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Chattering-Free Digital Sliding-Mode Control With

State Observer and Disturbance Rejection
Vincent Acary, Bernard Brogliato, and Yury V. Orlov

Abstract—In this paper, a novel discrete-time implementation
of sliding-mode control systems is proposed, which fully exploits
the multivaluedness of the dynamics on the sliding surface. It is
shown to guarantee a smooth stabilization on the discrete sliding
surface in the disturbance-free case, hence avoiding the chattering
effects due to the time-discretization. In addition, when a distur-
bance acts on the system, the controller attenuates the disturbance
effects on the sliding surface by a factor (where is the sampling
period). Most importantly, this holds even for large . The con-
troller is based on an implicit Euler method and is very easy to im-
plement with projections on the interval [ 1, 1] (or as the solution
of a quadratic program). The zero-order-hold (ZOH) method is
also investigated. First- and second-order perturbed systems (with
a disturbance satisfying the matching condition) without and with
dynamical disturbance compensation are analyzed, with classical
and twisting sliding-mode controllers.

Index Terms—Backward Euler method, discrete-time sliding
mode, disturbance compensation, sliding-mode, twisting con-
troller, zero-order-hold method.

I. INTRODUCTION

S
LIDING-MODE control is an important field of feedback

control, with many applications, see, e.g., [8], [18], [24],

[27], [34], and [35]. The issue related to the digital definition

and implementation of sliding mode systems, has been the ob-

ject of many works since the publication of pioneering works

[12], [25], see, e.g., [5], [15], [20], [29], [30], [34], [35], and

[38]. It appears however that such control methods are not yet

fully understood and their implementation is still prone to se-

rious problems like numerical chattering [6], [16], [17], [19],

[21], [35]–[37], [39]. The objective of this paper is threefold: 1)

to show that an implicit Euler controller permits to numerically

implement the multivalued part of discontinuous sliding-mode

controllers and consequently suppress the numerical chattering

that is present in the explicit implementations [16], [17], [37],

2) to extend it to the case when one part of the state is ob-

served, 3) to show that when a disturbance acts on the system
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(full-state or partial-state feedback) the numerical chattering is

still suppressed and the disturbance is rejected. The numerical

chattering corresponds to the oscillations (limit cycles) which

are solely due to the digital implementation of the controller.

The disturbance chattering corresponds to the oscillations that

can appear due to a high frequency disturbance acting on the

system. By disturbance rejection it is meant that in the ideal

(analytical) continuous-time system, the disturbance is exactly

rejected, while in the digital implementation it is attenuated by

a factor where is the sampling time. The major fea-

tures of the implicit causal discrete-time input are on one hand

that the continuous-time system sliding surface (that may be of

codimension larger than one) is not changed after the discretiza-

tion, on the other hand a finite sampling frequency is sufficient

to assure the sliding motion of the discrete-time system, and fi-

nally the chattering effects observed on the closed-loop state

with explicit controllers (named the numerical chattering) are

suppressed.

A first fundamental step is to eliminate the numerical chat-

tering with the application of a suitable implicit discrete-time

controller. The disturbance chattering will not be eliminated in

the system’s state around the sliding surface, but the disturbance

is attenuated by a factor (of a factor on the system’s posi-

tion for an order-two system), which is in accordance with the

estimations provided in [22], [23], [32]. In practice it is expected

that this corresponds to a high compensation of the disturbance.

The control input obtained by the implicit method is not of the

bang-bang type when the state evolves on the sliding surface.

On the contrary it is a continuous input which evolves inside

the multivalued part of the sign multifunction (the multivalued

part corresponds in the Filippov case to the set representing the

closed convex closure of the vector fields on the switching sur-

face, which is a segment if the codimension is equal to one).

Definition 1: Let be the sampling period,

. An -discrete-time sliding surface is a codimension

subspace of the state space, such that the discrete state vector

satisfies for all ,

, , and all .

A very attractive feature of the digital method based on the

implicit Euler method is that the numerical sliding surface

and the continuous-time sliding surface satisfy :

the discretization does not modify the sliding surface [1]. If, for

instance, , ,

, then . The controllers

which are designed in this paper consist of the stabilization of

an unperturbed nominal plant, coupled to the plant’s dynamics.

The idea of keeping exact sliding mode in the discrete case is
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not new [12]; however, the systematic design of controllers that

guarantee it seems to be novel (see remark 1 below for details).

