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Mattiazzi A, Bassani RA, Escobar AL, Palomeque J, Valverde CA, Vila
Petroff M, Bers DM. Chasing cardiac physiology and pathology down the
CaMKII cascade. Am J Physiol Heart Circ Physiol 308: H1177–H1191, 2015. First
published March 4, 2015; doi:10.1152/ajpheart.00007.2015.—Calcium dynamics is
central in cardiac physiology, as the key event leading to the excitation-contraction
coupling (ECC) and relaxation processes. The primary function of Ca21 in the heart
is the control of mechanical activity developed by the myofibril contractile
apparatus. This key role of Ca21 signaling explains the subtle and critical control
of important events of ECC and relaxation, such as Ca21 influx and SR Ca21

release and uptake. The multifunctional Ca21-calmodulin-dependent protein kinase
II (CaMKII) is a signaling molecule that regulates a diverse array of proteins
involved not only in ECC and relaxation but also in cell death, transcriptional
activation of hypertrophy, inflammation, and arrhythmias. CaMKII activity is
triggered by an increase in intracellular Ca21 levels. This activity can be sustained,
creating molecular memory after the decline in Ca21 concentration, by autophos-
phorylation of the enzyme, as well as by oxidation, glycosylation, and nitrosylation
at different sites of the regulatory domain of the kinase. CaMKII activity is
enhanced in several cardiac diseases, altering the signaling pathways by which
CaMKII regulates the different fundamental proteins involved in functional and
transcriptional cardiac processes. Dysregulation of these pathways constitutes a
central mechanism of various cardiac disease phenomena, like apoptosis and
necrosis during ischemia/reperfusion injury, digitalis exposure, post-acidosis and
heart failure arrhythmias, or cardiac hypertrophy. Here we summarize significant
aspects of the molecular physiology of CaMKII and provide a conceptual frame-
work for understanding the role of the CaMKII cascade on Ca21 regulation and
dysregulation in cardiac health and disease.
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Calcium signaling is central in cardiac physiology and the

link of the different steps of excitation-contraction coupling

(ECC) and relaxation mechanisms. Moreover, the multifunc-

tional Ca21-calmodulin-dependent protein kinase II (CaMKII)

is a signaling molecule that regulates ECC in the heart but is

also involved in several cardiac diseases. The present review

proffers an outline of intracellular Ca21 handling in the heart,

as well as on CaMKII localization, regulation, and targets in

the cardiac myocyte. The review also focuses on Ca21 dys-

regulation and CaMKII activation in ischemia/reperfusion (I/
R), as well as the dual role of CaMKII in this condition (i.e.,
beneficial in the stunned heart, but detrimental in irreversible
I/R injury, leading to apoptosis and necrosis). We also address
the importance of ryanodine receptors (RyR2) and their regu-
lation by CaMKII in different proarrhythmic processes, such as
those occurring during reperfusion, after acidosis, atrial fibril-
lation, heart failure (HF), and digitalis intoxication. Finally, the
role of CaMKII in cardiac transcriptional regulation is de-
scribed. We hope that this review may help to provide a solid
basis for understanding the importance of the CaMKII cascade
in cardiac health and disease.

Overview of Intracellular Ca21 Dynamics

Calcium is a remarkably ubiquitous and versatile intracellu-
lar signal, since not only does it trigger and regulate a number
of physiological processes but also may play an important role
in regulation of its own fluxes among cell organelle and plasma
membranes. The primary function attributed to Ca21 in muscle
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cells is to control mechanical activity developed by the myo-
fibril contractile apparatus. In the cardiac muscle, membrane
depolarization during the action potential (AP) triggers a tran-
sient rise in cytosolic free Ca21 concentration ([Ca21]i) that
leads to a phasic contraction. Thus Ca21 dynamics in the
cytosol is the most critical event in the ECC process.

In the mature mammalian ventricular myocardium, most of
the Ca21 that contributes to an AP-triggered Ca21 transient is
released from the sarcoplasmic reticulum (SR) (27), upon
binding of Ca21 to RyR2 (Fig. 1), a mechanism identified as
Ca21-induced Ca21 release (38). These channels are homote-
tramers and are assembled in a macromolecular complex that
includes RyR2 regulatory molecules, such as calmodulin
(CaM), FK-506 binding proteins (FKBP12/12.6), and protein
phosphatases and kinases, including CaMKII (64, 135, 144).
Thus Ca21 can regulate the channels by both, direct binding to
them and via CaM and CaMKII. During the AP, Ca21 influx
through voltage-dependent L-type Ca21 channels (LTCC)
causes a rapid and large increase in subsarcolemmal [Ca21],
which results in the synchronized opening of RyR2 clusters
and massive Ca21 release to the dyadic space, from which
Ca21 diffuses to the bulk cytosol and reaches the myofilaments
(Fig. 1). It is accepted that SR Ca21 release during ECC is
terminated by closure of the RyR2, attributed to regulation of
the channels by intra-SR local free [Ca21] and proteins directly
or indirectly associated with RyR2, such as calsequestrin,
triadin, and junctin (47, 59, 158). Because the release is not
sustained, the cytosolic Ca21 transient is self-limiting, since
the rise in [Ca21]i not only activates contraction but also
increases the transport rate of mechanisms that remove Ca21

from the cytosol, thus causing [Ca21]i to fall and mechanical
relaxation to occur. Among these transporters, the most prom-
inent is the SR Ca21-ATPase (SERCA2a), located in the
extra-dyadic SR, which allows refilling the SR Ca21 store (8,
89). SERCA2a is negatively regulated by phospholamban
(PLN; Fig. 1). However, this inhibition may be relieved by

PLN phosphorylation, which decreases the PLN-SERCA in-
teraction (29, 61). Moreover, the effects of PLN on cardiac
function are subjected to additional regulation by its interacting
partners (61). The most important Ca21 efflux mechanism is
the Na1-Ca21 exchanger (NCX), which, at steady-state cyclic
activity, removes most of the Ca21 that enters the cell during
the AP (27, 33), whereas slower mechanisms (the sarcolemmal
Ca21-ATPase and mitochondrial Ca21 influx pathways) do not
seem to play a significant role in the decline of electrically
triggered Ca21 transients in the mature myocardium (7, 19).

