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The increased number of bacterial genome sequencing projects has generated over
the last years a large reservoir of genomic information. In silico analysis of this genomic
data has renewed the interest in bacterial bioprospecting for bioactive compounds by
unveiling novel biosynthetic gene clusters of unknown or uncharacterized metabolites.
However, only a small fraction of those metabolites is produced under laboratory-
controlled conditions; the remaining clusters represent a pool of novel metabolites
that are waiting to be “awaken”. Activation of the biosynthetic gene clusters that
present reduced or no expression (known as cryptic or silent clusters) by heterologous
expression has emerged as a strategy for the identification and production of novel
bioactive molecules. Synthetic biology, with engineering principles at its core, provides
an excellent framework for the development of efficient heterologous systems for the
expression of biosynthetic gene clusters. However, a common problem in its application
is the host-interference problem, i.e., the unpredictable interactions between the device
and the host that can hamper the desired output. Although an effort has been made to
develop orthogonal devices, the most proficient way to overcome the host-interference
problem is through genome simplification. In this review we present an overview on
the strategies and tools used in the development of hosts/chassis for the heterologous
expression of specialized metabolites biosynthetic gene clusters. Finally, we introduce
the concept of specialized host as the next step of development of expression hosts.

Keywords: chassis, heterologous expression, Streptomyces, specialized metabolites, genome streamlining,
genome reduction

Introduction

Over the last century, specialized metabolites derived from microbial secondary metabolic
pathways have been used by the pharmaceutical industry as a source of lead compounds
to feed the drug discovery pipeline. However, in the past years there has been a decrease
in the number of new drugs approved for clinical use, which is a reflection of a depleted
drug discovery pipeline. In addition, natural products have been gradually dismissed due
to defective bioprospecting programs that allocate a high number of resources but reach
a very limited number of new compounds facing the so-called “dereplication” problem.
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The development of high-throughput DNA sequencing
technologies has rediscovered bacterial secondary metabolism as
a reservoir of new bioactive compounds. The proliferation of
genome sequencing projects (Harrison and Studholme, 2014) and
the development of genome mining computational tools such as
antiSMASH (Weber et al., 2015) have exposed bacterial genomes
as the hosts of multiple secondary metabolites biosynthetic gene
clusters (Nett et al., 2009). Presently there is a large pool of
genomic information regarding biosynthetic gene clusters whose
associatedmetabolites are unknown or uncharacterized, however,
only a small fraction of those metabolites is produced under
laboratory-controlled conditions. Activation of the biosynthetic
gene clusters that present reduced or no expression (known as
cryptic or silent clusters), has emerged as a key strategy for the
identification and production of novel bioactive molecules (Ochi
and Hosaka, 2012).

Among the several bacteria used as natural product factories
(Gross and Loper, 2009; Weissman and Muller, 2010; Sansinenea
and Ortiz, 2011; Mondol et al., 2013; Brito et al., 2015) the
actinomycetes, in particular streptomycetes, stand out as
the most prolific source of bioactive microbial metabolites
(Berdy, 2005). Moreover, the vast (meta)genomic data collected
during the post-genomic era and the identification of multiple
cryptic secondary metabolite biosynthetic gene clusters in the
genomes, has identified actinobacteria as a renewed source
of novel natural products (Baltz, 2008). Due to Streptomyces
known proficiency as natural producers, these bacteria have
been widely used for the activation of cryptic gene clusters,
namely by modulating the expression of genes coding for
the cluster-situated regulators and/or biosynthetic proteins
(Laureti et al., 2011; Olano et al., 2014). However, this
strategy poses some technical challenges for many strains
that have proven to be recalcitrant to genetic manipulation. To
circumvent the resistance to genetic manipulation of natural
producers, heterologous expression of secondary metabolite
biosynthetic gene clusters has emerged as an alternative
strategy for the activation of silent clusters. A paradigmatic
example was the identification and characterization of 13
novel terpenes through the heterologous expression in
Streptomyces avermitilis SUKA22 strain of 7 Streptomyces-
derived genes annotated as terpene synthases (Yamada
et al., 2015). Moreover, the continuous efforts to develop
an extended Streptomyces molecular toolbox based on synthetic
biology principles (Rudolph et al., 2013; Luo et al., 2015) has
potentiated even more cryptic gene clusters as an alternative
for the discovery of novel bioactive compounds (Shao et al.,
2013).

