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Abstract 

Chatter has become the mainly limiting factor in the development of rapid and stable machining of 

machine tools, which seriously impacts on surface quality and dimensional accuracy of the finished 

workpiece. In this paper, a novel method of chatter recognition was proposed based on the combination of 

wavelet packet transform (WPT) and PSO-SVM in milling. The collected vibration signal was 

pre-processed by wavelet packet transform (WPT), and the wavelet packets with rich chatter information 

were selected and reconstructed. The selected wavelet packets can reduce the redundant noise and useless 

information. a combination of 10 time-domain and 4 frequency-domain feature parameters were obtained 

through calculating the reconstructed vibration signals. Compared to three methods of k-fold cross 

validation (k-CV), genetic algorithm (GA) and particle swarm optimization (PSO) to optimize the input 

parameters of SVM, the experiment results were shown that the PSO algorithm has is characterized by high 

accuracy. The proposed approach can recognize the stable, chatter and transition states more accurately 

than the other traditional approaches.  

Keywords 

Chatter, Wavelet packet transform, Feature parameters, PSO-SVM, Chatter recognition 

1. Introduction 

Chatter is one of the biggest unfavorable factors in achieving high performance metal-cutting 

operations, which is a self-excited vibration happened between workpieces and cutting tools[1]. It occurs 

in any machine tooling process and can directly affect the surface quality and dimensional accuracy of the 

finished workpiece, seriously damaging the tool and reducing the life of the machine tools. Timely chatter 

is detected, which is a prerequisite for improving production efficiency and reducing manufacturing cost. 

However, the cutting process in the milling is non-stationary due to machine tool spindle wear, the change 

of operating temperature and workpiece stiffness, and other non-linear factors[2]. Therefore, with the 

cutting environment changing, the methods of chatter detection and recognition have always been 

significant important issues.  

In the past few decades, many researchers paid attention to chatter detection, which has been a 

research hotspot. In order to detect the phenomenon of chatter, some sensors were generally applied to 

obtain chatter signal, such as acceleration sensor, acoustic emission, current sensor, microphone and so on 

[3-6]. No matter which sensor is chosen, it is significant to extract the chatter features and design the 

related chatter indicators for chatter detection. Ye et al. [7] calculated the standard deviation and the mean 

of root mean square sequence of the real-time acceleration signals, and selected the ratio of the standard 

deviation to the mean as the indicator to identify the occurrence of chatter. Tangjitsitcharoen [8] used the 

power spectrum density of dynamic cutting force signals to detect chatter state in turning process. In order 



to improve the robustness and reliability of chatter detection under variable cutting conditions, 

multi-sensor fusion is used for chatter detection. Kuljanic et al. [9]compared the sensibility of chatter 

onset of several sensors, and found that three or four sensors are the most promising solution for reliable 

and robust chatter identification. Pan et al. [10]studied the boring chatter identification with multi-sensors 

by multi-feature parameters and manifold learning, and found that multi-features extracted from different 

kinds of sensors can improve the recognition rate. However, some sensors are not applicable in practical 

application of cutting process. For example, to ensure the reliability of measurements, the acoustic 

emission need to be close to the tool-workpiece machining location [11]. And force sensor and 

displacement sensor might be costly and difficult for installation. In order to extract more chatter feathers, 

Wan et al. [12] extracted manually selected 8 features in time domain and frequency domain and 8 

features automatically extracted by features extracted by stacked-denoising autoencoder, highly 

improving the accuracy and reliability of milling chatter identification based on Adaboost-SVM.  

During the actual cutting process, the acquired signals contain a lot of noise. In order to extract the 

chatter-sensitive features, the method of signal processing is much more significant. The proper method 

for processing time-varying nonstationary signal, including short-time Fourier transform, Wigner–Ville 

distribution, wavelet transform, wavelet packet transform, Hilbert–Huang transform, etc. can effectively 

reduce the content of noise and enhance the Signal Noise Ratio (SNR). Fu et al. [13] used the empirical 

mode decomposition (EMD) to preprocess the vibration signal decomposing into a series of intrinsic 

mode functions (IMFs) to quantize the spectrum characteristic for online detection system. Ji et al. [14] 

adopted the ensemble empirical mode decomposition (EEMD) to decompose the acceleration signals, and 

the IMFs with the feature information of milling process were selected to the detect milling chatter timely. 

However, due to less theoretical background, the issue of mode mixing and end effects still remains [15]. 

