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Abstract

We consider the dynamics of a two degree of freedom impact oscillator subject to a

motion limiting constraint. These systems exhibit a range of periodic and non-periodic impact

motions. For a particular set of parameters, we consider the bifurcations which occur between

differing regimes of impacting motion and in particular those which occur due to a grazing

bifurcation. Unexpected resonant behaviour is also observed, due to the complexity of the

dynamics. We consider both periodic and chaotic chatter motions and the regions of sticking

which exist. Finally we consider the types of chaotic motion that occur within the parameter

range. We discuss the possibility in relating successive low velocity impacts, especially in

respect to possible low dimensional mappings for such a system.
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1 Introduction

In this paper we consider the dynamics of a two degree of freedom impact oscillator. This

system belongs to a wider class of multi-degree of freedom impact oscillators. We define such

a multi-degree of freedom impact oscillator as a system of coupled masses, where the motion of

one mass is restricted by an impact stop. Non-impacting multi-degree of freedom (lumped mass)

systems are used extensively to model engineering systems (Bishop & Johnson 1960; Timoshenko

et al. 1974). Two-degree of freedom impact oscillators have been studied in relation to impact

damper systems (Masri 1972; Chatterjee et al. 1995), which are essentially a two degree of freedom

system with a primary mass and an additional impacting mass. The two-degree of freedom impact

oscillator has also been considered by Shaw & Shaw (1989), who studied bifurcations, and the onset

of chaotic motion in such systems, while Neilson & Gonsalves (1993) considered the dynamics of

rotor bearings using a two degree of freedom model.

The effect of an impact damper on a multi-degree of freedom system has been considered by

Nigm & Shabana (1983). Higher degree of freedom impact systems have also been considered by

Cusumano & Bai (1993), who consider the dynamics associated with a ten degree of freedom impact

oscillator. Periodic impacting motions which occur in multi-degree of freedom impact systems have

also been investigated. Natsiavas (1993) has generalised the method for finding periodic P(p, q)

orbits developed by Shaw & Holmes (1983), to N degree of freedom impact oscillators. This

method employs a root finding method to locate the time of impact for the periodic orbit. More

recently Pun et al. (1998) have considered the type of P(p, q) motions which occur in a constrained

multi-degree of freedom impact oscillator, using a two degree of freedom example.

In this current work we also consider a two degree of freedom impact oscillator, but focus our

attention on nonsmooth phenomena such as chatter and sticking, which have not been previously

considered in detail for such a system. In addition, we present simulations of chaotic attractors

for the two degree of freedom system. In particular we consider the form of the attractor close

to a grazing bifurcation (Nordmark 1991). By examining the relationship between successive low

velocity impacts in these attractors, we discuss the possibility of modelling the system using low

dimensional mapping. These results are compared with those of Fredriksson & Nordmark (1997)

who consider localised mappings for multi-degree of freedom impacting systems.
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2 Mathematical model

Initially we consider a generalised N degree of freedom coupled linear oscillator system with

N lumped masses. A schematic representation of such a model is shown in Fig. 1. The equations

of motion for the coupled masses can be expressed as

miẍi + ci(ẋi − ẋi−1) + ci+1(ẋi − ẋi+1) + ki(xi − xi−1) + ki+1(xi − xi+1) = fi(t), (1)

for i = 1, 2 . . . , N − 1 and

mN ẍN + cN(ẋN − ẋN−1) + kN(xN − xN−1) = fN (t) (2)

for i = N (Gladwell 1986). Here xi represents the displacement of mass mi, an overdot is used to

represent differentiation with respect to time t and fi(t) represents the forcing function for the ith

degree of freedom. These expressions govern the motion while the displacement xN is less than

some fixed value xs corresponding to the position of an impact stop. When xN = xs an impact

occurs. This impact is modelled using an instantaneous coefficient of restitution rule such that

ẋN (t+) = −rẋN (t
−
) (3)

where, t
−

is the time just before impact, t+ is the time just after impact and r is the coefficient of

restitution with a value in the range r ∈ [0, 1]. For this system we assume that only mass mN can

impact.

The equations of motion for the coupled masses can be expressed in matrix form as

[M ]ẍ + [C]ẋ + [K]x = f(t) xN < xs (4)

where [M ], [C], [K] are the mass, damping and stiffness matrices respectively, x = {x1, x2 . . . , xN}T

the displacement vector and f(t) = {f1, f2 . . . , fN}T the external forcing vector. The coupling

between masses occurs via the matrices [C] and [K], which are nondiagonal (although usually

banded). The mass matrix [M ] is a diagonal matrix.