In the context of microbial specialized metabolite
heterologous production, the development of suitable expression
host strains, or as it is called in the synthetic biology jargon, the
chassis, is key for the use of synthetic biological systems to the
production and characterization of new bioactive metabolites.
In this review we will focus on the strategies for development of
Actinobacteria cell platforms devoted to the production of small
molecules derived from microbial secondary metabolism and
review the current status on natural compound heterologous
production.

Genome Streamlining as a Way to
Genome Simplification

The increasingly competitive and efficient new generation
sequencing techniques have completely revolutionized biological
sciences. The applications are diverse and impacted the way
how biological systems are approached, i.e., instead of a gene-
based approach it is now possible to face the cell as a whole
through a genome-based approach. And it is even possible
to go one level up and study a community of organisms
through meta-genomics. However, the massive amount of
data currently available provided a clearer picture on the
extreme complexity that a single cell encloses, exposing
our lack of understanding on how the different network
components are wired. Furthermore, the sequencing of
genomes revealed a high percentage of predicted proteins
with no discernible localization and/or function (Ijaq et al.,
2015).

Cell complexity poses many challenges to synthetic biology,
since one should not expect that the synthetic device would not
interact with endogenous components of the host cell. In fact,
the complexity of the system exponentially increases possibilities
of unpredictable interactions that may hamper the output. As
a response to this limitation, an effort has been made towards
the generation of orthologous systems (Channon et al., 2008).
Orthogonality is a concept borrowed from mathematics and
computer science and it refers to synthetic devices that work
independently from the host, meaning that the interference
will be minimal. The engineering of ribosomes that recognize
a different genetic code is a good example on the efforts
that have been made toward orthogonal systems (Wang et al.,
2007). However, even in this case the activity of the ribosomes
is still very dependent on the cellular machinery and prone
to be modulated by different factors (de las Heras et al.,
2008).

The rationale behind genome streamlining aims at solving
this host interference problem by reducing the complexity of
the chassis genome (Leprince et al., 2012b). However, although
genome simplification is a very logical step as a general concept,
still there are many questions to answer. What strains will be
used? What regions should be deleted? How should genome
streamlining be performed? Where is the threshold beyond
which genome simplification does not bring any additional
advantages? The answer to these questions is highly dependent
on the downstream application. In fact, as it will be discussed
in the next sections, there is a vast multitude of genome
streamlining workflows that can be used to meet the different
aims.

Nevertheless, there is a primal question to all genome
streamlining projects: what makes a good chassis? In spite
of the unavoidable specificities, one could point out four
main characteristics that must be taken into account: genetic
manageability, growth robustness, genetic stability and the ability
to accurately predict interactions between the synthetic device
and the chassis. In the particular case of chassis development
for the production of microbial specialized metabolites, one
could add that it should also possess a minimal extracellular
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metabolome profile that would simplify the purification of the
desirable molecule (Gomez-Escribano and Bibb, 2011).

The clarification of the minimal genome and reduced
genome concepts is also of great importance when it comes
to genome streamlining. The quest for the minimal genome
envisioned the determination of the minimal set of genes
necessary to sustain life (de Lorenzo, 2011). The versions
of the minimal genome have been swinging in number
and components with no apparent consensus, mainly due to
environmental constraints, i.e., different environments equal
different requirements (Danchin, 2012). Nevertheless, these
studies are dealing with the limits of life and thereby of
paramount relevance to basic biological questions such as the
identification of the “core” genome. The “core” genome defined
as the set of common essential genes, is a concept intimately
linked to the development of minimal or reduced genomes.
For instance, comparative genome analysis of 17 genomes led
to the definition of Streptomyces core genome composed of
2018 orthologous genes that corresponded to 24–38% of the
analyzed genomes (Kim et al., 2015). However, if one intends to
develop a chassis for biotechnological downstream applications,
the suitability and applicability of such minimal platforms
is not clear. In particular, if we consider the heterologous
expression of specialized metabolites, the efficient supply of
precursor units requires genetic features that go beyond the core
genome. Therefore, concerning the genome streamlining for the
heterologous expression of microbial specialized metabolites the
reduced genome concept seems more suitable than the minimal
genome.