Wavelet packet transform (WPT) is an effective signal processing method, which is especially used to 

deal with non-stationary signal. Compared short-time Fourier transform, WPT can overcome the 

shortcoming of short-time Fourier transform on a frequency-domain resolution. It can offer the low-pass 

band and high-pass band of signal at the same time, obtaining the high time-frequency resolution. Hence, 

in the process of milling, the measured signal was preprocessed by wavelet packet transform, which can 

effectively extract the frequency band with rich chatter information. Cao et al. [16] applied WPT as a 

preprocessor to denoise the measured signals, enhancing the performance of the Hilbert–Huang transform. 

They found that the mean value and standard deviation of the Hilbert–Huang spectrum can identify the 

chatter effectively. Yao et al. [17] used the standard deviation of wavelet transform and the wavelet packet 

energy ratio in the chatter-emerging frequency band as chatter vectors for the identification stable, 

transition and chatter state.  

Although the extracted features in signals with preprocessing can present the degree of stability of 

the machining condition, threshold methods are usually applied to identify the machining state [18]. 

Therefore, additional efforts are required to implement intelligent monitoring systems of chatter detection. 

Through a learning process, the stable and unstable states in cutting process are discriminated. Several 

recognition techniques such as neural network, fuzzy logic, hidden Markov models (HMM) and support 

vector machine (SVM) have been utilized to detection variable machining conditions. Teti et al. [19] 

investigated that the neural network and fuzzy logic techniques are widely applied in cutting condition 

monitoring. Zhang et al. [20] proposed a hybrid approach of combining the advantages of artificial neural 

network (ANN) and hidden markov model (HMM) for monitoring cutting chatter, and found that the 

cu0tting chatter can be detected timely. Alternatively, SVM, as a small-sample learning machine, has 

many unique advantages in nonlinear and high-dimensional pattern recognition, which owns the greatest 

generalization ability and minimizes the classification error. SVM is widely used for chatter detection in 



milling process, as it has simple geometric interpretation and is suitable for small sample sizes [21-23]. 

However, penalty parameter C and kernel function parameter such as the gamma (γ) for the radial basis 

function (RBF) of SVM seriously impact on the recognition rate of SVM classifier. Hence, the parameter 

optimization of SVM is an ongoing research issue. In order to get the best of penalty parameter and kernel 

function parameter, several optimization algorithms are employed to SVM. Peng et al. [24] used the 

k-fold cross validation method (K-CV) to optimize the best C and gamma of RBF kernel function. But 

this approach is a local search strategy, which leads to that the SVM classifier are prone to falling into the 

local minimum[25, 26].   

The genetic algorithm (GA) was used to optimize the SVM parameters to improve classification 

accuracy in wheel wear monitoring, which achieved a great performance[27]. The genetic support vector 

machine (GA-SVM) is used to drill wear state identification, the experimental results indicated that using 

GA-SVM can effectively track the trend of tool wear[28]. Subsequently, Particle swarm optimization 

(PSO) is used to optimize the SVM parameters, successfully applying to the bearing fault diagnosis[4, 29]. 

Even though genetic algorithm (GA) and particle swarm optimization(PSO) have good advantage of 

parameter optimization of SVM in terms of classification recognition, PSO is simple to operate and 

reduce the computation time significantly with respect to GA[30, 31]. Wang et al. [32] proposed a hybrid 

chatter detection method is for chatter classification in end milling, and found that this approach can 

recognize the stable, transition, and chatter states more accurately than the other traditional approaches by 

PSO optimizing the input parameters of SVM. 

In this regard, this paper presents a study on chatter detection in monitoring system by the 

multi-feathers of time-frequency domain. Firstly, the measured vibration signal is preprocessed by 

wavelet packet transform (WPT), and two wavelet packets with rich chatter information were selected 

and reconstructed. Then, 10 time-domain and 4 frequency-domain feature parameters of the reconstructed 

vibration signal are calculated as feature vectors of chatter identification, which consists of the original 

feature set. Finally, through comparison of k-fold cross validation, genetic algorithm (GA) and particle 

swarm optimization (PSO) optimizing the SVM parameters, the PSO-SVM could improve obviously the 

accuracy of chatter recognition than the others.   

2. Proposed methodology of Chatter detection 

The scheme of the proposed chatter detection method is shown in Fig. 1. WPT was used to 

decompose and reconstruct the collected vibration signals, and the energy ratio was chosen as selecting 

characteristic wavelet packet with the rich information in the chatter-emerging frequency band. Then 10 

time-domain and 4 frequency-domain features were selected as recognition parameters of chatter by 

calculating the reconstructed vibration signal, which formed feature vectors. Finally, the SVM-PSO 

model was used for feature classification to obtain the final recognition results.  