In matrix form the coefficient of restitution rule is

ẋ(t+) = [R]ẋ(t
−
) xN = xs (5)
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where [R] is the N ×N matrix

[R] =





























1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . .

...
...

0 . . . 0 1 0

0 . . . 0 0 −r





























. (6)

We assume that the damping matrix [C] is linearly proportional to the stiffness matrix [K], such

that equation 4 can be decoupled for a set of [M ], [C], [K] matrices in the usual way (Meirovitch

1967). We consider the simplest case where mj = m, cj = c, kj = k for j = 1, 2, . . . , N . This

assumption is analogous to a commonly used modelling technique, where systems with continuous,

uniformly distributed mass and stiffness, are assumed instead to consist of a series of lumped

masses. Thus we can rewrite Eq. (4) in the form

[I]ẍ +
c

m
[E]ẋ +

k

m
[E]x =

1

m
f(t) (7)

where [E] is the N ×N coupling matrix

[E] =
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
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

, (8)

and [I] is the identity matrix.

2.1 Modal decoupling

Away from impact, xN < xs the system is governed by Eq. (7). By considering the undamped,

unforced, (non-impacting) system, the natural frequencies of the system are given by ωj =
√

λjk/m

for j = 1, 2, . . . , N (Timoshenko et al. 1974) where λj are the eigenvalues of matrix [E]. The

eigenvectors ξj corresponding to each λj normalised such that ‖ ξj ‖= 1 define the corresponding

mode shapes of the system. Using these eigenvectors we can construct a modal matrix [Ψ] =

[{ξ1}, {ξ2}, . . . , {ξN}]. The modal matrix is orthogonal such that [Ψ]T = [Ψ]−1. In addition

[Ψ]T [E][Ψ] = [Λ], the diagonal matrix of the eigenvalues of [E].
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We can then define modal coordinates, using the linear transform x = [Ψ]q where q =

{q1, q2, . . . qN}T . Substituting this into Eq. (7) and premultiplying by [Ψ]T decouples the sys-

tem to give

[I]q̈ +
c

m
[Λ]q̇ +

k

m
[Λ]q =

1

m
[Ψ]T f(t). (9)

Equation (9) represents a set of N uncoupled equations such that for each mode of vibration

q̈j + 2ζjωj q̇j + ω2
j q =

1

m

N
∑

i=1

ΨT
ijfi, j = 1, 2, . . . , N, (10)

where ζj = (c/2)
√

λj/km is the modal damping coefficient. Hence in modal coordinates the effect

of the forcing is distributed across each mode via the modal matrix ΨT such that each mode is

separately subjected to a proportion of the overall forcing terms.

However, the motion of the system is constrained such that xN < xs during free flight of mass

N . If we define the vector ψ = {ΨN1,ΨN2, . . . ,ΨNN}T , then in terms of modal coordinates an

impact occurs when ψ · q = xs. Hence Eqs. (9) and (10) are valid only for ψ · q < xs which is

equivalent to the condition that xN < xs.

We will consider only harmonic forcing of the form f(t) = A cos(Ωt), A = {A1, A2, . . . , AN}T .

Thus we can simplify Eq. (10) to give

q̈j + 2ζjωj q̇j + ω2
j q =

Fj

m
cos(Ωt), (11)

where F = [Ψ]T A, F = {F1, F2, . . . , FN}T .

Equation (11) can be solved exactly, and for under-damped oscillations 0 < ζj < 1 the solution

for the jth mode is

qj = e−ζjωj(t−t0)(Bi cos(ωdj(t− t0)) + Ci sin(ωdj(t− t0))) +Qj cos(Ωt− φj) (12)

where ωdj = ωj

√

1 − ζ2
j is the damped natural frequency. Also

Qj =
Fi

m
[

(ω2
j − Ω2)2 + (2ζjΩωj)2

]1/2
(13)

is the jth modal transfer function,

φj = arctan

(

2ζjΩωj

(ω2
j − Ω2)

)

(14)

is the jth modal phase and Bi and Ci are arbitrary constants determined from the initial conditions.
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2.2 Initial conditions and computing solutions

Away from or between impacts xN < xs, we can find the exact solution for any N degree

of freedom system with constant mass, stiffness and viscous damping. We therefore take initial

conditions just after an impact such that t0 = t+. Initial conditions for each modal displacement

and velocity can then be found using the relation q = [Ψ]−1x and the time derivative q̇. In general

the time of impact cannot be found analytically (Shaw & Holmes 1983), and as a result solutions

must still be computed numerically. This is achieved by iterating the exact solution, Eq. (12),

forward in small time increments ∆t until an impact has occurred, then a root finding method

is used to locate the time of impact. The impact rule, Eq. (5), is then applied before the next

iteration. Thus, by computing the evolution of the modal trajectories between impacts, we are in

effect computing the impact map for the system.