Genome Editing Toolkit

Homologous recombination has long been used to
genetically manipulate strains, getting advantage of the
natural recombination systems. However, relying solely on
the endogenous machinery may constitute a low efficient
approach in some cases (Komatsu et al., 2010). Systems like the
bacteriophage-derived λ-Red recombinase were shown to greatly
increase the efficiency of homologous recombination and thereby
very useful for genome editing (Murphy, 1998). This system only
requires a minimum of 30–50 bp overlapping flanking regions,
which attests its efficiency (Karlinsey, 2007). Recently, a system
based on the meganuclease I-SecI from Sacharomyces cereviseae
was developed for the genetic manipulation of actinomycetes
(Fernandez-Martinez and Bibb, 2014). The strategy relies on
the introduction of a DNA break by the endonuclease at an
unique 18 bp recognition sequence that can only be repaired by
homologous recombination. The double recombinants recovery
efficiency reported (27–52%) validates this new system as a
valuable tool for genome editing, particularly if we consider the
traditional low-number of double recombinants obtained in the
Streptomyces field (Kieser et al., 2000).

Interestingly, recombineering without the action of a
recombinase was shown to be possible in some Gram-negative
bacteria. In this case the transformation of cells with synthetic
single-stranded DNA (ssDNA) oligonucleotides was shown to be

able to recombine with genomic DNA – a process denominated
by oligonucleotide recombineering (Swingle et al., 2010).
All homologous recombination reactions rely on a ssDNA
intermediate that will pair with the complementary strand in
the target double-stranded DNA (dsDNA). The work of Li
et al. (2013) has shown that the ssDNA is incorporated during
DNA replication as an Okazaki fragment, demonstrating the
importance of DNA polymerase in this process.

In a more high-throughput manner, Wang et al. (2009)
developed a system that aims at editing multiple locus applying
the oligonucleotide recombineering concept – Multiplex
Automated Genome Engineering (MAGE). The MAGE
technology is an automated process that transforms multiple
oligonucleotides into bacteria (Escherichia coli was used as the
working model) in an iterative way. The application of multiple
cycles of transformation allows the formation of a heterogeneous
population, which enables the usage of directed evolution to
develop strains with interesting characteristics (Wang et al.,
2009).

Site-specific recombinases catalyze the recombination
between two specific DNA sequences, performing all the
reactions needed namely DNA excision, inversion, integration,
and translocation. Genome editing based on these enzymes
has proven to be a very efficient tool (Branda and Dymecki,
2004). Most systems currently in use are based on the Cre/loxP
from the P1 phage and Flp/FRT from yeast (Schweizer, 2003;
Branda and Dymecki, 2004). Both Cre and Flp are tyrosine
recombinases that recognize 34 bp target sites – loxP and FRT,
respectively – and catalyze the site-specific recombination
event. Depending on the orientation of the target sites, Cre and
Flp can either promote excision (direct repeats) or inversion
(inverted repeats; for a detailed review on recombinases see
Siegl and Luzhetskyy, 2012). Interestingly, the excision ability
of these enzymes allow the generation of marker-less mutant
strains, which contributes to a more predictable phenotype and
facilitates further genetic manipulations (Khodakaramian et al.,
2006).

The fact that none of these two recombinases need a co-
factor provided by the host, gives this system a wide applicability
(Kuhn and Torres, 2002). However, some limitations may
be encountered, such as codon usage. This is a common
problem, for example, in heterologous gene expression in
high GC content organisms such as Actinobacteria. To
circumvent codon usage issues, Herrmann et al. (2012)
synthesized Cre and Flp versions with codons compatible with
Actinobacteria usage and demonstrated its high efficiency and
accuracy.