Because the SR is the major Ca21 source for ECC, it is
plausible to consider that contraction amplitude largely de-
pends on how much Ca21 is released from it. During a twitch,
this organelle releases only a fraction (50–70%) of its total
content (6, 10, 117, 118). Several factors seem to determine the
fractional SR Ca21 release: 1) the amplitude of the release
trigger, i.e., typically L-type Ca21 current (ICaL) (6); 2) the SR
Ca21 content, especially the free [Ca21] in the SR lumen (6,
117), since evidence indicates that the RyR2 activity is regu-
lated not only by cytosolic but also by intra-SR Ca21 (26, 47,
60, 65); and 3) the RyR2 functional state, which can be altered
by interaction with proteins (e.g., FKBP12.6, CaM, luminal
proteins), divalent cations, ATP and other compounds, by
phosphorylation, and by post-translational modifications by
reactive oxygen species (ROS) and reactive nitrogen species
(30, 47, 64, 91, 144).

The SR Ca21 content available for release during ECC
basically depends on the balance between uptake and release
rates during the decline of the Ca21 transient and diastole. The
rate of diastolic SR Ca21 release (SR Ca21 leak) is low in
myocardial cells (9, 14, 74, 157). Diastolic SR Ca21 leak may
be augmented by an increase in SR Ca21 load and by other
factors that increase the RyR2 activity state, e.g., phosphory-
lation (14).

SR Ca21 release is not only involved in determining cardiac
contractility, but it also can modify the sarcolemmal electrical

Fig. 1. Ca21 fluxes associated with excitation-contrac-
tion coupling in mammalian cardiac myocytes. During
the action potential, Ca21 influx via L-type Ca21 chan-
nels (LTCC) triggers Ca21 release from the sarcoplas-
mic reticulum (SR) by Ca21 binding to the ryanodine
receptors (RyR2) in the SR membrane. In addition to
interacting with the myofilaments (MF), Ca21 is re-
moved from the cytosol mainly by the SR Ca21-ATPase
(SERCA2a), which is regulated by phospholamban
(PLN), and by the electrogenic sarcolemmal Na1/Ca21

exchanger (NCX1), which is driven by the Na1 elec-
trochemical gradient across the membrane. This gradi-
ent is maintained by the Na1-K1-ATPase (NKA). In-
tracellular [Na1] may also be affected by the operation
of the Na1-H1 exchanger (NHE).
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properties, affecting the AP shape. One obvious mechanism
involves Ca21-dependent inactivation of the LTCC (37, 124):
a large Ca21 release will reduce sarcolemmal Ca21 influx,
shortening the AP. However, mechanisms involved in activa-
tion of Cl2 (66) and/or K1 (68, 131) channels by Ca21 have
also been postulated to modify the AP repolarization phase.
Schouten and ter Keurs (115) first showed that the late and
relatively negative AP plateau seen in rat ventricular myocytes
is driven by Ca21-dependent inward NCX current. Shattock
and Bers (119) detected NCX-dependent Ca21 extrusion by
measuring transient interstitial [Ca21]o elevation during the
[Ca21]i transient. More recently, Ferreiro et al. (39) demon-
strated that in the intact mouse heart under physiological
conditions, Ca21 release from the SR can cause an AP phase 2
that is more positive than that traditionally reported in rat or
mouse ventricular myocytes, but that is still mediated by
inward NCX current that is driven by SR Ca21 release. More-
over, this more prominent AP plateau in mouse ventricle
resembles that observed in both human atrial myocytes and the
ventricular epicardium of other mammals (i.e., dog, cat, pig,
etc.).

CaMKII Structure, Function, and Targets

Molecular physiology and localization. CaMKII is a multi-
meric holoenzyme complex consisting of a pair of hexameric
assembled rings (Fig. 2A). There are four CaMKII gene prod-
ucts: a, b, g, d (52). These genes show differential tissue
expression, with CaMKIId being the predominant isoform in
the heart (32), although CaMKIIg is also present (120). In the
adult myocardium, two major splice variants of CaMKIId are
expressed: CaMKIIdB and CaMKIIdC (32). CaMKIIdB pos-
sesses an 11-amino acid nuclear localization signal that is
responsible for its preferential nuclear localization, whereas the
splice variant dC (lacking only this 11-amino acid nuclear
localization signal) is preferentially localized in the cytosol
(122). It is also well known that most CaMKII isoforms readily
form stable hetero-oligomers, such that the ratio of dB to dC in
a multimer could regulate the localization of the holoenzyme
(100, 122). However, even when only one splice variant
(CaMKIIdB or CaMKIIdC) is expressed, CaMKIIdB is not
exclusively nuclear and CaMKIIdC is not exclusively cytoso-
lic. Interestingly, the relative expression of CaMKIIdB can be
altered in vitro by phosphorylation/dephosphorylation pro-
cesses and has been shown to be modified under different
physiological and pathological conditions, suggesting that
CaMKIId splicing is a highly regulated dynamic process (44).
Indeed, recent experimental evidence suggests that CaMKIId
splice variants are selectively susceptible to autophosphoryla-
tion/oxidation, providing CaMKII with a mechanism for target
signaling specificity (12).

Mechanisms of CaMKII activation and regulation. As
shown in Fig. 2A, each CaMKII monomer that composes the
holoenzyme consists of three domains: an NH2-terminus cat-
alytic domain, a COOH-terminus association domain, and a
core regulatory domain. Under basal conditions, the catalytic
domain is restrained by the pseudo substrate region within the
regulatory domain, which hampers the CaMKII catalytic ac-
tivity. The regulatory domain binds CaM with a KD of 10–70
nM (41), when intracellular Ca21 concentration is elevated
(102). CaM binding to CaMKII generates a conformational

shift that releases the association between the catalytic and
regulatory domains, exposing the catalytic domain for sub-
strate binding and phosphorylation. If a sustained increase in
Ca21/CaM interaction occurs, the already active CaMKII
monomers catalyze the autophosphorylation of the kinase at
Thr286 (or Thr287, depending on isoform). CaMKII phosphor-
ylation increases the binding affinity of the enzyme for Ca21/
CaM (79), preventing the re-association of the catalytic and
regulatory domains (63) and retaining residual Ca21/CaM-
independent or autonomous activity (52). CaMKIId can be also
oxidized at MetMet281/282 (CysMet280/281 in CaMKIIa), which
induces a similar Ca21/CaM-independent form of CaMKII
(35). Interestingly, oxidation of CaMKII resets its Ca21 sen-
sitivity in such a way that activation of the kinase may occur at
very low levels of intracellular Ca21 (93). Indeed, activation of
the renin-angiotensin-aldosterone signaling pathway, which
promotes enhanced oxidative stress in the heart (87), induces
CaMKII-dependent apoptosis of cardiac myocytes in the ab-
sence of significant increases in cytosolic Ca21 in vitro (93)
and in vivo (136). Moreover, apoptosis induced by the hor-
mone is prevented in isolated neonatal mouse myocytes ex-
pressing the oxidation-resistant mutant CaMKII (35). Simi-
larly, in the prediabetic stage induced in a model of impaired
glucose tolerance, it has been described that the increase in
oxidative stress contributed to CaMKII activation, SR Ca21