  

Fig. 1 Flowchart of the chatter detection system 

2.1 Feature extraction of chatter  

When chatter occurs during the machining process, the amplitude and distribution of time-domain 

signal may be different from that of time-domain signal of stable machining. Therefore, we supposed that

( 1, 2, , )
i

x i N L was a signal series, N was the number of collected data points. We chose 10 time-domain 

features for identifying chatter state, as shown in Table 1. From Table 1, 
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reflected the time series distribution of time-domain signal. 

Table 1 Time-domain feature parameters 

Feature Equation Feature Equation 

Mean:  
1

1 n

m ii
x x

n 
   Kurtosis:  

 
 

4

1

41

n

i mi

kur

std

x x
x

n x








 

Standard deviation:   2

1

1

1

n

std i mi
x x x

n 
 

   Crest factor:  
p

rms

x
CF

x
  

Root mean square:
rm s

x  2

1

1
( )

n

rms i

i

x x
n 

   Clearance factor: 
2

1

1

p

n

ii

x
CLF

x
n 


 
  
 


 

Peak:  max( )
p i

x x  Shape factor:  

1

1
rms

n

ii

x
SF

x
n 




 

Skewness:  
 

 

3

1

31

n

i mi

ske

std

x x
x

n x








 Impulse factor:  

1

1

p

n

ii

x
IF

x
n 




 

 In addition, considering that some hidden chatter information cannot reflect directly in time-domain 

scale. Because the amplitude and distribution of frequency components of time-domain signal may 



change with the occurrence of chatter when chatter occurs [13]. In this regard, we selected 4 

frequency-domain parameters as feature recognition of chatter, as described in the following.  
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( 1,2, , )
j

f j m L  was the j-th frequency of power spectrum. And ( )
j

S f  represented the amplitude 

of power spectrum calculated by FFT. The MSF represented the energy of the vibration signal in the 

frequency domain.  and FC reflected the position change of the main band of signal. FV described the 

energy dispersion and concentration of signal in the frequency domain. 

However, it takes a lot of time to calculate these four frequency-domain feature parameters by Fast 

Fourier Transform (FFT). To solve this issue, a fast calculation criterion of frequency-domain feature 

parameters was employed [29], the 4 frequency-domain feature parameters can be rewritten as shown in 

Table 2. Hence, in this paper, 10 time-domain and 4 frequency-domain features were selected as 

recognition parameters of chatter [33, 34], which formed feature vectors.  

Table 2 Frequency-domain feature parameters 
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2.2 Wavelet packet transform 

However, the measured vibration signal generally contains noise which is the disadvantage of 

identifying chatter both in the time and frequency domain. Therefore, it is very critical to suppress or 

eliminate the noise for the feature extraction of chatter. Since the noise is broadband, the measured signal 

is decomposed into some narrow band components, and the energy of noise will be dispersed in these 

narrow bands. Wavelet packet transform (WPT) is the best option available to solve this issue [16]. WPT 



is implemented by a basic two-channel filter bank, which is iterated over either the low-pass or high-pass 

branch. Therefore, it can not only decompose the low frequencies and the high frequencies, but also 

improve the time-frequency domain resolution. When the vibration signal is preprocessed by WPT before 

feature extraction, the chatter signal may be distributed in a specific frequency band, and the 

signal-to-noise ratio could be enhanced.  

The wavelet method decomposes a time signal into a time-frequency scale according to the shifted 

and scaled signal decomposition of a prototype function which is called mother wavelet. Supposing that 

2( )t L   is a function called mother wavelet, and , ( )
s u

t with ,s u r , and 0s   are a family of 

shifted and scaled functions of a mother wavelet. An entire family of elementary functions by dilatations 

or contractions is produced by a modulated window ( )t , and translations in time defined by Eq. (1) 

[35, 36]:  
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Where s and u are the scaling parameter and the position parameter. 