The Clustered Regularly Interspaced Short Palindromic
Repeats (CRISPRs)/CRISPR associated (Cas) proteins belong to
the so-called bacterial adaptive immune system (Haft et al.,
2005). The different CRISPR systems can be grouped in three
different systems. While type I and type III are characterized by
requiring multiple Cas proteins to induce the cleavage of their
target DNA, type II systems only require the Cas9 endonuclease
(Haft et al., 2005). The versatility of Cas9 allows it to introduce
double strand breaks in a target genomic sequence through the
co-expression of customized single guide RNA (Jinek et al., 2012).
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This characteristic makes CRISPR-Cas9 a very attractive tool
for genome editing. Putting a focus on secondary metabolism,
this system was already successfully applied in the deletion of
two genes from the actinorhodin biosynthetic gene cluster in
S. coelicolor (Tong et al., 2015).

Top–down Strategies for Genome
Streamlining

From a biotechnological point of view, top–down strategies
are the most attractive, because they consist in the reduction
of existing genomes. By deleting parts that are predicted to
be non-essential to the microorganisms, or parts that may
contribute negatively to the pretended outcome, it is expected
to obtain more efficient and tractable chassis. Indeed, genome
reduction by the deletion of non-essential genes has resulted in
increased genome stability, growth robustness, simplification of
the secreted metabolome and increased availability of precursor
units (Gomez-Escribano and Bibb, 2011; Zhou et al., 2012;
Komatsu et al., 2013). Genome reduction as the first step in the
heterologous expression workflow is expected to render strains
that will not only be capable of producing cryptic specialized
metabolites, but also to over-produce the final product (Figure 1).

Efforts to streamline genomes have been particularly
incident in Bacillus subtilis and in the molecular biology
“workhorse” E. coli, mainly using directed mutagenesis
strategies, such as site-specific recombination (Juhas et al.,
2014). Multiple reports on genome reduction of industrial
relevant organisms show a maximum reduction level below
25% of the total genome: E. coli, 15.3% (Posfai et al., 2006);
B. subtillis, 20.7% (Morimoto et al., 2008); S. avermitilis,
16.9–18.6% (Komatsu et al., 2010) and Corynebacterium
glutamicum 22% (Unthan et al., 2015). These low reduction
percentages highlight how we are still very far from knowing
how the networks that compose life are wired. In spite of
these limitations, the application of directed mutagenesis to
genome streamlining rendered some strains with interesting
properties for biotechnological applications such as Streptomyces-
derived strains, where genome reduction allowed the
heterologous expression and production of small molecules
(Table 1).

Although successful at some extent, directed mutagenesis still
has major limitations when it comes to streamlining genomes,
mainly due to the lack of knowledge regarding cell components
and, more importantly, their interactions. As counterintuitive
as it may seems, a random mutation approach may be a good
alternative for genome streamlining. The creation of libraries
of mutants with random deletions and the selection of strains
with desirable traits gives a “Darwinian evolution” twist to
the process, by combining unbiased mutations with a selective
pressure toward a certain outcome.

This approach has been successfully applied to Pseudomanas
putida (Leprince et al., 2012a). Two mini-transposons – mini-
Tn5 KpF and mini-Tn5 TF – were modified in order to
contain selective markers and a FRT site (recognized by
Flt recombinase). The isolation of mutants containing both

transposon insertions in random genome locations and the
usage of the recombinase Flt allowed the deletion of certain
segments of the chromosome and the selection of derived
strains with unaffected fitness. Single segment deleted mutants
reached a genome reduction of 4.1%. But perhaps the most
interesting feature of this study is the capacity of iteration.
Indeed a second cycle of deletion allowed the isolation of
strains with a maximum of 7.4% genome reduction (Leprince
et al., 2012a). In a short-term perspective this kind of
approaches may constitute the more efficient way to streamline
a genome. Furthermore, the creation of mutant libraries is also
interesting due to the possibility of choosing different strains
for different purposes, which might be very advantageous to
biotechnology.