leak, and the generation of arrhythmias and apoptosis (94,
121). These findings suggest that conditions of high ROS
production may lead to increased CaMKII activity, even in the
absence of changes in the basal levels of Ca21/CaM. Interest-
ingly, recent experiments have described that ROS production
may also occur downstream CaMKII activation (92, 116).
These experiments suggest that under conditions of high oxi-
dative stress, a vicious cycle of CaMKII activation and ROS
production may occur. Further experimental evidence is re-
quired to confirm this possibility.

Two additional posttranslational modifications of CaMKII
have been recently reported. Erickson et al. (36) described,
using overt diabetes cellular and animal models, a novel
mechanism for CaMKII activation during hyperglycemia, dif-
ferent from that produced by the oxidation of CaMKII, typical
of diabetic patients (71). This mechanism occurs through the
addition of an O-linked N-acetylglucosamine (O-GlcNAc) at
the Ser280 site, which similarly to oxidation and phosphoryla-
tion, creates molecular memory after the decline in Ca21

concentration. It has also been shown that nitric oxide produc-
tion by b-adrenergic stimulation is sufficient, by itself, to
activate CaMKII and increase SR Ca21 leak, leading to ar-
rhythmogenic spontaneous Ca21 waves (22, 46, 56). Zhang et
al. (153) further showed that nitric oxide-PKG signaling aug-
mented CaMKII activity in rabbit ventricular myocytes. More-
over, in vitro studies showed that CaMKII contains S-nitrosy-
lated cysteine residues, and computational prediction of S-
nitrosylation sites on CaMKII indicates different potential
target sites, including the Cys290 site in the CaMKIId regula-
tory domain (46). Coultrap and Bayer (21) recently demon-
strated that nitrosylation of CaMKIIa at the analogous Cys289

and also Cys280 (Met281 in CaMKIId) sites was critical to
autonomous CaMKII activation by nitric oxide donors. The
cluster of the different regulatory sites at the regulatory/auto-
inhibitory CaMKII-domain suggests that these sites are part of
a hotspot region for post-translational regulation of the kinase.
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CaMKII targets in the heart. CaMKII regulates different ion
channels and transport proteins involved in cardiac ECC (Fig.
2B). CaMKII-dependent phosphorylation of LTCC potentiates
ICaL and slows its inactivation (152). Experimental evidence
indicates that, in the long term, both dB and dC CaMKII
isoforms decrease the expression of LTCC pore-forming a1c-
subunit (101). CaMKII-dependent phosphorylation of PLN
increases SR Ca21 uptake, whereas phosphorylation of RyR2

increases diastolic SR Ca21 leak and systolic SR Ca21 release
(25, 40, 43, 45, 108, 134, 145). CaMKII also catalyzes phos-
phorylation of the Na1-H1 exchanger (NHE-1) (139), and of
the voltage-gated ion channels responsible for Na1 current
(INa), transient outward K1 current (Ito), and inward rectifier
K1 current (IK1) (67, 142, 143). Persistent (late) inward Na1

current (INaL) is enhanced (gain-of-function effect). In contrast,
Na1 channel availability is reduced, intermediate inactivation

Fig. 2. A: schematic representation of CaMKII structure
and regulation. See text for description. Note the prox-
imity of sites involved in the sustained regulation of
CaMKII. The question mark in Cys290 indicates a com-
putationally predicted site of CaMKII nitrosylation
[modified from Erickson et al. (35)]. B: effects of
CaMKIIdC on excitation-contraction coupling (ECC).
See text for description. INa, Na1 current; Ito, transient
outward K1 current; IK1, inward rectifier K1 current.
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is enhanced, and recovery from inactivation of rapid INa is
slowed by CaMKII-dependent phosphorylation (loss-of-func-
tion effects) (142). The effects of CaMKII on Ito and IK1 are
complex (67, 143). Acute and chronic CaMKII overexpression
increases Ito,slow amplitude and expression of the underlying
channel protein KV1.4. On the other hand, chronic but not acute
CaMKII overexpression causes downregulation of Ito,fast, as
well as of KV4.2 and KChIP2. Interestingly, these amplitude
changes were not reversed by acute CaMKII inhibition, con-
sistent with CaMKII-dependent regulation of channel expres-
sion and/or trafficking (143).

It has also been shown that the overexpression of CaMKIIdB

led to an increase in NCX abundance and disruption of the
NCX/SERCA2 expression balance via class IIa histone
deacetylase (HDACs)/myocyte enhancer factor-2 (MEF2)-de-
pendent signaling (70). Moreover, available data indicates that
NCX upregulation induced by b-adrenoceptor stimulation is
dependent on CaMKII activation in the adult heart (72).

Further work demonstrated that CaMKII interacts with the
mitochondrial Ca21 uniporter (MCU) and promotes Ca21 entry
into the mitochondria, probably by catalyzing phosphorylation
of serine residues 57 and 92 (57). Finally, two cardiac myo-
filament proteins are known to be phosphorylated by CaMKII.
Cardiac myosin binding protein C can be phosphorylated at
Ser282 and Ser302 [which are also protein kinase A (PKA)

targets], although the functional effects of this phosphorylation
remain to be resolved (82, 105). The spring region of the giant
sarcomeric protein titin, a main determinant of diastolic stiff-
ness, is also a target of CaMKIId. Interestingly, it has been
shown that phosphorylation of this protein (possibly at the N2B
element) increased during ischemia/reperfusion (49). As we
further discuss next, it is now known that alterations in the
phosphorylation of most of these proteins and transporters are
crucially involved in the genesis of myocardial injury and
arrhythmias.