As, in this formulation, only a single mass is constrained, this map can be defined in a similar

way to the map for a single degree of freedom system (Shaw & Holmes 1983). The impact map

is formed by considering the hypersurface in phase space, Σ, defined by the impact stop xN = xs.

This is a Poincaré type section through the flow, in phase space Rn, where for aN degree of freedom

oscillator n = 2N + 1, for example, a two degree of freedom system has a five dimensional phase

space. The impact map is formed by intersections between this section and the flow. For systems

with a single impacting mass we can project the dynamics of the impact map into two dimensional

plane, defined by impact velocity and time (or phase; time modulo the forcing frequency) of the

impacting mass. Conceptually this allows us to view the effect of higher dimensional dynamics on

an impacting system, reduced to an impact map of the same dimension as that for a single degree

of freedom system.

Periodic orbits in the flow, can be locate as fixed points in the impact map PI : (τi, vi)j 7→
(τi, vi)j+1, where vi represents the velocity of mass N at impact, and τi the corresponding time

of impact. Thus for a fixed point η = {τi, vi}, η ∈ Σ, of the map PI , PI(η) − η = 0. Defining

the residual map U(η) = PI(η) − η, a fixed point corresponds to U(η) = 0. The fixed points can

be computed using the Newton-Raphson root finding method as described by Foale & Thompson

(1991). To implement this procedure numerically, we have to include all variables of the linear

system except xN which is always equal to xs in the impact map. Thus we form a vector η =

{x1, . . . , xN−1, τi, v1, . . . , vi} for this purpose, where τi, the time of impact of mass N , is used as a

variable instead of xN .

For the single degree of freedom system it is possible to obtain analytical expressions for
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eigenvalues, (Shaw & Holmes 1983), but for systems with more than a single degree of freedom

such expressions are not readily available. Pun et al. (1998) used a variational type method

to compute stability for a two degree of freedom system. This requires some analytical and

computational effort, especially for systems with N > 2. For this analysis, we have instead used a

finite difference approximation detailed in Foale & Thompson (1991). Thus, when a fixed point in

the impact map has been found using the Newton-Raphson method, it’s stability can be determined

by examining the eigenvalues of the Jacobian of the impact map. Finally by extending the variable

space to include a parameter µ, such that η = {x1, . . . , xN−1, τi, v1, . . . , vi, µ}, we can follow the

path of a fixed point solution as µ is varied.

A significant drawback of these path following methods is that they fail to work when nons-

mooth discontinuities are present in the dynamics of the system. This occurs in impacting systems

at a grazing bifurcation (Nordmark 1991). Thus for the numerical simulations in section 3, we use

the path following methods only for locally identifying bifurcations of fixed points.

3 Example: A two degree of freedom system

As an example, we consider a two degree of freedom impact oscillator with, masses m1 = m2 =

1, stiffness k1 = k2 = 1, viscous damping c1 = c2 = 0.1, coefficient of restitution r = 0.7 and stop

distance xs = 0.1. This parameter choice will enable us to investigate a wide range of dynamical

behaviour including chaos, chatter and sticking. The choice of c = 0.1 and r = 0.7 is in relevant

to the energy loss characteristics of a wide range of mechanical systems. By selecting the stop

distance xs = 0.1 impacting motion can occur for a wide frequency range, but the system is also

capable of non-impacting motion. Finally we choose unity mass and stiffness values to obtain a

simplified relationship between the natural frequency values and the system eigenvalues.

Using Eqs. (1) and (2), the equations of motion for the coupled masses can be expressed as

ẍ1 + 0.1(2ẋ1 − ẋ2) + (2x1 − x2) = f1(t),

ẍ2 + 0.1(ẋ2 − ẋ1) + (x2 − x1) = f2(t).

(15)

where x1 represents the displacement of mass m1 and x2 the displacement of mass m2. When

x2 = xs an impact occurs and an instantaneous coefficient of restitution rule is applied via Eq.

(3), such that ẋ2(t+) = −0.7ẋ2(t−).