The usage of MAGE applied to the optimization of the
production of 1-deoxy-D-xylulose-5-phosphate (DXP) – an
industrially important isoprenoid lycopene – in E. coli was
proven to be successful (Wang et al., 2009). The authors
targeted 24 genes involved in the biosynthesis of DXP and
obtained a very heterogeneous mutant population, from which
some isolated strains revealed a fivefold increase in DXP
yields (Wang et al., 2009). Although the oligonucleotides
targeted pre-defined genes, this technique should be regarded
as random mutagenesis due to the unpredictable combinatorial
mutations that render the final heterogeneous population.
This way, one can envision MAGE technology as a powerful
technique to streamline genomes toward the optimization of a
chassis.

The usage of random mutagenesis and isolation of mutants
with interesting phenotypes is also at the core of strain
development in the pharmaceutical industry. This actually means
that genome streamlining has been practiced for decades now,
although with different purposes than obtaining a suitable chassis
for expressing synthetic pathways. Nevertheless, the metabolic
network of these strains is highly optimized for the production of
a certain product and may actually be useful for the heterologous
expression of secondary metabolite biosynthetic gene clusters.
S. ambofaciens is a natural producer of the important polyketide
spiramycin. BES2074 strain derived from the spiramycin over-
producer 111–59 was isolated and shown to have a blockage
in the production of spiramycin (Richardson et al., 1990). The
introduction of a BAC vector with the entire cyclic lipopeptide
A54145 biosynthetic gene cluster rendered a final yield that was
285% higher than its natural producer S. fradiae (Alexander et al.,
2010).

Streptomyces-Based Expression Hosts

The natural ability of Streptomyces bacteria to produce a wide
range of specialized metabolites grants them, in principle, the
metabolic background needed for the heterologous expression
of biosynthetic gene clusters. Thus, it is not surprising
that Streptomyces bacteria have been frequently used for the
development of optimized expression hosts.

Streptomyces avermitilis is a producer of the anti-infective
avermectin with a linear chromosome of 9.02 Mb (Omura
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FIGURE 1 | Optimized workflow for the heterologous expression of biosynthetic gene clusters. Applying the concept of genome simplification, one should
expect that the host-interference problem would be minimized rendering more efficient strains. The methods of gene delivery and cluster refactoring can also
improve the desired outcome, i.e., strains combining the ability to produce heterologous cryptic compounds and to behave as over-producers.

et al., 2001). Taking advantage of the typical Streptomyces
genome organization, a region from the left subtelomeric
region (∼2 Mb) that corresponds to the more variable genome
regions was deleted using general homologous recombination
or site-specific recombination (Cre-loxP) techniques. A series
of genome-reduced S. avermitilis mutants strains were obtained
of which we should highlight SUKA5 and SUKA22 (isogenic
to SUKA17) strains that had a genome reduction of 17.9 and
18.5% respectively, and a 78% reduction of the total transposase
genes when compared to the wild-type (Komatsu et al., 2010).
S. avermitilis SUKA5 strain had the oligomycin biosynthetic
gene cluster deleted in addition to the left subtelomeric
region that included avermectin and filipin biosynthetic gene

clusters; SUKA22 strain was a derivative of SUKA5 that had
the terpene biosynthetic encoding genes deleted (Komatsu
et al., 2010). In both strains, growth was not significantly
affected and no production of endogenous metabolites was
observed (Komatsu et al., 2013). The generated strains presented
advantages for the heterologous expression of biosynthetic gene
clusters, presumably due to the lack of endogenous metabolic
pathways that would compete for cell resources and to a
decrease in genome instability. The authors were able to express
heterologously several biosynthetic gene clusters (Table 1)
(Komatsu et al., 2010, 2013) including the cryptic biosynthetic
clusters of pholipomycin from S. clavuligerus ATCC 27064 and
shironine from Actinosynnema mirum DSM 43827. In most
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of the cases, the streamlined strains produced higher titers of the
compounds in comparison with the natural producers (Table 1).