Ca21 and CaMKII in I/R

Ca21 dysregulation in I/R. Ischemic heart disease, a leading
cause of mortality worldwide, is invariably characterized by
impaired cardiac function and disturbed Ca21 homeostasis.
Earlier experiments revealed an increase in diastolic [Ca21]i

during ischemia (73, 80, 103, 132). This increase has been
related to a diversity of concurrently altered Na1-dependent
(55, 85, 99, 128, 129) and independent mechanisms (88, 123,
125). The core of these changes essentially lies on the oxygen
deprivation produced by blood flow reduction and the conse-
quent shift from aerobic to anaerobic metabolism (86). Fluo-
rescent detection of cytosolic and SR Ca21 transients at the
epicardial layer of the intact beating heart (78) demonstrated

Fig. 3. A: increase in diastolic [Ca21]i at the onset of
reperfusion. At the onset of reperfusion, there is an
abrupt increase in diastolic [Ca21]i (Ca21 bump) asso-
ciated with a mirror-like image of the decrease in SR
Ca21 content. Mean values are from individual signals
recorded at the epicardial layer of intact hearts loaded
with Rhod-2 and Mag-Fluo-4, respectively [modified
from Valverde et al. (132)]. B: typical records showing
the decrease in SR Ca21 content associated with a
diminished Ca21 transient amplitude, after the Ca21

bump. AU, arbitrary units.

Review

H1181CALCIUM AND CaMKII IN THE HEART

AJP-Heart Circ Physiol • doi:10.1152/ajpheart.00007.2015 • www.ajpheart.org
Downloaded from journals.physiology.org/journal/ajpheart (163.010.250.070) on September 29, 2020.



that the increase in cytosolic [Ca21]i during ischemia is asso-
ciated with an enhancement of SR Ca21 load (132). The
increased SR Ca21 content was released at the onset of reper-
fusion, producing an abrupt rise in cytosolic [Ca21]i (Ca21

bump) (Fig. 3A), and the subsequent decrease in SR Ca21

content was associated with a diminished Ca21 transient am-
plitude (132) (Fig. 3B). More recent experiments further
showed that a major mechanism for the increase in diastolic
[Ca21]i during ischemia is an increase in the frequency of Ca21

sparks. Notably, the increase in Ca21 sparks during ischemia
switched to an increase in arrhythmogenic Ca21 waves during
reperfusion (74) (Fig. 4).

Activation of CaMKII in I/R. Previous studies showed the
time course of phosphorylation of Thr17 of PLN, used as a
marker of CaMKII activation, during I/R. This initial work
showed a significant increase in Thr17 phosphorylation at the
beginning of ischemia and at the onset of reflow (141). Exper-
imental evidence reveals that Ca21 influx through LTCC and
phosphatase inhibition, due to the ischemia-induced intracel-

lular acidosis, play a central role in the activation of CaMKII
at the beginning of ischemia (83, 84).

The increase in Thr17 phosphorylation at the onset of reper-
fusion may be produced by the transient increase in cytosolic
[Ca21] that occurs at this time (86). This [Ca21]i increase has
been usually attributed to the influx of Ca21 through the
reverse mode of the NCX (54, 86, 95). However, the abrupt
Ca21 release from the SR recently described at the onset of
reperfusion (132) may also be greatly involved in the increase
in CaMKII activation and PLN Thr17 phosphorylation at this
moment.

Reperfusion is also associated with ROS generation (15). As
described earlier in this review, both Ca21 mishandling and
ROS production set an ideal intracellular milieu for activation
of CaMKII. Further studies have shown that other CaMKII
substrates are also phosphorylated at the beginning of reperfu-
sion, e.g., the Ser2814 site of RyR2, which have been shown to
play a significant role in reperfusion injury (28, 108), as it will
be discussed next.

Fig. 4. A–C: Ca21 sparks increase during ischemia and
turn into Ca21 waves during reperfusion. Typical ex-
amples and overall results are shown [modified from
Mattiazzi et al. (74)].
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Dual role of CaMKII in I/R. In the last few years, a dual
effect of CaMKII-dependent protein phosphorylation (benefi-
cial and detrimental) has been described in the scenario of I/R
in the intact heart. The beneficial effect of CaMKII refers to the
recovery of intracellular Ca21 and contractile function that
occurs during stunning (109, 133), a fully reversible postisch-
emic dysfunction (20). It has been shown that phosphorylation
of PLN-Thr17 is essential for the recovery of Ca21 transients
and contractility in the stunned heart (109, 133), offering a
mechanism that helps to limit cytosolic Ca21 overload, by
accelerating SR Ca21 reuptake and ameliorating intracellular
Ca21 handling.

The detrimental effect of CaMKII refers to the role of
CaMKII in reperfusion arrhythmias, which occur even after a
short ischemic period (11, 108), and to the necrosis and
apoptosis typical of the irreversible I/R injury (28, 110, 140).
Targeted inhibition of CaMKII at the level of cardiac SR-
membranes in mice (SR-AIP) clearly indicated that most of
reperfusion arrhythmias are triggered by CaMKII-dependent
mechanisms (108). Moreover, prevention of CaMKII-depen-
dent phosphorylation of RyR2 was able to significantly reduce
reperfusion arrhythmias (108), but failed to completely prevent
them. These findings indicate that other CaMKII targets may
be involved in reperfusion arrhythmias. A possible candidate is
Thr17 of PLN, which is phosphorylated at the beginning of
reperfusion in association with the increase in CaMKII phos-
phorylation of Ser2814 of RyR2 (108). Phosphorylation of Thr17

and the consequent increase in SR Ca21 reuptake could pro-
duce two opposite effects, which are actually inherent to the
characteristics of SR Ca21 uptake itself. On one hand, increas-
ing SERCA2a activity would increase the rate of resequestra-
tion of the Ca21 released through RyR2. This would reduce
cytosolic Ca21 levels, increasing the availability of free cyto-
solic buffer sites able to bind Ca21 (increase in dynamic
cytosolic buffer capacity). This may limit Ca21 wave propa-
gation and reperfusion arrhythmias (4, 53). On the other hand,
increasing Ca21 sequestration would necessarily increase SR
Ca21 content, favoring diastolic Ca21 leak. This situation
would be exacerbated if the increase in SR Ca21 uptake
coexists with an increase in the open probability of RyR2, as
that produced by CaMKII-dependent phosphorylation (134),
and may contribute to favor a futile circle of increased SR
Ca21 uptake and leak with an additional metabolic cost. Thus
the beneficial effects of the increase in SR Ca21 uptake in I/R
may turn to be deleterious under conditions in which the
balance between SR Ca21 uptake and leak is lost. Finally,
although in the experiments in SR-AIP mice with inhibition of
CaMKII targeted to the SR, reperfusion arrhythmias virtually
disappeared, phosphorylation of LTCC by CaMKII was also
inhibited in these mice (98). Thus the contribution of CaMKII-
dependent LTCC phosphorylation to reperfusion arrhythmias
cannot be excluded.

