of the approach.

8.3. Numerical experiments for eigenvalue computations. In this section,
the accuracy and speed of computing the eigenvalues of some specific matrices are
tested. The matrices are first reduced to a compressed QR-factorization after which
the DA-algorithm is used to retrieve the eigenvalues.

The software provides a generic DA-algorithm, capable of dealing with any type
of pattern of rotations. Only at the end of the chasing should the user specify whether
a right or a left annihilation step is taken, with the possibility of changing this during
consecutive iterates. Depending on this choice, we distinguish between three types of
numerical experiments. In subsection 8.3.1 four fixed patterns are taken for compar-
ison. Subsection 8.3.2 illustrates convergence and accuracy when randomly selecting
left or right for the trailing rotation, and in subsection 8.3.3 the pattern will be adap-
tive, to enhance the convergence speed.

Since at present no adequate convergence theory of this novel method exists,
it is impossible to state which left or right selection of the trailing rotation or which
preliminary similarity transformation will furnish us with an optimal algorithm. With
the numerical experiments presented here we would like, however, to convey some
messages on the viability of this generalization of the QR-method, though further
research is indispensible. The various experiments illustrate proper convergence of the
approach, even for random left-right choice of the final rotation. Comparing several

A METAMORPHOSIS OF THE QR-ALGORITHM 241

variants of the DA-algorithm shows us that they are all almost equally accurate,
but there is a significant difference in convergence speed. The numerical experiments
illustrate also that convergence speed of the DA-method is heavily dependent on the
eigenvalue distribution of the original matrix. Moreover, we will also see that with a
simple trick, altering the pattern at a specific point, we can speed up convergence.

8.3.1. Accuracy and speed for four particular examples. The almost un-
limited number of possibilities forces us to make some specific choices. We have se-
lected four types. For these four variants the same input matrix and identical deflation
criteria were used, making a fair comparison possible. We know that the computa-
tional complexity is independent of the type of zigzag pattern. Hence, in the following
results only the average number of iterations per eigenvalue is plotted. Also the max-
imum relative accuracy is depicted.

The initial matrix is reduced via a similarity transformation to a compressed
QR-factorization after which the DA-algorithm takes over. The four cases are the
following:

• Hessenberg case. The outcome of the similarity transformation is a Hessenberg
matrix. The DA-algorithm does not change the pattern at the end of the
sequence of rotations; as a result the sequence remains descending throughout
the algorithm. This corresponds to the standard Hessenberg algorithm.

• Hessenberg-like case. The matrix is brought via similarity transformation to
Hessenberg-like form. The DA-algorithm is run again without changing the
pattern at the end of the sequence of rotations. This corresponds to the
Hessenberg-like algorithm.

• CMV -case. The similarity transformation results in a unitary pentadiagonal
matrix. When performing the DA-algorithm the final rotation alters each
iterate. In this way one retains the CMV -pattern during the DA-algorithm.

• Slanted zigzag case. The compressed QR-factored matrix, resulting from the
similarity transformation, is constructed by two left annihilations and a single
right annihilation. The correspondingDA-algorithm alters the direction every
two steps, so after two DA-steps the direction of the trailing rotation changes.

Deflation is applied when the absolute value of the sine of a rotation is below
10−14, this criterion is identical for all test cases. The algorithm only deflates blocks
of sizes at most 2. As shift the Rayleigh shift is taken. The DA-method is identical
for all four versions, only the left-right position of the final rotation differs.

In the first numerical experiment a random symmetric matrix is generated with
eigenvalues equally distributed in the interval [0, 1]. The problem sizes vary from 20 to
500. The four variants are tested on the same matrix. Figure 8.2 shows the accuracy
and the average number of iterations. Taking into consideration that the DA-steps
are equally expensive for each method, the average number of iterations is a good
measure for deducing the speed of the corresponding approach.