In case of continues time of a function x(t), the wavelet transform (WT) is called a continuous 

wavelet transform (CWT), which is calculated by the inner product of the analyzed signal with a family 

of shifted and scaled wavelets, using the expression Eq. (2) [35, 36]: 
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The advantage of CWT is very useful for the analysis of non-stationary signals, enabling the 

temporal location of the components in the frequency domain. However, the low analytical computational 

efficiency limits its off-line applications. For applications of processing real-time signal, wavelet packet 

transform (WPT) can decompose the signal into a mutually orthogonal set of wavelets, which is derived 

from the application of a pyramidal algorithm of convolutions with quadrature mirror filters, according to 

the coefficients presented in Eq. (3) and (4).  

, 2 1,j k l k j l
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, 2 1,j k l k j l

l
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Where ,j k
A is scaling and ,j k

D  is wavelet coefficient, j is the number of transformation levels with 

j =1, 2, …; k is the number of scaled and wavelet coefficients with k = 1, 2, …, N×2j, where N is the total 

number of samples of the original signal, h and g are low-pass and high-pass coefficients of the scaled 

function and wavelet function respectively, and l is the filter length. These coefficients successively 

decompose the original signal into approximation (low frequency) or detail (high frequency) signals using 

the scaled and wavelet coefficients respectively. 

Supposing there is a vibration signal x(t), which is decomposed by the WPT. Then the decomposed 

frequency-band signal xi,j(t) is generated, where xi,j(t) represents the j-th frequency-band signal at level i, 

and where j=1,2,...,J, and J=2I , which is the number of decomposed frequency-band signals, and 

i=1,2,…,I, where I is the number of decomposition levels. As an illustration, a three-level WPT 

decomposition process of x(t) is described in Fig. 2. 
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Fig. 2 A three-level WPT decomposition process 

The frequency bands of the decomposed wavelet packets which include abundant chatter information 

need to be identified accurately before chatter feature is extracted. To find out this best frequency band, the 

energy ratio can represent cutting conditions in the milling. In stable milling process, energy of wavelet 

packet node focuses on the multiple frequency bands. When chatter occurs, energy ratio of wavelet packet 

node including chatter frequencies will dramatically increase. So the biggest energy ratio of wavelet packet 

with rich information can be selected as the characteristic wavelet packets and reconstructed. Then the 

chatter features are available by calculating the reconstructed wavelet packets.  

2.3 Chatter recognition based on PSO-SVM 

2.3.1 The theory of SVM 

Support vector machine (SVM) is derived from statical learning theory, which is proposed according 

to optimal hyperplane in the case of linear separable. SVM is extensively applied to regression and 

classification. This section briefly introduces the application of SVM classification[37, 38]. 

Considering a set of sample data which is denoted as   , , 1,2, ,x
i i

y i n L , where x
i are the 

input vectors, and  1,1
i

y   are the class label of x
i . The task of SVM is to find out an optimal 

hyperplane which can separate two datasets with the maximal margin. With using the nonlinear function 

φ, the input vectors x
i are mapped into a high dimensional feature space F. Then, the maximum margin 

separating hyperplane in F is produced, which is denoted as: 

    ( ) 0ω x
i

b g                                      (5) 

Whereω is the weight vector and b is the bias term. ω and b determine the position of the 

separating hyperplane. The optimal hyperplane is found out by solving the following constrained 

optimization problem: 
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Where C is the penalty parameter which represents a trade-off between training error and the margin, 

i
 are slack variables, and 0

i
  . 

Using the Lagrange function, the problem can be rewritten as follows: 
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Where i
 are the constants which called Lagrange multipliers and are determined in the optimization 

process.  ,x xi jK is a symmetric and positive kernel function which denotes as

     ,x x x x
i j i j

K  g  , satisfying Mercer’s theory. The derived training algorithm is guaranteed for 

minimization.  

When the above optimization problem is solved, the weight vectorω could be calculated by 

 
1

ω x

n

i i i

i

y 


                                       (8) 

Then, the non-linear decision function of SVM is described as following: 
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2.3.2 Parameters selection of SVM with PSO 

In the study, the selection of the parameters has a great influence on the performance of SVM. Like 

genetic algorithms (GA), PSO is a population-based search algorithm. However, unlike GA, PSO has no 

crossover and variation. In PSO, particles in the solution space following the optimal particle search. The 

advantage of PSO is simple and easy to achieve without many parameters need to be adjusted. Therefore, 

PSO algorithm is used to realize the parameters’ selection of SVM. 

Particle swarm optimization (PSO) was proposed by Kennedy and Eberhart in 1995, which is a kind 

of global search algorithm. It is inspired by complicated group behavior such as birds foraging. When 

birds are foraging, they can search for a simplest but effective way which is to search the zone around birds. 