Setting A2 = 0 and A1 = 0.5, the non-impacting response of the system is shown in Fig. 2. This

7
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shows a numerically generated plot of the maximum minus the minimum displacement per period

for each mass against forcing frequency Ω. The solid line corresponds to the displacement of x2 and

the broken line to the displacement of x1. Two clear resonance peaks can be seen corresponding

to the two natural frequencies of the non-impacting system, ω1 = 0.618 and ω2 = 1.618.

The eigenvalues of the 2 × 2 coupling matrix [E] are λ1 = 0.382 and λ2 = 2.618, and the

corresponding normalised eigenvectors, ξ1 = [0.526, 0.851]T and ξ2 = [−0.851, 0.526]T , give the

mode shapes for the system. We see that for mode 1 the masses are in phase, and mode 2 the

masses are out of phase (Timoshenko et al. 1974).

3.1 Vibro-impact motions

A bifurcation diagram indicating the maximum minus minimum displacement (x2) of mass

2 sampled per period of forcing for the two degree of freedom example, is shown in Fig. 3 (a).

Regimes of both periodic and non-periodic impacting motion exist within this parameter range,

and we classify periodic impacting motions as P(p, q), where p impacts occur in q forcing periods

of 2π/Ω. For the periodic regimes, Fig. 3 (a) indicates periodicity of the motion in terms of the

number of forcing periods q.

In Fig. 3 (b) the velocity at impact vi = ẋ2(t−) is plotted against forcing frequency. This figure

indicates the periodicity of the motion in terms of the number of impacts p. By comparing the

two figures we can see for example, that at Ω = 0.6 a P(2, 1) solution exists; two impacts (p = 2)

from Fig. 3 (b) in one forcing period (q = 1) from Fig. 3 (a). The time series of this motion is

shown in Fig. 4 (d), where the displacement x1 is shown as a broken line, x2 as a solid line and

the position of the impact stop, xs, corresponds to 0.1 on the displacement axis.

Increasing Ω, the P(2, 1) solution undergoes a series of bifurcations at Ω ≈ 0.85 after which

it stabilises onto a P(1, 1) solution. The time series for this P(1, 1) solution is shown in Fig. 4

(e) where Ω = 0.9. At Ω = 1.4 the solution is still P(1, 1), Fig. 4 (f), but the oscillation of x1 is

now reduced and offset from the origin. The P(1, 1) solution bifurcates into a P(2, 2) solution via

a period doubling bifurcation at Ω ≈ 1.61, and again at Ω ≈ 1.68 such that at Ω = 1.7 a P(4, 4)

solution exists, Fig. 4 (g). After this the motion becomes chaotic with a small window of P(2, 3)

motion at Ω ≈ 1.74.

Again increasing Ω the motion becomes stable as a P(1, 2) impacting motion, Fig. 4 (h). At

Ω ≈ 2.19 the motion becomes non-impacting. The impact map is undefined for this motion as can

be seen in Fig. 3 (b).
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3.2 Grazing bifurcation leading to changes in periodicity

Considering more carefully the bifurcations which occur between vibro-impact motions, we

examine the region close to Ω = 0.85. Figure 5 (a) shows a close up of the bifurcation diagram

near Ω = 0.85. In this figure dots correspond to the numerically computed solution, and the line

shown in the right hand side of the figure was computed using the path following method outlined

in Sec. 2.2, by decreasing Ω from Ω = 1.0. This computation breaks down at a bifurcation point

close to Ω = 0.856, as additional impacts occur, destroying the P(1, 1) fixed point in the impact

map.

We can understand the behaviour of this region by considering the time series plots shown in

Fig. 5 (b), (c) and (d). Figure 5 (b) shows the P(2, 1) motion which exists at Ω = 0.83. At

Ω ≈ 0.831 the motion “loses” an impact via a grazing bifurcation. However, instead of becoming

a P(1, 1), the period of the motion doubles such that a P(3, 2) motion is formed, Fig. 5 (c). In

fact from Fig. 5 (c) we see that the first period of the P(3, 2) motion (between the first and third

impacts) is qualitatively similar to the P(2, 1) motion, only in the second period (between the

third and fourth impact) can the loss of an impact be seen. Thus in this case the periodicity of

the motion has changed in an apparently additive way P(p, q) 7→ P(p + 1, q + 1), although the

underlining cause of the bifurcation is the grazing event which occurs close to Ω = 0.831.