All four methods provide almost equally accurate results. Only the number
of iterations differs significantly. An inappropriate conclusion would state that the
Hessenberg-like case is the best, since the DA-algorithm is related to a QR-method
and the convergence of QR-methods is heavily dependent on the ratios between eigen-
values. Because the convergence of the Hessenberg-like approach is related to the in-
verse of the matrix A, it seems natural that it outperforms the other methods in the
case of equal spaced eigenvalues. To illustrate this, a second experiment is performed,
with eigenvalues the inverses of the eigenvalues of the first experiment. Figure 8.3 de-
picts the results. As expected the Hessenberg case outperforms now the Hessenberg-

242 RAF VANDEBRIL

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−14

10
−13

10
−12

Relative accuracy

Problem size

A
cc

ur
ac

y

Hessenberg
Hessenberg−like
CMV
nonsym. zigzag

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Average number of iterations

Problem size

N
um

be
r

of
 it

er
at

io
ns

Hessenberg
Hessenberg−like
CMV
nonsym. zigzag

Fig. 8.2. Symmetric matrices with equal spaced eigenvalues in the interval [0, 1].

like case. The two other approaches are somewhere in the middle of the figure as their
convergence relies on powers of both A and A−1. Comparing the average numbers of
iterations in Figures 8.2 and 8.3, we see that the extremes differ quite a lot. The av-
erages range from 3.4 to 2. In practice, this is a nontrivial reduction in computational
time. As already mentioned, the convergence speed is dependent, however, heavily
on the eigenvalue distribution. Further research is required to fully understand the
interaction between the eigenvalue distribution and the rotational patterns chosen. In
this fashion, one might possibly be able to tune the DA-algorithm to get the average
number of iterations as low as possible, gaining thereby notable computing time.

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−14

10
−13

10
−12

Relative accuracy

Problem size

A
cc

ur
ac

y

Hessenberg
Hessenberg−like
CMV
nonsym. zigzag

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Average number of iterations

Problem size

N
um

be
r

of
 it

er
at

io
ns

Hessenberg
Hessenberg−like
CMV
nonsym. zigzag

Fig. 8.3. Symmetric matrices with eigenvalues the inverses of equal spaced numbers in [0, 1].

8.3.2. Random left-right selection of the final rotation. In the previous
numerical experiments, some well-determined patterns regulated the iterative steps.
In the next experiment the position of the final rotation in each QR-step is chosen at
random; that is, decisions to go right or left are taken randomly. With this example
we would like to illustrate that periodicity of the patterns is not required for conver-
gence; also for arbitrarily chosen formats altering throughout the process we will have
convergence. The eigenvalue distributions of the previous examples are repeated. Fig-
ure 8.4 displays the relative accuracy and the average number of iterations for equal
spaced eigenvalues in [0, 1]. As benchmarks the Hessenberg and Hessenberg-like case
are depicted again together with three independent random runs. Since there is no
actual connection between each random test case and to avoid cluttering of the figures

A METAMORPHOSIS OF THE QR-ALGORITHM 243

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−14

10
−13

10
−12

Relative accuracy

Problem size

A
cc

ur
ac

y

Hessenberg
Random
Random
Random
Hessenberg−like

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Average number of iterations

Problem size

N
um

be
r

of
 it

er
at

io
ns

Hessenberg
Random
Random
Random
Hessenberg−like

Fig. 8.4. Behavior of randomly selected patterns determining the QR-steps on equal spaced
eigenvalues in [0, 1].

no lines connecting the individual random samples are drawn. To provide, however,
detailed information on each random trial, extra tables are included. For each in-
stance the problem size, the average number of iterations, the number of times left or
right, was chosen and the number of direction changes encountered in the left-right
choices during the execution of the algorithm is depicted in Table 8.1. Figure 8.5 and
Table 8.2 display similar information, but now for eigenvalues as the inverses of equal
spaced numbers in [0, 1].

Table 8.1

Detailed information on the random tests in the Figures 8.4.

Marker Problem Size Avg. number Number of Number of Number of
of iterations left choices right choices Direction Changes

◦ 20 2.45 20 29 23
◦ 40 2.45 45 53 59
◦ 60 2.43 67 79 78
◦ 80 2.40 102 90 98
◦ 100 2.42 127 115 129
◦ 200 2.42 221 262 268
◦ 300 2.35 334 370 335
◦ 400 2.34 460 477 469
◦ 500 2.38 601 591 623
� 20 2.45 26 23 30
� 40 2.48 47 52 43
� 60 2.38 74 69 72
� 80 2.49 98 101 105
� 100 2.36 120 116 110
� 200 2.41 236 246 237
� 300 2.40 347 373 350
� 400 2.36 430 514 469
� 500 2.31 600 555 583
× 20 2.35 26 21 27
× 40 2.45 59 39 42
× 60 2.35 77 64 80
× 80 2.40 99 93 94
× 100 2.35 117 118 104
× 200 2.38 233 242 232
× 300 2.35 358 347 330
× 400 2.31 462 461 476
× 500 2.36 574 606 578