Like evolutionary algorithms, PSO performs searches using a population (called swarm) of individuals 

(called particles) that are updated from iteration to iteration. 

Assume there is an n-dimensional search space, the velocity and position of the i-th particle are 

,1 ,2 ,   
i i i i j

V v v v   L and ,1 ,2 ,   
i i i i j

X x x x   L , respectively. Where 1, 2, ,i m L , m represents 

the scale of particles in swarm, and 1, 2, ,j d L . According to the PSO algorithm, each particle moves 

in the direction of its best previous position and the global best position is discovered by any particles in the 

swarm. By evaluating fitness of each particle, the best position (called pbest) of the i-th particle is 

calculated, and then the optimal position (gbest) of all particle group is found. Each particle calculates its 

own velocity and updates its position in each iteration, and the global best value is ultimately obtained. Let 

k denote the current generation. To search for the optimal solution, the current velocity and position of the 

d-th dimension of the i-th particle at time k is described as follows[29]:  
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In the above formula, 1c and 2c denote as accelerating constants, and 1 2, 0c c  . 1
r and 2

r  are 

random numbers in the range of [0,1]. ,i j
p represents the best position of i-th particle in j-dimensional 

search space, and ,g j
p the best position of the whole swarm. ,i j

v represents the current velocity of i-th 

particle in j-dimensional search space, , max max
[ , ]

i j
v V V  , and maxV represents the maximum limited 

velocity.   is an inertial weight which is utilized to balance the capabilities of local exploration and 

global exploration. A popularly used inertial weight is linearly decreasing weights (LDW)[30], which is 

defined as  

max min
max

max

k
k

 
 


                                (12) 

Where max is the maximal inertia weight, min is the minimal inertia weight, k is iterative number 

of controlling procedure process, maxk is the maximal iteration of PSO.  

In this study, the radial basis function (RBF) is selected as the kernel function, and the parameter of 

RBF is the gamma (γ). Therefore, the classification performance of SVM is influenced by the two 
user-determined parameters, which are penalty parameter C and the kernel function parameter γ. 

In PSO, the particle is composed of the parameters C and γ. The procedure of optimizing the SVM 
parameters with PSO is presented in Fig. 3, which is displayed as follows: 

(1) Input data. Training and testing sets are represented. 

(2) Particle swarm initialization. Set the accelerating constant 1c and 2c . Define the maximum number 

of iterations maxk , and set the current number of iterations 1k  . Randomly generating m particles in the 

d-dimensional space, the velocity and position of i-th particle are denoted as ,1 ,2 ,   
i i i i d

V v v v   L and

,1 ,2 ,   
i i i i d

X x x x   L , respectively; 

(3) Evaluate the fitness of all particles. For each particle, calculate the value of the optimization 

function for each particle in corresponding search space respectively; 

(4) Comparing the current fitness of each particle with its own historical best position pbest. If pbest is 

smaller than the current fitness of particle, then pbest is replaced with the current fitness and become the 

current position. Otherwise, pbest remains the same. 

(5) Comparing the current position of all particles with their own historical best position gbest of the 

whole swarm. If gbest is smaller than the current position of particle, then gbest is replaced with the current 

position of the whole swarm and become the current position of all particles. Otherwise, gbest remains the 

same. 

(6) Update velocity and position of particles. Update the positions and velocities of all particles 

according to the equations of the position and velocity as in Eq. (10) and (11); then form new particle 

swarms, go to step 3. 

(7) Judging whether the stopping criterion is satisfied, if ‘‘Yes’’ then ending the iteration operation; if 



‘‘No’’ then going to Step (3). The stopping criterion could be a maximal iteration, or that the fitness of the 

particles is smaller than a given required precision. 

(8) Obtain optimized SVM parameters C and γ. 

 

Fig. 3 The procedure of optimizing the SVM parameters with PSO 

3. Experimental setup of end milling 

To demonstrate the effectiveness of the proposed approach of chatter recognition, we conducted the 

cutting experiments of aluminum 6061 on three-axis milling machine center of VMC1165B, as shown in 

Fig. 4. The tool is a carbide end mill cutter with two flutes, and besides the cutting tool’s diameter and 

overhang are 8mm and 44mm respectively. An acceleration sensor is mounted on the spindle housing and 

a data acquisition card of NI USB-6341 is used to acquire the acceleration signals during milling. The 

sampling frequency of signals is set to 12000 Hz. In addition, the whole milling process is under the dry 

condition.  