Although not originally generated for the heterologous
expression of specialized metabolites, S. coelicolor M512
(Floriano and Bibb, 1996) that lacks the cluster-situated
regulators of the actinorhodin and undecylprodigiosin
biosynthetic gene clusters, was used successfully in the expression
of clorobiocin, coumermycin, and novobiocin among others
(Table 1). Few years later, S. coelicolor was subjected to a rational
genome reduction. The streamlining project of S. coelicolorM145
strain (derivative of S. coelicolor A3(2) that lacks the two natural
plasmids SCP1 and SCP2) was not as drastic as the S. avermitilis
project, since it only targeted the native secondary metabolite
biosynthetic gene clusters (Gomez-Escribano and Bibb, 2011).
In this case the biosynthetic gene clusters of the secondary
metabolites majorly produced by this strain (actinorhodin,
prodiginine, CPK and CDA) were sequentially deleted by
homologous double-recombination, generating a plethora of
streamlined strains characterized by a low percentage of genome
reduction (2%). Interestingly, the authors did not solely proceed
with genome reduction. In fact, a strain optimization was putted
in place through the introduction of point mutations into rpoB
and rpsL with the expectation of pleiotropically increasing the
production of secondary metabolites. The authors succeeded to
heterologously express the chloramphenicol and congocidine
gene clusters from S. venezuelae ATCC 10712 and S. ambofaciens
ATCC 23877 (Gomez-Escribano and Bibb, 2011).

Other group also streamlined S. coelicolor M145 genome by
sequential deletion of all the gene clusters containing polyketide
synthases (PKS) and non-ribosomal protein synthases (NRPS),
as well as a 900 kb fragment from a sub-telomeric region
(Zhou et al., 2012). A double homologous recombination strategy
was followed in this work. To attest the usefulness of the
streamlined strains, the authors overexpressed the actinorhodin
biosynthetic gene cluster. The results have shown that the strains
with a reduced genome produced higher titers of actinorhodin.
In this case the strategy was focused on the production of
polyketides and the fact that the metabolism of S. coelicolor is
naturally optimized to produce this kind of compounds, together
with the lack of metabolic pathways competing for the same
precursor molecules, accounts for the observed over-producing
phenotypes.

These examples, especially in the case of S. avermitilis, foresee
the ability to use these strains as universal chassis for the
production of secondary metabolites. However, one should not
forget that all these strains are still naturally constrained by their
genomic background. In fact, the biological complexity that is still
present in these strains and the lack of true orthogonal systems
are likely to hamper their universality and application in the
context of heterologous expression at the industrial scale. This
is attested by the different production yields obtained for the
same specialized metabolite (Table 1). Although the expression of
the chloramphenicol gene cluster in S. coelicolorM1146 (Gomez-
Escribano and Bibb, 2011) and S. avermitilis SUKA22 (Komatsu
et al., 2013) led to higher production levels than the native
producer S. venezuelae ATCC 10712, S. avermitilis SUKA22 was
able to produce sixfold higher amounts than S. coelicolor M1146.

Conversely, heterologous expression of the cephamycin C gene
cluster in the same strains resulted in no production or lower
yields than in the native producer S. clavuligerus (Komatsu et al.,
2013; Martinez-Burgo et al., 2014) (Table 1). Thus, a more
practical alternative to develop expression chassis would be to
use strains that have been previously optimized to produce a
certain class of compounds such as the strains already in use
in the industry. These strains not only possess an optimized
metabolism, but also have been adapted to the industrial
process through the improvement of other characteristics, such
as morphology (Nieminen et al., 2013). A posterior genome
streamline process of these strains would further optimize their
ability to perform as “specialized chassis.”