244 RAF VANDEBRIL

0 50 100 150 200 250 300 350 400 450 500
10

−15

10
−14

10
−13

10
−12

Relative accuracy

Problem size

A
cc

ur
ac

y

Hessenberg
Random
Random
Random
Hessenberg−like

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8
Average number of iterations

Problem size

N
um

be
r

of
 it

er
at

io
ns

Hessenberg
Random
Random
Random
Hessenberg−like

Fig. 8.5. Behavior of randomly selected patterns determining the QR-steps with eigenvalues the
inverses of equal spaced numbers in [0, 1].

Table 8.2

Detailed information on the random tests in the Figures 8.5.

Marker Problem Size Avg. number Number of Number of Number of
of iterations left choices right choices Direction Changes

◦ 20 2.30 25 21 17
◦ 40 2.40 46 50 46
◦ 60 2.45 75 72 60
◦ 80 2.45 87 109 90
◦ 100 2.40 134 106 110
◦ 200 2.40 239 240 249
◦ 300 2.36 349 360 343
◦ 400 2.29 445 473 434
◦ 500 2.32 597 565 575
� 20 2.50 30 20 24
� 40 2.42 51 46 53
� 60 2.50 73 77 77
� 80 2.44 99 96 99
� 100 2.37 114 123 106
� 200 2.38 217 259 230
� 300 2.29 343 343 356
� 400 2.31 475 449 456
� 500 2.35 596 577 597
× 20 2.30 24 22 23
× 40 2.38 51 44 41
× 60 2.30 69 69 62
× 80 2.48 96 102 105
× 100 2.40 110 130 107
× 200 2.33 234 233 234
× 300 2.30 336 354 361
× 400 2.33 466 467 459
× 500 2.32 580 582 598

The Figures 8.4 and 8.5 show that the convergence of the random case is in
between the Hessenberg and Hessenberg-like case. A closer look at Tables 8.1 and 8.2
reveals that the more a random process approaches (depending on the number of left
and right choices) the Hessenberg or Hessenberg-like case, the more it resembles its
convergence.

8.3.3. Flexible adaptation of the pattern. In the final numerical experiment
we changed the DA-algorithm and made it adaptive. Instead of selecting the position

A METAMORPHOSIS OF THE QR-ALGORITHM 245

of the final rotation we alter it depending on the average number of iterations. Starting,
for example, with a Hessenberg matrix, we retain the structure and do not alter the
direction of the trailing rotation. It is assumed that on average 2.5 DA-steps are
needed to find all eigenvalues. After 10% of this number, n/4 DA-steps, we check the
average number of iterations before convergence occurs. If this is too high we alter
the direction. In the Hessenberg case it means that we change the direction of the
final rotation, hoping that by performing this action we can still reduce the average
number of iterations.

This method was tested on a single example with equal spaced eigenvalues. To
compare the flexible approach the average number of iterations for the Hessenberg and
Hessenberg-like approach is also shown (Figure 8.6). Clearly, changing the direction
has a significant impact on the average number of iterations and thus also on the
global computational time.

0 50 100 150 200 250 300 350 400 450 500
1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6
Average number of iterations

Problem size

N
um

be
r

of
 it

er
at

io
ns

Hessenberg
Hessenberg−like
Flex format

Fig. 8.6. Convergence determined by a flexible pattern on equal spaced eigenvalues in [0, 1].

9. Conclusions and future research. In this article a new procedure, based
on the QR-factorization of a given matrix, is presented for transforming a matrix via
unitary similarity transformations to a compressed format. This similarity transfor-
mation is a generalization of the reductions to Hessenberg and Hessenberg-like form,
and it can achieve, for instance, the CMV -pattern in the decomposition of the uni-
tary matrix. Uniqueness of the reduction is proved. Based on the factorization of the
unitary matrix a new procedure, generalizing the QR-algorithm, is given. An implicit
version of this method is presented. Numerical experiments show the viability of this
approach revealing the impact of the eigenvalue distribution on the convergence of
the DA-algorithm.