After a prolonged ischemic period, reperfusion evokes irre-
versible cardiac injury. Under these conditions, myocytes die
by apoptosis, autophagy, and necrosis. Experimental evidence
indicates that CaMKII inhibition is protective in the irrevers-
ible I/R injury (28, 110, 140, 154). Although the mechanisms
of this protection are still unclear, it has been established that
CaMKII is clearly involved in the intrinsic (mitochondrial) cell
death pathway (110). This signaling pathway involves CaM-
KII-dependent phosphorylation of SR protein(s), mitochon-

drial Ca21 overload, cytochrome c release, and caspase-3
activation (28, 110, 140). Notably, this cascade of events
mediates not only the programmed cell death known as apo-
ptosis but also a CaMKII-dependent programmed necrosis
(110). These deleterious effects appear to be associated with
both RyR2 phosphorylation and caspase-mediated degradation
of this protein, which in turn would favor an increase in SR
Ca21 leak. Supporting and extending the signaling cascade
described, Joiner et al. (57) showed that CaMKII-dependent
phosphorylation of MCU increases Ca21 entry through it and
favors cell death.

Phosphorylation of Thr17, the CaMKII site of PLN, was also
transiently enhanced at the onset of reperfusion (110, 140).
However, the functional consequences of PLN phosphoryla-
tion and of the increase in SR Ca21 uptake after prolonged
ischemia are controversial and remain uncertain (90, 126, 127,
151). As discussed for reperfusion arrhythmias, the inconsis-
tent results may reflect the opposite effects of accelerating SR
Ca21 reuptake, which diminishes the diastolic [Ca21]i eleva-
tion produced by increased SR Ca21 leak, but simultaneously
increases SR Ca21 load, favoring SR Ca21 leak.

Recent experiments by Di Carlo et al. (28) addressed this
puzzle by using mice expressing nonphosphorylatable PLN
(i.e., Ser16 and Thr17 mutated to Ala), submitted to I/R. In these
mice, cardiac damage was significantly enhanced, suggesting
that increasing Thr17 phosphorylation to the level observed at
the onset of reperfusion (when phosphorylation of Ser16 did not
occur) has protective effects. However, when CaMKII-depen-
dent RyR2 phosphorylation was selectively precluded, preven-
tion of PLN phosphorylation failed to increase cardiac injury.
Thus the results from Di Carlo et al. (28) strongly suggest that
CaMKII-dependent inhibition of RyR2 phosphorylation is nec-
essary and sufficient to prevent CaMKII-dependent cardiac
damage that originates at the SR level in I/R. Taken together,
these findings indicate that the progression toward a beneficial
or detrimental effect of CaMKII activation and PLN phosphor-
ylation in I/R would critically depend on the balance between
the extent of SR Ca21 reuptake and the SR Ca21 leak, largely
given by the status/characteristics of other proteins also in-
volved in SR Ca21 handling, such as RyR2.

CaMKII, Ryanodine Receptors, and Arrhythmias

CaMKII has been shown to contribute to arrhythmogenesis
in cardiac pathologies of different etiology. Although CaMKII-
dependent arrhythmogenesis was originally attributed to its
impact on sarcolemmal LTCC and the development of early
afterdepolarizations, which may indeed occur (1), intense on-
going investigation has provided evidence of multiple addi-
tional targets through which CaMKII may exert its arrhythmo-
genic action. Among these, RyR2 seem to be one of particular
functional importance. A CaMKII-dependent increase in RyR2
open probability has been shown to increase SR Ca21 leak,
which would enhance Ca21 extrusion via the electrogenic
NCX. This electrogenic transport generates a depolarizing
current (Iti or transient inward current) (34, 114), which, when
sufficiently large, leads to delayed afterdepolarizations
(DADs), that may reach the threshold and trigger spontaneous
AP, resulting in extra-systoles and ventricular arrhythmias
(146) (Fig. 5). Indeed, extensive experimental evidence dem-
onstrates that CaMKII-induced SR Ca21 leak is associated
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with cardiac arrhythmias. Elegant studies from Wehrens= lab-
oratory showed that genetic inhibition of CaMKII-dependent
RyR2 phosphorylation could prevent atrial fibrillation and
lethal ventricular arrhythmias (25, 76). In addition, several
studies have suggested that CaMKII-dependent SR Ca21 leak
also mediates reperfusion arrhythmias, as already discussed in
the context of I/R (13, 108), heart failure-induced arrhythmias
(106), digitalis-induced arrhythmias (43, 50), and even arrhyth-
mias of genetic origin, such as catecholaminergic polymorphic
tachycardia (69) and those associated with Duchenne muscular
dystrophy (2).

Mechanisms underlying CaMKII-dependent regulation of
SR Ca21 leak. The magnitude of SR Ca21 leak depends on two
main factors: 1) SR Ca21 load and 2) RyR2 open probability.
CaMKII can modulate SR Ca21 load through the phosphory-
lation of PLN at site Thr17, which relieves the inhibition of
PLN on SERCA2a and increases SR Ca21 uptake (58). CaM-
KII can also phosphorylate the RyR2 and activate the channel.
Indeed, CaMKII was originally shown to phosphorylate the
Ca21 release channel at the site Ser2809 (148), and more recent
studies revealed another phosphorylation site at Ser2814 (40,
145). Although the impact of CaMKII phosphorylation on
RyR2 function is still a matter of debate, the general consensus
indicates that CaMKII increases RyR2 open probability.
Whether an independent increase in SR Ca21 load or in RyR2
open probability is able to produce sufficient SR Ca21 leak to
induce arrhythmogenic diastolic Ca21 release, is controversial.
Ca21 overload of the SR has been reported to trigger sponta-
neous Ca21 release, at least in part, via the activation of the
RyR2 luminal Ca21 sensor (26). However, several lines of
evidence suggest that increased SR Ca21 load by itself, is not
sufficient to promote arrhythmogenic SR Ca21 release. For
example, PLN knock-out mice, which have a fully loaded SR,
have not proven to be prone to arrhythmias under basal
conditions (111, 155). In addition, Venetucci et al. (138)
showed that increasing RyR2 open probability alone does not
produce arrhythmogenic diastolic Ca21 release because of the
intrinsically accompanying decrease of SR Ca21 content. Thus,
although CaMKII-dependent RyR2 phosphorylation may sen-

sitize the RyR2, at basal conditions this can be roughly offset
by the lower SR Ca21 content. However, when SR Ca21

content is driven up (e.g., by heart rate, sympathetic activation,
or post-ischemic Ca21 overload), the propensity for triggering
SR Ca21 sparks and waves leading to DADs and arrhythmias
can be dramatically increased.