Increasing Ω, the P(3, 2) motion persists, until another bifurcation occurs at Ω ≈ 0.856. Again

the underling cause of this change in behaviour is due to a grazing event. The motion loses an

impact, and the period of the motion halves simultaneously, such that a P(1, 1) motion occurs,

Fig. 5 (d). By comparing Fig. 5 (c) and (d), we observe that in effect the first period of the

P(3, 2) motion has lost an impact, such that the two period are now the same and the periodicity

of the motion thus halves.

These bifurcations are interesting because changes of periodicity and number of impacts change

simultaneously, in an apparently non-symmetric way. The cause of this behaviour in the two degree

of freedom system, is due primarily to the occurrence of a grazing bifurcation which occurs when

Ω is altered. This grazing bifurcation leads to a period of transient instability after which the

system is attracted to a new (in this case periodic) solution. We conjecture from our simulations

that during the period of transient instability directly after grazing, the influence of the additional

mass in the system is significant. As a result we observe periodic solutions which we would not

normally observe in a single degree of freedom system.

For this particular set of parameter values no saddle node type bifurcations were observed, and
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no regions of hysteresis have been shown to exist. This again is in contrast to the single degree of

freedom system impact oscillator, where hardening spring behaviour is observed.

3.3 Resonance Peaks

An interesting feature of the bifurcation diagram shown in Fig. 3 (a) is the occurrence of three

clear resonance peaks at forcing frequency values of Ω ≈ 0.82, Ω ≈ 1.17 and Ω ≈ 1.69. Comparing

this with Fig. 3 (b) for the impact velocity a clear resonance peak can be seen at Ω ≈ 1.16 with

lesser peaks at Ω ≈ 0.82 and Ω ≈ 1.69. This implies that at Ω ≈ 0.82 and Ω ≈ 1.69 the impact

velocities are less than the main resonance peak but that the difference between the maximum

and minimum displacement per period is almost the same as the main resonance peak.

This effect is due to the difference in the vibro-impact motions at each resonance peak. When

Ω ≈ 0.82 the motion is P(2, 1), at Ω ≈ 1.17 the motion is P(1, 1), and at Ω ≈ 1.69 the motion

becomes P(4, 4). Figure 6 shows the phase portrait of each of these motions, from which it can be

seen how the maximum displacement of each motion is approximately the same but the impact

velocity of the P(1, 1) motion (Fig. 6 (b)) is significantly greater than the impact velocities of the

other two motions.

We also note that the occurrence of these resonance peaks does not coincide with the non-

impacting resonance peaks on the frequency axis. This is not unexpected for an impact oscillator,

as it is known for a single degree of freedom system that reducing the stop distance increases

the resonant frequency of the system (Todd & Virgin 1996). This analysis is based on a P(1, 1)

motion, and for a stop distance of zero the resonant frequency of the single degree of freedom

impact oscillator is double that of the non-impacting oscillator.

This could account for the resonance peak around Ω ≈ 1.17 which is close to double the first

natural frequency of the system, and the motion is P(1, 1). In fact considering only Fig. 3 (b),

where the main resonance occurs at this value, this would seem appropriate. However, there is no

similar peak corresponding to a value double that of the second natural frequency. Thus for the two

degree of freedom system, the increase in natural frequency appears similar to that which occurs

in the single degree of freedom system occurs for P(1, 1) motion only. The resonant behaviour

which occurs at Ω ≈ 0.82 and Ω ≈ 1.69, is a result of different periodic impacting motions, and

cannot be predicted by our knowledge of single degree of freedom system dynamics.

10
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3.4 Sticking and chatter motions

For chattering to occur in a vibro-impact system, the acceleration of the impacting mass must

remain positive for a sequence of low velocity impacts. If the sequence is long enough the velocity

of the impacting mass tends to zero such that the mass effectively becomes stuck to the stop.

Chatter leading to sticking is referred to as complete chatter, if the sequence does not lead to

sticking the chatter is incomplete. A detailed study of this behaviour including the dynamics

associated with such motions in the single degree of freedom impact oscillator has been considered

by Budd & Dux (1994a).

After a complete chatter sequence, the impacting mass, m2 for the two degree of freedom

system, is held against the stop. The force holding m2 in this position during sticking is given by

Fs = cẋ1 + k(x1 − xs). (16)

Thus the mass will remain against the stop while Fs > 0, and the point where Fs decreases through

zero represents the end of the sticking motion.