The numerics clearly illustrate the significant impact of the pattern choice on
the convergence speed. Intelligently choosing the pattern can result in a dramatic
decrease in the number of iterations. Unfortunately, the research associated with this
algorithm is not yet finished and we are currently unable to effectively construct an
autonomous algorithm choosing the pattern on the fly to obtain the fastest conver-
gence possible. To tackle this problem we need to address important open theoretical
questions such as a proof of convergence (illustrated by the numerics), an analysis of
the convergence speed, a theoretical foundation on which side to choose the trailing
rotation, and how to pick the shifts. All these questions will be the subject of further
research.

246 RAF VANDEBRIL

REFERENCES

[1] G. S. Ammar, W. B. Gragg, and L. Reichel, On the eigenproblem for orthogonal matrices,
in Proceedings of the 25th IEEE Conference on Decision & Control, New York, 1986,
pp. 1963–1966.

[2] G. S. Ammar, W. B. Gragg, and L. Reichel, Constructing a unitary Hessenberg matrix
from spectral data, in Numerical Linear Algebra, Digital Signal Processing and Parallel
Algorithms, Comput. Syst. Sci. 70, G. H. Golub and P. Van Dooren, eds., Springer-Verlag,
Berlin, Germany, 1991, pp. 385–395.

[3] G. S. Ammar and V. Mehrmann,A geometric perspective on condensed forms for Hamiltonian
matrices, in Computation and Control II: Proceedings of the Second Bozeman Conference,
K. L. Bowers and J. Lund, eds., Birkhäuser, Basel, 1991, pp. 1–11.

[4] R. C. Barroso and S. Delvaux, Orthogonal Laurent polynomials on the unit circle and snake-
shaped matrix factorizations, J. Approx. Theory, 161 (2009), pp. 65–87.

[5] D. A. Bini, Y. Eidelman, L. Gemignani, and I. C. Gohberg, Fast QR eigenvalue algorithms
for Hessenberg matrices which are rank-one perturbations of unitary matrices, SIAM J.
Matrix Anal. Appl., 29 (2007), pp. 566–585.

[6] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part I: Maintain-
ing well-focused shifts and level 3 performance, SIAM J. Matrix Anal. Appl., 23 (2002),
pp. 929–947.

[7] K. Braman, R. Byers, and R. Mathias, The multishift QR algorithm. Part II: Aggressive
early deflation, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 948–973.

[8] A. Bunse-Gerstner and L. Elsner, Schur parameter pencils for the solution of the unitary
eigenproblem, Linear Algebra Appl., 154–156 (1991), pp. 741–778.

[9] M. J. Cantero, L. Moral, and L. Velazquez, Five-diagonal matrices and zeros of orthogonal
polynomials on the unit circle, Linear Algebra Appl., 362 (2003), pp. 29–56.

[10] S. Delvaux and M. Van Barel, The explicit QR-algorithm for rank structured matrices,
Technical report TW459, Department of Computer Science, Katholieke Universiteit Leu-
ven, Celestijnenlaan 200A, 3000 Leuven (Heverlee), Belgium, 2006.

[11] S. Delvaux and M. Van Barel, Rank structures preserved by the QR-algorithm: The singular
case, J. Comput. Appl. Math., 189 (2006), pp. 157–178.

[12] S. Delvaux and M. Van Barel, Structures preserved by the QR-algorithm, J. Comput. Appl.
Math., 187 (2006), pp. 29–40.

[13] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA, 1997.
[14] Y. Eidelman, L. Gemignani, and I. C. Gohberg, On the fast reduction of a quasiseparable

matrix to Hessenberg and tridiagonal forms, Linear Algebra Appl., 420 (2007), pp. 86–101.
[15] Y. Eidelman, I. C. Gohberg, and V. Olshevsky, The QR iteration method for Hermitian

quasiseparable matrices of an arbitrary order, Linear Algebra Appl., 404 (2005), pp. 305–
324.

[16] H. Faßbender, Symplectic Methods for the Symplectic Eigenvalue Problem, Kluwer Academic
Publishers, Norwell, MA, 2002.