In addition to phosphorylation, RyR2 function may be en-
hanced by oxidation at the level of specific methionine residues
(16, 130). RyR2 contains multiple thiols (150) that can be
affected by redox modification. RyR2 thiol oxidation increases
the sensitivity of the channel to luminal Ca21, thus lowering
the critical SR Ca21 content at which spontaneous Ca21

release occurs (130). As mentioned above, CaMKII can also be
activated by oxidation. In addition, recent data suggests that
CaMKII can enhance ROS production (116). Thus CaMKII
may promote arrhythmogenic RyR2 Ca21 leak not only by
enhancing RyR2 phosphorylation but also by promoting its
oxidation. Consistent with this, Ho et al. (51) showed that
arrhythmogenic adverse effects of cardiac glycosides involve
alterations in RyR2 function caused by oxidative changes in
the channel structure. More recently, Gonano and Vila Petroff
(42) demonstrated that cardiac glycoside-induced arrhythmias
require CaMKII activation, suggesting that CaMKII-dependent
RyR2 oxidation could also participate in the development of
the arrhythmogenic substrate. Although the relevance of CaMKII-
dependent oxidation of RyR2 remains to be further explored,
experiments in knock-in mice in which the site Ser2814 of the
RyR2 could not be phosphorylated (S2814A mice) provided
unequivocal evidence of the importance of phosphorylation of
this site in cardiac glycoside-induced arrhythmias (50). Myo-
cytes isolated from S2814A mice did not show enhanced SR
Ca21 leak when exposed to digitoxin, compared with myocytes
from wild-type mice. These experiments demonstrate that
phosphorylation, rather than oxidation of RyR2, is required for
the increase in channel spontaneous activity and arrhythmo-
genesis in the context of digitalis toxicity.

CaMKII has also been shown to be involved in cardiac
arrhythmias associated with acidosis. This is important in the
clinical setting since substantial changes in pH may occur in

Fig. 5. Scheme of the possible mechanisms of CaMKII-
dependent arrhythmias. Increases in [Ca21]i and/or re-
active oxygen species (ROS) can activate CaMKII,
which in turn result in further increase in ROS, leading
to the phosphorylation and oxidation of the RyR2 and
phosphorylation of phospholamban, which, in concert,
would enhance SR Ca21 load and favor SR Ca21 leak,
resulting in an NCX-dependent depolarizing current
(transient inward current, or Iti), which generates ar-
rhythmogenic delayed afterdepolarization (DADs).
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disorders of different origin, such as sleep apnea/hypopnea
syndrome, diabetic ketoacidosis, or during episodes of myo-
cardial ischemia. Said et al. (107) showed that ectopic activity
produced upon returning to normal pH after acidosis could be
prevented by pharmacologic inhibition of CaMKII and did not
occur in a transgenic mouse model with the inhibition of
CaMKII targeted to the SR. The authors concluded that CaMKII
activation during acidosis favors an increase in SR Ca21 load
by phosphorylation of PLN Thr17, which, on the one hand, is
responsible for the mechanical recovery observed with sus-
tained acidosis, but may also increase spontaneous SR Ca21

leak and produce arrhythmias during the return to normal pH.
This effect was attributed to the increase in the opening
probability of RyR2 due to the pH increase after acidosis and
the acidosis-induced increase in SR Ca21 content, still present
at the beginning of post-acidosis period. The return to normal
pH also leads to recovery of the acidosis-induced inhibition of
NCX (97), favoring Ca21 extrusion and Na1 gain into the cell,
membrane depolarization, and eventually triggered arrhyth-
mias. Together, these results indicate that post-acidosis CaMKII-
dependent DADs are triggered by two concurrent factors: 1)
acidosis-induced increase in SR Ca21 content and 2) relief of
acidosis-induced inhibition of RyR2 and NCX.

The evidence provided herein demonstrates the critical role
played by CaMKII and RyR2 in arrhythmogenesis and sug-
gests the potential therapeutic benefit of CaMKII inhibition for
the treatment of arrhythmias. However, the ubiquitous nature
of CaMKII and its effects on different protein targets challenge
the use of CaMKII inhibitors as a therapeutic tool. Moreover,
pharmacological CaMKII inhibition would probably require
compounds selective toward cardiac-specific CaMKII iso-
forms, which are not currently available. In addition, a target-
specific therapy would be desirable, taking into account the
existence of multiple targets for CaMKII activity. For example,
the phosphorylation of the PLN site Thr17 plays a key role in
the b-adrenergic inotropic response and mediates the recovery
of contractility after cardiac acidosis (107).

The demonstration of RyR2 as a crucial player in the
development of CaMKII-induced arrhythmias allows us to
postulate an alternative therapeutic approach, which involves
the concept of RyR2 stabilization. The term “stabilization”
refers to the possibility to reduce RyR2 spontaneous diastolic
opening without affecting systolic release. Thus compounds
that are able to stabilize the RyR2 could be used to prevent
arrhythmias without the undesirable effects of global CaMKII
inhibition. Indeed, using the multi-channel blocker JTV-519
(K201), which has been shown to stabilize the RyR2, Sacherer
et al. (104) showed, in mouse myocytes and in nonfailing
human myocardium treated with the cardiac glycoside ouabain,
that JTV-519 was able to reduce the ouabain-induced SR Ca21

leak. Similarly, additional reports showed that alternative
RyR2 stabilizers such as VKII86 or tetracaine could reduce
DAD-triggered arrhythmias (137, 156). Further work is war-
ranted to find the ideal RyR2 stabilizer, which should reduce
spontaneous RyR2 openings during diastole without inhibition
of the normal Ca21-induced Ca21 release that triggers contrac-
tion. This is the case for dantrolene (75), although dantrolene
is now only used for acute treatment of malignant hyperther-
mia. Nevertheless, novel RyR2 stabilizers could be a promising
approach for the treatment of arrhythmias of different etiology.