While m2 is stuck to the stop, only m1 can oscillate. The motion of m1 is then governed by

the equation

ẍ1 + 2(0.1)ẋ1 + (2x1 − x2) = 0.5 cos(Ωt). (17)

When trying to model the system numerically, a chattering sequence leads to the time between

impacts decreasing rapidly to zero. In order to overcome the resulting computational difficulties,

we adopt the method proposed by Cusumano & Bai (1993) by setting a threshold level for the

interval between impacts. Once the time interval between impacts falls below this level we assume

m2 is stuck to the stop. The time at which Fs = 0 is computed by root finding to locate the end

of the sticking period. We note that the method of Cusumano & Bai (1993) may have limitations

for certain systems (Johansson et al. 1999; Johansson et al. 1999).

Impacting motion occurs in the range 0 < Ω < 2.19. For higher Ω values, the period decreases

such that chattering remains incomplete. In fact for this set of parameters all sticking motions

(i.e. complete chatter) are observed for Ω < 0.35. This can be seen in Fig. 3 (b) where sticking

motions exist in the range 0.2 < Ω < 0.35. In addition for Ω > 0.35, impact velocities become

much higher, so that motions become periodic impacting motions with a high number of impacts q

rather than incomplete chatter motions. This said, defining the boundary between these two types

of motion is difficult. For example Fig. 4 (c) shows the time series of the motion just after the
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region of sticking motions at Ω = 0.4, which is P(4, 1). Thus for this model, chatter and sticking

motions occur in regions of low forcing frequency where the response has low amplitude.

Examples of a periodic motion with both chatter and sticking are shown in Fig. 4 (a) and (b).

As there are effectively an infinite number of impacts during the period (under the assumption

of an instantaneous impact rule) we denote such a motion as P(∞, q). Considering Fig. 4 (b)

during one period, starting at time t = 770 for example, the motion of mass 2 is in free flight and

approximately in phase with the motion of mass 1. At time t ≈ 778 a first impact occurs, followed

by a complete chatter sequence until mass 2 becomes stuck to the stop. During this time mass 1

is displaced beyond the stop distance thus causing Fs to remain positive. As mass 1 returns from

beyond the stop, Fs passes through zero and m2 is thus released from the sticking position into

free flight again. The period of the forcing is approximately 31.42 seconds, thus we can see that

the motion repeats in one period of forcing, i.e. from t = 770 to t ≈ 801.42 seconds. Therefore

the motion can be characterised as P(∞, 1) motion. It is interesting to note that during the time

when mass 2 is chattering and then sticking, mass 1 appears to have an additional higher frequency

oscillation. This effect can be seen more clearly in Fig. 4 (a) where Ω = 0.1.

A close up of the sticking region of the bifurcation diagram, Fig. 3 (b), is shown in Fig. 7.

This includes the motions shown in Fig. 4 (a) and (b). At a forcing frequency of Ω = 0.2 the

complete chatter combined with sticking motion exists. As the forcing frequency is increased this

type of motion persists until a frequency just greater than Ω = 0.3. At this value the sticking

phase of motion no longer exists, so the chatter is incomplete. Continuing to increase frequency

this motion successively losses impacts until the P(2, 1) motion is reached at Ω ≈ 0.47.

The sticking region itself appears to have a complex bifurcation structure. There are two

points Ω ≈ 0.138 and Ω ≈ 0.228 where the impact velocities of the chatter sequence becomes

small compared to the rest of the region. Between these points chattering sequences with higher

impact velocities are encountered, although in comparison with the complete bifurcation diagram

3 (b) all the impact velocities for chatter and sticking motions are all relatively low.

3.5 Chaotic motion

For the set of parameters used in this example, the two degree of freedom system exhibits a

range of chaotic motion between Ω = 1.7 and Ω = 1.82. We have computed the impact map for

the two degree of freedom system for a set of Ω values across this chaotic range, Fig. 8. Here we

can see the initial transition from P (4, 4) impacting motion at Ω ≈ 1.71 to chaotic motion as Ω is
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increased. Continuing to increase Ω, the motion again becomes P (4, 4) at Ω ≈ 1.725, then P (2, 2)

and back to chaotic motion at Ω ≈ 1.75. Finally the motion changes from chaotic to P (2, 2) at

Ω ≈ 1.81.