    



Fig. 4 Experimental setup 

It is well known that the chatter is closely related to the depth of cut, spindle speed, feed rate[39]. 

For the validation of the proposed method in this study, when we fixed the spindle speed, the cutting 

depth started from 0.2mm and increased 0.2mm each experiment until chatter occurred. The other cutting 

parameters in this experiment are shown in Table 3. 

Table 3 Cutting conditions 

Workpiece AL6061 

Tool Carbide End Mills 8 mm 

Spindle speed(rpm) 3000,4000,5000,6000,7000 

Feed per tooth(mm/z) 0.02 

In addition, to obtain the modal of milling-workpiece system, hammer test is done before the milling 

experiment. During the hammer test, the method of single-point impaction and single-point respond is 

applied to obtain the machine tool’s transfer function. The hammer hits the location which is on the tool 

tip. By calculating a third orders natural frequencies are 1494, 2041, and 4160 Hz. 

4. Results and discussion 

4.1 The collected vibration signal analysis of milling processes  

Fig. 5 (a) and (b) are shown the three typical processing states of vibration signal (e.g., stable state, 

transition state, chatter state). Fig. 5 (c) and (f) are the partial enlarged vibration signals and FFT of stable 

cutting state in Fig. 5(a) respectively. Fig. 5 (d) and (h), (e) and (i) are the partial enlarged vibration 

signals and FFT of transition and chatter cutting state in Fig. 5 (b) respectively. From Fig. 5 (c) and (f) in 

the stable cutting state, it is seen that the amplitude is small, and the distribution of frequency components 

is dispersal, the main frequency peaks mainly concentrating on the 1301 Hz, 2039 Hz, 2801 Hz, 4078 Hz, 

5145 Hz. These frequency components nearly correspond with first natural frequency, second order 

natural frequency, twice first natural frequency, third order natural frequency and fourfold first natural 

frequency of the system. When increasing spindle speed up to 6000 r/min and axial depth of cut up to 

0.8mm, the slight chatter appears, which is called transition state of chatter. In the transition state, the 

amplitude of vibration signals increases slightly, but the distribution of the frequency components has 

been changed drastically (see Fig. 5(h)). Consequently, other frequency components are suppressed, and 

the frequency focuses on the around 2824Hz, which is close to the twice first natural frequency of the 

system [40]. This is contribute to that the helix angle of milling tool may have an significantly important 

role on instability due to repetitive impact driven chatter [41]. In addition, the occurrence of chatter 

inhibits the production of other frequencies. Subsequently, the severe chatter occurs with the cumulative 

effect of energy, as shown in Fig. 5(b). The amplitude of vibration signals becomes larger, and the chatter 

frequency of 2824Hz is further enhanced.  



 

Fig. 5 The measured vibration signals in three states and their FFT.  

Fig. 5 (a) The stable cutting state of vibration signals under cutting conditions of spindle speed 5000 

r/min, axial depth of cut 0.2mm, and feed rate 0.2 mm/z. (b) The transition and chatter cutting states of 

vibration signals under cutting conditions of spindle speed 6000 r/min, axial depth of cut 0.8mm, and feed 

rate 0.2 mm/z. (c) and (f) were the partial enlarged vibration signals and FFT of stable cutting state in (a) 

respectively. (d) and (h), (e) and (i) were the partial enlarged vibration signals and FFT of transition and 

chatter cutting state in (b) respectively.  

The purpose of chatter detection is to effectively identify the infantile chatter state to avoid the 

unfavorable effect on the workpiece and the tools. Therefore, the effective and accurate recognition of 

transition stage of chatter is significant important. In this regard, this paper emphasized on investigating 

the feature extraction of the transition stage of chatter. In this paper, the db10 is chosen as the wavelet basis 

function which has the better orthogonality. The measured vibration signal is decomposed four levels by 

WPT in terms of stable and chatter state in end milling process. The 16 wavelet packets are obtained 

correspondingly. Fig. 6 is the description of the four-level WPT of reconstructed signal in the chatter 

transition state and the corresponding FFT in each frequency band. It can be shown that the amplitude of 

the acceleration signal in the frequency bands x4,7 (2625 – 3000 Hz) and x4,8 (3000 – 3375 Hz) is larger 

than the signal in other frequency bands. So, the chatter frequency can be determined in the frequency 

bands x4,7 and x4,8. According to the amplitude spectrum of the acceleration signal, the energy ratio was 

calculated, as shown in Table 4. We also find that when chatter taking place, the energy is mainly 

concentrated in the wavelet packets of x4,7 and x4,8, where the vibration energy was concentrated around 

the chatter frequency and the energy and amplitude would increase sharply. Therefore, the wavelet 

packets of x4,7 and x4,8 with rich chatter information are selected as the characteristic wavelet packets and 

reconstructed. The reconstructed vibration signal of characteristic wavelet packets and corresponding to 