Bottom–up Strategies for Genome
Streamlining

The bottom–up strategy deals with the design and development
of strains from the scratch. Regarding chassis construction with
biotechnological purposes the bottom–up strategy would really
put engineering principles at the core of the technology as it
is preconized in the synthetic biology field. In the future, cells
designed to deliver a certain function could be developed through
the wiring of synthetic metabolic pathways, opening endless
possibilities. However, this is not a realistic scenario yet. In fact,
the efforts made in this field are more related with understanding
more basic questions, such as the origin of life (Leprince et al.,
2012b).

The current vision on bottom–up approaches encompasses
the assembly of DNA along with core protein machinery
encapsulated on vesicles, allowing self-replication and energy
generation (Kurihara et al., 2011). Some efforts done within the
synthetic virology field can also be included in the bottom–
up category. Due to their small genomes and low requirements
for replication, the molecular networks enclosed in a virus are
more discernible. Thus, the design or re-factoring of a virus
is an achievable goal with our technology and with possible
interesting applications, such as gene delivery (Guenther et al.,
2014). Although it was still not possible to make functional
“blueprint” for life, a landmark on bottom–up strategies was
achieved when a total synthetic genome ofMycoplasma mycoides
was assembled and successfully transplanted into aM. capricolum
host devoid of its own genome (Gibson et al., 2010).

Naturally Optimized Genomes

From a pragmatic point of view, one could consider using strains
that went through a natural genome streamlining process and use
them as a chassis. Although there might be a lack of knowledge
in the genetic circuitries of these strains and thus being a sub-
optimal strategy, it may be useful in some cases.

Regarding secondary metabolite biosynthesis, S. albus J1074
is a good example of a suitable chassis for heterologous
expression of biosynthetic gene clusters with a naturally
streamlined genome. This strain possesses the smallest genome
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in Streptomyces genus (∼6.8 Mb) and a low number of
gene duplications (Zaburannyi et al., 2014). This highlights
the tendency of redundancy reduction in this strain, which
constitutes a good characteristic for a chassis. A transcriptomic
analysis showed an early metabolic switch, which is coherent
with the high growth rate presented by this strain (Zaburannyi
et al., 2014). In addition it is known that this strain can
be manipulated genetically in a very efficient way. Altogether
these characteristics allowed its usage as an efficient chassis
for heterologous biosynthetic gene cluster expression and,
more importantly, a flexible one. The anti-tumor anthracycline
steffimycin biosynthetic gene cluster from S. steffisburgensis
(Gullon et al., 2006), fredericamycin from S. griseus (Wendt-
Pienkowski et al., 2005), napyradiomycin from S. aculeolatus
(Winter et al., 2007) and cyclooctatin from S. melanosporofaciens
(Kim et al., 2009) were all cloned and successfully expressed in
S. albus.

Conclusion and Future Perspectives

The identification of the so-called silent or cryptic clusters
shows that under laboratory conditions bacteria are not able
to present the metabolic flexibility needed for the production
of all encoded metabolites. The development of “universal”
Streptomyces heterologous expression hosts based on genetically
modified strains of Streptomyces sp. (Komatsu et al., 2010,
2013; Gomez-Escribano and Bibb, 2011; Zhou et al., 2012;
Ikeda et al., 2013) has validated the heterologous expression of
secondary metabolite clusters particularly for the activation of

silent clusters and characterization of new metabolites. However,
the production yields are generally low and often lower than
the original producers (Table 1) unveiling a deficient metabolic
flux background and undermining this strategy for industrial
applications that rely on high production yields.

For an industrial downstream application of the heterologous
expression of specialized metabolites, there is the need of
combining the stability features of the universal expression
hosts with the metabolic fitness for producing high-added
value products of the industrial strains. The vast knowledge
regarding Streptomyces metabolic networks and their regulation
(Liu et al., 2013) as well as a successful history on secondary
metabolism engineering (Olano et al., 2008) turns Streptomyces,
particularly those strains already optimized for industrial
processes, in attractive subjects for the development of
metabolite class specialized hosts through the synergic use of
synthetic biology, system biology and metabolic engineering
methodologies.
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