The changes in the structure of the chaotic attractors can be clearly seen as Ω is varied. Four of

these chaotic attractors Ω ≈ 1.701, 1.72, 1.75, 1.81 occur at an Ω value close to a grazing bifurcation

from periodic motion. These are the attractors of primary interest in this study, as they relate

to the parameter values for which a low dimensional mapping which approximates the dynamics

of the system, may be possible. Qualitatively, it appears that the attractors close to grazing are

composed (at least in part) of a series of disconnected one dimensional sets. This can be seen

clearly in the attractor when Ω = 1.72, which appears to be composed of two disconnected one

dimensional sets, one containing “low” velocity impacts, and the other “high” velocity impacts. A

close up of the “high” velocity set is shown in Fig. 9 (c), where the (approximately) one dimensional

nature can be clearly seen. Also evident from this figure is a sharp point of discontinuity in the

set, a characteristic feature of impact systems, close to grazing.

The attractor which occurs when Ω = 1.701 does not divide simply into attracting regions of

“high” and “low” velocity impacts, here there appears to be a set containing “medium” velocity

impacts as well. The structure of this “medium” set is shown in detail in Fig. 9 (a). This complex

structure appears qualitatively, to be composed of many one dimensional sets. However, unlike

in the single degree of freedom system, a “fingered” structure is not evident. However, finger like

structures are visible in the high velocity set when Ω = 1.701, as well as in the attractors which

occur at Ω = 1.75 and Ω = 1.77.

Away from grazing, the structure of the attractors have less one dimensional components. A

close up of the region of high velocity impacts found when Ω = 1.715 is shown in Fig. 9 (b). This

structure appears to be similar to the “spiral” structures observed in the work on DC/DC Buck

converters by di Benardo et al. (1998). Although, unlike the spirals in the Buck converter, those

in our study have nonsmooth points at one end only, Fig. 9 (b).

3.5.1 Low dimensional mappings

For single degree of freedom impact oscillators close to a grazing bifurcation, the corresponding

chaotic attractors have been shown to be composed of a series of one dimensional sets (Budd &

Dux 1994b). This has led to the development of a one dimensional mapping which represents the

underlying dynamics of a single degree of freedom system close to grazing (Nordmark 1997). This
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map can be expressed as

Xn+1 =

{

s
√
d−Xn + λXn Xn ≤ d

λXn Xn > d
(18)

where now d is the bifurcation parameter and s and λ are constant parameters, usually scaling

allows us to take s = 1. An example of the functional form of this map is shown in figure 11

when d = s = 1 and λ = 0.2. Fredriksson & Nordmark (1997) investigated the possibility of

extending this mapping concept to impact oscillators with many degrees of freedom, and found

that an approximate local mapping of low (close to one) dimension could be formulated.

Budd & Dux (1994b) tested for the possible existence of a one dimensional map by plotting a

return map vi(j) → vi(j+ 1), of low velocity impacts, from which they found a discontinuous, but

approximately one dimensional relationship existed close to grazing. The return map of low velocity

impacts (vi < 0.3) for the ’low’ velocity set when Ω = 1.72 is shown for the two degree of freedom

system system in Fig. 10 (a). Here we can see that the relationship between successive low velocity

impacts is approximately one dimensional (and branched) except in the range 0.22 < vi(j) < 0.23,

where more complex dynamics exist. In fact this structure appears to have qualitative similarities

with the one dimensional map developed for the the single degree of freedom impact oscillator,

Eq. 18 (Fig. 11). The one dimensional mapping is the composition of a linear (straight line) part

and a parabolic part, which are joined at Xn = d by a nonsmooth discontinuity. The structure

in Fig. 10 (a) also has an approximately linear part, and a parabolic curved structure, although

there is no evident nonsmooth discontinuity. This provides numerical evidence for the existence

of low dimensional mappings in N degree of freedom oscillators as suggested by (Fredriksson &

Nordmark 1997).

For other attractors close to grazing more complex dynamics appear to predominate. For

example, the return mapping of low velocity impacts (vi < 0.22) for the attractor which exists

when Ω = 1.75 is shown in Fig. 10 (b). Here, there is no evident one dimensional relationship

between successive low velocity impacts, despite the appearance of one dimensional sets in the

original attracting structure, Fig. 8. In fact, the attractor at Ω = 1.72 is the only one for this

example which has a close to one dimensional relationship between successive low velocity impacts.

In which case the formulation of a low dimensional mapping may only be possible for this grazing

event alone.

A further observation regarding the attractor at Ω = 1.72, is that it’s low velocity set is bounded

from above and below, such that 0.15 < vi < 0.25. This is in contrast to all the other attractors,
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where the low velocity set has impact velocities which tend to zero, vi → 0.