FFT are shown in Fig. 7. From the picture, after screening the characteristic wavelet packets, it is found 

that redundant noise and useless information is effectively removed, the time-domain features of 

reconstructed vibration signal become more obvious, and the frequency spectrum retains a complete 

characteristic information of transition state of chatter. Therefore, the vibration signal with preprocessing 

by WPT has an important effect on the extraction of feature vectors and the noise reduction of signal. 

Then, according to the analysis of section 2.1, we calculate 10 time-domain and 4 frequency-domain 

feature parameters for each collected sample respectively. These feature parameters are selected as feature 

vector to identify cutting state in the milling process. Fig. 6 The reconstructed vibration signal of each 

frequency band and their amplitude spectrum in the transition state of chatter corresponding to Fig. 5 (d). 

e 



 

Fig. 6 four-level WPT of reconstructed signal in the chatter transition state and their corresponding FFT 

Table 4 Energy ratio in the frequency bands of wavelet packet 

Energy ratio in wavelet 

packet node 

Cutting state 

Stable state Transition state Chatter state 

x4,0 (0 – 375 Hz) 0.0537 0.0809 0.0127 

x4,1 (375 – 750 Hz) 0.0568 0.0168 0.0055 

x4,2 (750 – 1125 Hz) 0.0522 0.0588 0.0055 

x4,3 (1125 – 1500 Hz) 0.0738 0.0146 0.0049 

x4,4 (1500 – 1875 Hz) 0.0789 0.0246 0.0069 

x4,5 (1875 – 2250 Hz) 0.2125 0.0398 0.0132 

x4,6 (2250 – 2625 Hz) 0.0648 0.1036 0.0577 

x4,7 (2625 – 3000 Hz) 0.0581 0.3301 0.5617 

x4,8 (3000 – 3375 Hz) 0.0556 0.1999 0.2850 

x4,9 (3375 – 3750 Hz) 0.0672 0.0619 0.0167 

x4,10 (3750 – 4125 Hz) 0.0468 0.0106 0.0059 

x4,11 (4125 – 4500Hz) 0.0270 0.0036 0.0032 

x4,12 (4500 – 4875 Hz) 0.0175 0.0095 0.0045 

x4,13 (4875 – 5250 Hz) 0.0748 0.0104 0.0037 

x4,14 (5250 – 5625 Hz) 0.0254 0.0173 0.0067 

x4,15 (5625 – 6000 Hz) 0.0350 0.0176 0.0063 

 



    

Fig. 7 The reconstructed vibration signal and FFT of characteristic wavelet packets of x4,7 and x4,8 in the transition 

state 

4.2 Chatter identification based on time-frequency characteristics of WPT and PSO-SVM 

This paper mainly focused on the infantile chatter identification based on the vibration signal, where is 

in the transition state shown in Fig. 5(b). The vibration signals in stable and transition state are collected 

under the cutting conditions, as shown in Table 1. Then 60 samples are obtained, where 30 samples are in 

cutting stable state and the others are in chatter transition state. Each sample has 1024 data points, which 

are processed with WPT and calculated to extract 14 time-frequency feature parameters as feature vector 

of chatter. Randomly 20 samples are selected as training data from stable samples and transition samples 

respectively. The remaining samples are selected as testing data.  

According to the previous analysis in this paper, inappropriate penalty parameter C and kernel 

function parameter γ may cause the over-fitting and under-fitting of SVM classifier, which has important 

influence on the prediction accuracy of classification. But in the process of practical application, the 

optimal value of C and γ is not easy to determine. Therefore, the SVM parameters should be set in advance 
before the application of SVM. In this study, The PSO algorithm is used to select and optimize the penalty 

parameter C and kernel function parameter γ of SVM classifier. The initialized parameter values of 
PSO-SVM are set as follows. The swarm size is set to 20 particles, and the maximum number of iterations 

is 200. The accelerating constant c1 and c2 are set to 1.5 and 1.7 respectively. The searching range of 

parameter C of SVM is between 0.1 and 100, while the searching range of parameter γ of SVM is between 
0.01 and 1,000. The fitness curves of the evolutionary algebra of PSO are shown in Fig. 8. The chatter 

identification accuracy rate of training data are all 95%, and the prediction accuracy rate is 95%, as shown 

in Table 5. At this point, the parameter values of SVM are C= 74.89 and γ=0.01. 