CaMKII in cardiac transcriptional regulation. The forego-
ing discussion has focused on acute modulatory effects of
CaMKII on ion channels, transporters, and myofilaments, but
activation of CaMKII can also have major effects on gene
transcription. This should be considered as a slower response
to certain stress-related signals in which the acute regulatory
CaMKII-dependent effects may not be sufficient. This type of
transcriptional regulation can be beneficial but can also con-
tribute to maladaptive signals in hypertrophy and HF. Indeed,
when myocyte CaMKII is chronically activated, as in all of the
above autonomous states (autophosphorylation, oxidation, O-
GlcNAcylation, nitrosylation), it appears to be largely mal-
adaptive by worsening arrhythmogenic diastolic SR Ca21 leak
and altering expression and gating of ion channels in ways that
contribute to arrhythmogenesis. Moreover, this situation seems
to occur in HF or upon CaMKII overexpression (either genet-
ically induced or as an intrinsic part of the hypertrophy/HF
phenotype). Thus both acute and transcriptional actions of
CaMKII can contribute to acute dysfunctions of the type
discussed above.

Ca21-dependent signaling can lead to transcriptional regu-
lation, and we call this process excitation-transcription-cou-
pling (ETC), by analogy to ECC. One ETC pathway that is
known to directly involve CaMKII is the CaMKII-dependent
phosphorylation of class II histone deacetylases, HDACs, of
which HDAC4 and HDAC5 have been the best studied (3, 77,
96, 149). As illustrated in Fig. 6, at baseline when these
HDACs are dephosphorylated, they bind to and repress hyper-
trophic transcription factors, such as myocyte enhancer factor
2 (MEF2). Although these particular HDACs have weak his-
tone deacetylase activity, their presence at MEF2 also prevents
histone acetyl transferase localization, resulting in more con-
densed de-acetylated chromatin structure in this situation.
When these HDACs are phosphorylated by CaMKII or protein
kinase D (PKD), translocation out of the nucleus via binding to
14-3-3 chaperone proteins is induced. This translocation re-
lieves MEF2 repression, allows histone acetyl transferase bind-
ing, and favors transcriptional activation (Fig. 6). We focus
here on the upstream side of these ETC pathways.

Calcineurin (CaN) is an additional Ca21-dependent ETC
pathway that works in parallel with the CaMKII-HDAC path-
way (Fig. 6) (62, 81, 147). When the phosphatase CaN is
activated by Ca-CaM, it dephosphorylates nuclear factor of
activated T cells (NFAT), and dephosphorylated NFAT is
translocated to the nucleus where it interacts with transcription
factors (e.g., GATA4) and activates the transcription of genes
involved in hypertrophic signaling and HF. So, two questions
that come up are where CaN and CaMKII are localized with
respect to ETC and whether the same types of Ca-CaM signals
are likely to drive these two Ca-CaM-dependent ETC path-
ways.

Regarding subcellular localization, at baseline in adult ven-
tricular myocytes, both CaN and CaMKII seem to be prefer-
entially concentrated at the Z-line, at or near the SR T-tubule
junctions involved in ECC (but also exist elsewhere). This
localization has four important implications. First, if one mea-
sures global CaN or CaMKII activation state, it may be biased
by the quantitatively large amount of CaN and CaMKII at these
sites. Second, the local [Ca21]i in this junctional cleft domain
is very different from the global or nuclear [Ca21]i, because of
the close proximity to both L-type Ca21 channels and RyR2
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channels (i.e., peak and even diastolic [Ca21]i here can be
much higher than anywhere else in the myocyte). Third, there
may be significant translocation of CaN or CaMKII or their
downstream targets (e.g., NFAT or HDAC), that could allow
Ca21-dependent signaling in this ECC domain to have longer
distance effects on ETC. Fourth, CaN and CaMKII in different
subcellular domains (cleft, perinuclear, intranuclear) may have
more selective and locally dictated signaling to the ETC
machinery. This will be discussed further below.

CaN and CaMKII have very different Ca-CaM affinities,
which may be very important functionally. CaMKII has a
relatively low Ca-CaM affinity (Kd 5 10–50 nM), whereas
CaN has a very high Ca-CaM affinity (Kd ,,1 nM) (112, 113).
CaMKII activation requires relatively high local [Ca21]i and
will tend to de-activate more rapidly when [Ca21]i declines.
Thus CaMKII activation works especially well in environ-
ments where large local Ca21 transients occur, such as near the
mouths of Ca21 channels. One place that this occurs is in the
ECC cleft near L-type Ca21 channels and RyR2, and this
environment is expected to be more sensitive to CaMKII
activation (31). A second location is at the nuclear envelope,
where the 1,4,5-inositol-trisphosphate (InsP3) receptor
(InsP3R) type 2 (the main isoform in adult ventricular myo-
cytes) is concentrated. Both CaM and CaMKII appear to
directly associate with the InsP3R (5). Thus Ca21 released by
the nuclear envelope InsP3R can cause a high local [Ca21]i that
is sufficient to activate CaMKII. That activated nuclear CaM-
KII can then phosphorylate the InsP3R and inhibit channel

gating, constituting a local negative feedback loop that may

limit the duration of local InsP3R Ca21 release. However, this

local CaMKII activation may also be critical for CaMKII-

dependent nuclear signaling to HDACs in ETC (149). Note

also that CaMKII activation has memory in the form of

autonomous activation; that is, if local [Ca21]i is sufficiently

high for a long enough time, there is much greater likelihood

for a neighboring CaMKII monomer in the dodecameric struc-

ture to become autophosphorylated, oxidized, O-GlcNAcy-

lated, or nitrosylated, all of which would prolong the active

autonomous state. The other side of this issue is that bulk

cytosolic CaMKII (e.g., near PLN or myofilament sites) may

not be substantially activated during beat to beat global Ca21

transients (112). So it is less clear how CaMKII that is not near

Ca21 channels is normally activated.