3.5.2 Chaotic chatter

Finally, we note one further point regarding this region of chaotic motion. The transition

between periodic and chaotic motion will typically occur via grazing or period doubling. However,

in the region between the chaotic attractor at Ω = 1.72 and the P(4, 4) motion at Ω = 1.725,

a region of chaotic chatter exists. A typical time series of this motion is shown in Fig. 12.

This motion occurs after a P(32, 32) motion, but just before the more regular chaotic motion at

Ω = 1.72.

4 Conclusions

In this work we have considered the dynamics of multi-degree of freedom impact oscillators,

using the example of a two degree of freedom system. From a detailed numerical study of this

system we have observed a range of dynamical behaviour, including periodic motion, chatter (both

periodic and chaotic), sticking and chaos. Of particular interest are phenomena which do not

occur in single degree of freedom system, such as non-symmetric changes in periodicity, multiple

resonance peaks and the existence of chatter in a system without preloading. From a modelling

perspective, if such phenomena occur in a physical system, then using a multi-degree of freedom

model may be necessary to capture the dynamics of the system.

We have also studied the nature of the chaotic motion which can occur for the two degree of

freedom example. We observed that for a set parameter values where the system is close to grazing,

it may be possible to formulate a low dimensional relationship between low velocity impacts. This

is concurrent with the work carried out by Fredriksson & Nordmark (1997) who reduced the

dynamics of a multi-degree of freedom impact oscillator (locally close to grazing) to a nearly one

dimensional map. However, this is a highly localised phenomena in the system studied here, which

itself is only one set of parameter values from a much wider range. At other grazing events more

complex dynamics occur for which low dimensional mappings would not be applicable.
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Figure Captions

• Figure 1. Schematic representation of an N degree of freedom impact oscillator.

• Figure 2. Numerically computed non-impacting resonance curves for the two degree of free-

dom coupled linear oscillator, maximum minus minimum displacement vs forcing frequency.

Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, forcing A2 = 0.0, A1 = 0.5.

Solid line represents x2, dotted line represents x1.

• Figure 3. Numerically computed two degree of freedom impact oscillator bifurcation diagram.

Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, xs = 0.1, r = 0.7, forcing

A2 = 0.0, A1 = 0.5. (a) maximum minus minimum displacement x2 per period vs forcing

frequency Ω. (b) Impact velocity ẋ2(t−) vs forcing frequency Ω.

• Figure 4. Numerically computed time series for a two degree of freedom impact oscillator.

Solid line x2, broken line x1. Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1,

xs = 0.1, r = 0.7, forcing A2 = 0.0, A1 = 0.5. (a) Ω = 0.1 (b) Ω = 0.2; (c) Ω = 0.4; (d)

Ω = 0.6 (e) Ω = 0.9; (f) Ω = 1.4; (g) Ω = 1.7; (h) Ω = 2.0.

• Figure 5. Identifying bifurcations for two degree of freedom impact oscillator example shown

in Fig. 3. (a) close up of bifurcation diagram: Time series of motion; (b) Ω = 0.83; (c)

Ω = 0.85; (d) Ω = 0.87.

• Figure 6. Numerically computed two degree of freedom impact oscillator phase portrait

showing large amplitude motions. Solid line x2, broken line x1. Parameter values; m1 =

m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, A1 = 0.5, A2 = 0.0, xs = 0.1, r = 0.7 and r = 0.7. (a)

Ω = 0.82; (b) Ω = 1.17; (c) Ω = 1.69.

• Figure 7. Two degree of freedom impact oscillator numerical bifurcation diagram; chatter

and sticking region. Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1 forcing

A2 = 0.0, A1 = 0.5, xs = 0.1 and r = 0.7.

• Figure 8. Numerically computed impact maps for a two degree of freedom impact oscillator.

Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, xs = 0.1, r = 0.7, forcing

A2 = 0.0, A1 = 0.5.
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• Figure 9. Features of the numerically computed impact maps for a two degree of freedom

impact oscillator. Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, xs = 0.1,

r = 0.7, forcing A2 = 0.0, A1 = 0.5.

• Figure 10. Numerically computed Impact velocity return maps for a two degree of freedom

impact oscillator. Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 = 0.1, xs = 0.1,

r = 0.7, forcing A2 = 0.0, A1 = 0.5.

• Figure 11. Functional form of the one dimensional impact map for s = d = 1 and λ = 0.2.

• Figure 12. Chaotic chatter motion.Parameter values m1 = m2 = 1, k1 = k2 = 1, c1 = c2 =

0.1, xs = 0.1, r = 0.7, forcing A2 = 0.0, A1 = 0.5, Ω = 1.721.
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