 

Fig. 8 The adaptive evolutionary curves of PSO 

 In addition, in order to demonstrate the effectiveness of the developed PSO-SVM approach in chatter 

detection, the three other methods of standard support vector machine (SVM), k-fold cross validation   

support vector machine (k-CV-SVM) and genetic algorithm support vector machine (GA-SVM) were 



selected and compared for chatter identification. The standard SVM parameters are set to C=2 and γ=1, 
which is as a reference. And the initialized parameter values of k-CV-SVM are set 3-fold Cross Validation, 

8 82 2C
    and 

8 82 2   . The initialized parameter values of GA-SVM are set as follows. The 

maximum evolutionary algebra and maximum population are 200 and 20 respectively. And the crossover 

probability and mutation probability are 0.4 and 0.01 respectively. The searching range of parameter C and 

γ of SVM is the same as PSO. The classification accuracy of k-CV method is shown as Fig. 9, and the 

fitness curves of the evolutionary algebra of GA are shown as Fig. 10. The accuracy of each method is 

shown as Table 5. From Table 5, it is indicated that chatter identification accuracy rate of training data are 

all 95% under the same conditions, while the prediction accuracy rate of testing data is significantly 

different. The prediction accuracy rate is 90% with standard support vector machine (SVM), and the 

prediction accuracy rate is only 85% using the optimized SVM parameters with k-CV as well as the 

optimized SVM parameters with GA, but the prediction accuracy rate is 95% with the optimized SVM 

parameters with PSO. Thus, The PSO algorithm should be used to optimize the parameters (C, γ) of SVM.  

Table 5. Chatter identification accuracy based on PSO-SVM 

 
Number of 

features 
C γ 

Accuracy /% 

Training set Testing set 

WPT+SVM 14 2 1 95 90 

WPT+k-CV-SVM 14 0.758 1.32 95 85 

WPT+GA-SVM 14 3.94 0.40 95 85 

WPT+PSO-SVM 14 74.89 0.01 95 95 

 

Fig. 9 The classification accuracy of k-CV method 

 

Fig. 10 The adaptive evolutionary curves of GA 

 

 



5. Conclusion 

This paper proposed a novel method of chatter recognition based on the combination of WPT and 

PSO-SVM in milling. The chatter detection is essentially a problem of pattern recognition, of which an 

important step is feature extraction. Before feature extraction, this study emphasizes on the in-depth 

analysis of the chatter-emerging frequency band of vibration signals with WPT. Chatter-emerging 

frequency bands are selected as characteristic wavelet packets and will be reconstructed. It is found that 

redundant noise and useless information is effectively removed to improve the accuracy of chatter 

diagnosis, the reconstructed vibration signals can completely express the amplitude and frequency of 

vibration when chatter occurs. Subsequently, a combination of 10 time-domain and 4 frequency-domain 

feature parameters are obtained through calculating the reconstructed vibration signals. Through 

extracting these features with rich information, the original chatter feature set is generated. Compared to 

three methods of k-fold cross validation (k-CV), genetic algorithm (GA) and particle swarm optimization 

(PSO) to optimize the input parameters of SVM, the experiment results are shown that the PSO algorithm 

has is characterized by high accuracy. The proposed approach can recognize the stable, chatter transition 

states more accurately than the other traditional approaches. In this regard, chatter suppression will be 

researched in future. By adjusting the spindle speed and the depth of cutting, the chatter may be suppressed 

based on the effect of milling parameters.  
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Figures

Figure 1

Flowchart of the chatter detection system



Figure 2

A three-level WPT decomposition process



Figure 3

The procedure of optimizing the SVM parameters with PSO



Figure 4

Experimental setup

Figure 5

The measured vibration signals in three states and their FFT.



Figure 6

four-level WPT of reconstructed signal in the chatter transition state and their corresponding FFT



Figure 7

The reconstructed vibration signal and FFT of characteristic wavelet packets of x4,7 and x4,8 in the
transition state

Figure 8



The adaptive evolutionary curves of PSO

Figure 9

The classi�cation accuracy of k-CV method

Figure 10



The adaptive evolutionary curves of GA
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