CaN activation is very different from that of CaMKII,

because of its very high Ca-CaM affinity and slow off-rate

(112). CaN that is very near Ca21 channels that open at each

beat (e.g., SR-T-tubule clefts) could be nearly fully activated at

each beat, and the slow deactivation could result in nearly fully

activated local CaN at all relevant heart rates. In contrast,

cytosolic CaN that is far away from Ca21 channels could still

be activated in a way that is intrinsically integrating because of

the slow off-rate of Ca-CaM; that is, each Ca21 transient would

slightly increase the CaM-CaN level, but the slow off-rate

would mean that it does not relax back before the next Ca21

pulse drives a bit more CaM onto CaN. So both CaN and

Fig. 6. Ca21-dependent signaling in excita-
tion-transcription coupling via Ca-CaM.
CaMKIId can acutely regulate ion channels
(that carry INa and ICa) and Ca21 handling
proteins (RyR2, IP3R, PLN), contributing to
triggered arrhythmias such as early and de-
layed afterdepolarization (EADs and DADs). G
protein-coupled receptor (GPCR) agonists
endothelin-1 (ET-1) and phenylephrine (PE)
activate Gaq/bg and phospholipase C (PLC)
to produce diacylglycerol (DAG), which can
activate protein kinases C and D. PKC,
CaMKII, and PKD can phosphorylate (P)
HDAC, and calcineurin (CaN) can dephos-
phorylate nuclear factor of activated T cells
(NFAT), altering nuclear MEF2- and
GATA-dependent transcription.
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CaMKII exhibit molecular memory, but the molecular basis
differs considerably.

Olson’s laboratory was the first to demonstrate both the
important role of class II HDACs in cardiac ETC, as well as the
fact that CaMKII can be an HDAC kinase (3, 96). Indeed, both
HDAC4 and 5 in cardiac myocytes are phosphorylated by
CaMKII and PKD (which is another member of the CaMK
kinome family). That HDAC phosphorylation induced HDAC
nuclear export, and that could be induced by neurohumoral
stimuli [e.g., by endothelin-1 (ET-1) and a-adrenergic activa-
tion by phenylephrine (PE)], that are known to be parts of the
hypertrophic signaling pathway, and also the neurohumoral
storm associated with the vicious cycle of HF. The HDAC4
protein contains a specific CaMKII docking, since that CaMKII
activation is very tightly linked to HDAC4 nuclear export.

HDAC5 knockout mice exhibit baseline cardiac hypertrophy
and have an exaggerated hypertrophic response to pressure
overload or cardiac CaN activation (24), suggesting that
HDAC5 might be a particularly important ETC pathway in
mammalian heart. HDAC5 does not have the CaMKII docking
site as in HDAC4, and in HEK cells or cultured neonatal
myocytes, HDAC5 nuclear export is controlled by PKD rather
than CaMKII. However, in adult ventricular myocytes, where
PKD expression is dramatically lower than in the neonate (48),
and where CaMKII expression is higher, CaMKII and PKD
appear to be equal partners in HDAC5 phosphorylation, nu-
clear export, and MEF2 driven transcription in response to
ET-1 (149). Moreover, ET-1-induced HDAC5 nuclear export
was entirely dependent on Ca21 release through InsP3R type 2
at the nuclear envelope, since it was abolished in InsP3R2
knockout mice or by InsP3R inhibitors, and could be quanti-
tatively mimicked by selective InsP3R activation in adult
ventricular myocytes (149). HDAC5 translocation driven by
the a-adrenergic agonist PE is like that induced by ET-1 at the
endothelin receptor in that it is mediated by the G-protein Gaq

(17). Surprisingly, PE-induced HDAC5 nuclear export was
completely independent of Ca21, InsP3R, or CaMKII activity
and instead was completely dependent on PKC- and PKD-
dependent signaling (note that PKC did not seem to be impor-
tant in ET-1-induced HDAC5 nuclear export). Bossuyt et al.
(17) used confocal, targeted fluorescence resonance energy
transfer (FRET)-based reporters and total internal reflectance
fluorescence (TIRF) microscopy to elucidate the mechanism
for this ET-1 versus PE difference. For PE activation, PKD was
rapidly recruited and activated at the sarcolemma, but then it
was very rapidly translocated to the nucleus, where it could
phosphorylate HDAC5. For ET-1, PKD was also rapidly re-
cruited to the sarcolemma where it was activated, but in this
case, PKD largely remained at the sarcolemma and did not
shuttle to the nucleus. So although PKD can powerfully drive
HDAC5 nuclear export, it depends on how PKD is activated.
For ET-1, which activates CaMKII via an InsP3-dependent
nuclear pathway but activates PKD preferentially at the sarco-
lemma, nuclear HDAC5 is substantially CaMKII dependent.

During stress, there is often co-activation of the Gq-coupled
receptors (ET-1 and a-adrenergic) with b-adrenergic receptors
(b-AR). Chang et al. (23) evaluated this cross-talk in adult
ventricular myocytes. b-AR activation caused an acute PKA-
dependent HDAC5 nuclear import that was mediated by PKA-
dependent phosphorylation of HDAC5 at Ser279, between the
two PKD/CaMKII sites (Ser259 and Ser498), which are respon-

sible for driving ET-1 and PE-induced HDAC5 nuclear export.
This effect could be mimicked by pseudo-phosphorylation of
HDAC5 (S279D) and prevented by a nonphosphorylatable
S279A mutant HDAC5. Moreover, this b-AR effect was dom-
inant over the Gq-coupled receptor effect in that the ET-1 or
PE-induced nuclear export was blocked in the S279D HDAC5
mutant or after pretreatment of myocytes with isoproterenol or
forskolin. However, chronic b-AR activation (over 24 h) al-
lowed the usual ET-1 and PE effects to occur. Thus acute
b-AR activation may suppress genetic reprogramming driven
by this HDAC5 system during the acute fight-or-flight re-
sponse. However, in chronic activation, as in HF, this b-AR-
induced suppression may be overcome, such that the Gq-
coupled signaling drives chronic HDAC5 nuclear export and
activation of transcription, which reinforce the genetic HF
phenotype (18).

In conclusion, CaMKII signaling in ETC is complex, and
much additional work will be needed to fully understand the
overall integrated Ca-CaM dependent signaling, even by just
the CaMKII-HDAC and CaN-NFAT pathways discussed here.
But these longer term ETC effects, which can change the
expression levels of numerous ion channels and transporters as
well as modulate their acute functional behavior in ECC, have
to be integrated in the long run.
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