[17] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[18] N. Mastronardi, S. Chandrasekaran, and S. Van Huffel, Fast and stable two-way algo-
rithm for diagonal plus semi-separable systems of linear equations, Numer. Linear Algebra
Appl., 8 (2001), pp. 7–12.

[19] B. N. Parlett, The Symmetric Eigenvalue Problem, Classics Appl. Math. 20, SIAM, Philadel-
phia, PA, 1998.

[20] B. Simon, CMV matrices: Five years after, J. Comput. Appl. Math., 208 (2007), pp. 120–154.
[21] G. W. Stewart, Matrix Algorithms, Volume II: Eigensystems, SIAM, Philadelphia, PA, 2001.
[22] M. Van Barel, R. Vandebril, and N. Mastronardi, An orthogonal similarity reduction of

a matrix into semiseparable form, SIAM J. Matrix Anal. Appl., 27 (2005), pp. 176–197.
[23] M. Van Barel, R. Vandebril, P. Van Dooren, and K. Frederix, Implicit double shift

QR-algorithm for companion matrices, Numer. Math., 116 (2010), pp. 177–212.
[24] R. Vandebril, The interplay of Givens rotations and QR-factorizations, Technical report,

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,
3001 Leuven (Heverlee), Belgium, 2010.

[25] R. Vandebril and G. M. Del Corso, An implicit multishift QR-algorithm for Hermitian plus
low rank matrices, SIAM J. Sci. Comput., 32 (2010), pp. 2190–2212.

[26] R. Vandebril, M. Van Barel, and N. Mastronardi, An implicit QR-algorithm for symmet-
ric semiseparable matrices, Numer. Linear Algebra Appl., 12 (2005), pp. 625–658.

A METAMORPHOSIS OF THE QR-ALGORITHM 247

[27] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semisepara-
ble Matrices, Volume I: Linear Systems, Johns Hopkins University Press, Baltimore, MD,
2008.

[28] R. Vandebril, M. Van Barel, and N. Mastronardi, Matrix Computations and Semisepara-
ble Matrices, Volume II: Eigenvalue and Singular Value Methods, Johns Hopkins Univer-
sity Press, Baltimore, MD, 2008.

[29] R. Vandebril, M. Van Barel, and N. Mastronardi, A parallel QR-factorization/solver of
structured rank matrices, Electron. Trans. Numer. Anal., 30 (2008), pp. 144–167.

[30] R. Vandebril, M. Van Barel, and N. Mastronardi, A rational QR-iteration without inver-
sion, Numer. Math., 110 (2008), pp. 561–575.

[31] R. Vandebril, M. Van Barel, and N. Mastronardi, A new iteration for computing the
eigenvalues of semiseparable (plus diagonal) matrices, Electron. Trans. Numer. Anal., 33
(2009), pp. 126–150.

[32] D. S. Watkins, Understanding the QR algorithm, SIAM Rev., 24 (1982), pp. 427–440.
[33] D. S. Watkins, Some perspectives on the eigenvalue problem, SIAM Rev., 35 (1993), pp. 430–

471.
[34] D. S. Watkins, Bulge exchanges in algorithms of QR type, SIAM J. Matrix Anal. Appl., 19

(1998), pp. 1074–1096.
[35] D. S. Watkins, On the reduction of a Hamiltonian matrix to Hamiltonian Schur form, Elec-

tron. Trans. Numer. Anal., 23 (2006), pp. 141–157.
[36] D. S. Watkins, The Matrix Eigenvalue Problem: GR and Krylov Subspace Methods, SIAM,

Philadelphia, PA, 2007.
[37] D. S. Watkins, The QR algorithm revisited, SIAM Rev., 50 (2008), pp. 133–145.
[38] D. S. Watkins and L. Elsner, Chasing algorithms for the eigenvalue problem, SIAM J. Matrix

Anal. Appl., 12 (1991), pp. 374–384.
[39] D. S. Watkins and L. Elsner, Convergence of algorithms of decomposition type for the eigen-

value problem, Linear Algebra Appl., 143 (1991), pp. 19–47.
[40] D. S. Watkins and L. Elsner, Theory of decomposition and bulge-chasing algorithms for the

generalized eigenvalue problem, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 943–967.
[41] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press, New York, 1988.