The paper is organized as follows. Section II is dedicated to

the analysis of a simple first-order system, without and with

disturbance compensation. An extension to higher-order sys-

tems is also presented, with the Euler and the ZOH methods. In

Section III second-order systems are treated and several types of

controllers are analyzed. In all cases the continuous-time system

is introduced, then its time-discretization is studied, and finally

simulation results are shown. Conclusions end the paper.

Notation: In the sequel is the multivalued sign

function:

if

if

if

where is a singleton. Let be a closed non-empty

convex set. The normal cone to at is

for all . Let be

an positive definite matrix. For any and ,

one has

(1)

where denotes the orthogonal projection of on

in the metric defined by . For any reals and , one has

(2)

Readers not familiar with set-valued functions may have a

look at [2, Fig. 1.9] or at [3, Fig. 2.11] for a simple illustra-

tion of (2). For , ,

, . For any ma-

trix and vector , the norms and are supposed to be

compatible norms so that . For a function

one has

almost everywhere on . is the identity matrix.

The approximation of the value of a function at the time

is denoted as . The power set of , the set of all subsets of

, is denoted by . A control input is said causal if it does not

explicitly depend on future values of the state or other variables.

II. FIRST-ORDER SYSTEM

We analyze in this section the simplest case to illustrate how

the method works. Two cases are treated: without and with dis-

turbance compensation (in the continuous-time system). The

basic ideas are illustrated on a simple first-order system.

A. The Case Without Disturbance Compensation

Let us start by considering the following basic sliding mode

system:

(3)

where is the Lebesgue measurable perturbation such that

. The control input is here . It

may be seen, in the language of differential inclusions theory,

as a Lebesgue measurable selection of the set-valued right-hand

side of the system [33]. Choosing correctly this selection is the

object of the following discretization. The system (3) has

as its unique equilibrium point, which is globally asymptotically

stable and is reached in finite time (this may be shown with the

Lyapunov function ). The discrete-time sliding mode

system is implemented as follows:

(4)

The first two lines of (4) may be considered as the nominal un-

perturbed plant, from which one computes the input at time .

The input is said implicit since it involves in the sign multi-

function. It is however a causal input as shown next, and is

just an intermediate variable which does not explicitly enter into

the controller. The third line is the Euler approximation of the

plant, on which the disturbance is acting. One has

on the time-interval .

Proposition 1: Let be the given initial state. Then after a

finite number of steps one obtains that and

for all . In other words, the disturbance is attenuated by

a factor . Moreover the approximated derivative of the state

satisfies for all

whereas for all . The control input

takes values inside the sign multifunction multivalued part on

the sliding surface for all .

Proof: Let us start with the case . The gener-

alized equation and is

found to be equivalent, using (1) and (2), to the inclusion

which is equivalent to

. Thus, one obtains the following:

• If then and .

• If then and .

• If then , and

.

• If then , and .

From the above we infer the following:

• If then

. Since the state

is strictly decreased from step to step .

• If then

. Since the state

is strictly increased from step to step .

One deduces that if the initial data satisfies then

after steps one gets , where

stands for the integer part of . Indeed at the state

reaches the interval and then the unique solution for

is zero. From one deduces that . In the

case that , it is easily to check that .

To compute the next value of one has to solve the gener-

alized equation

(5)
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whose unique solution is found by inspection to be .1

The reasoning can be repeated to conclude that for all

. Therefore, for all . Now let

us assume that for we have

(6)

that is

(7)

In this case, the state is given by

(8)

and therefore

for all (9)

so that for all .

Notice that the backward (or implicit) Euler discretization

of the unperturbed plant coincides for (3) with the zero-order

holder (ZOH) discretization. Considering the perturbed plant,

the only difference between (4) and the ZOH discretization is

that becomes , and in (8) and (9)

has to be replaced by . The attenuation of

the disturbance still holds with the ZOH method. In other words,

the state of the plant satisfies .

In a more general setting, the discretization of the controller and

the discretization of the plant have to be the same (both implicit

Euler, or both ZOH) in order for the disturbance attenuation to

hold. Notice that the above shows that is a Lyapunov

function for the nominal system.

B. The Case With Disturbance Compensation

Let us consider the case with disturbance compensation. For

the purpose of compensating a disturbance affecting the under-

lying system, let us define the compensator variable through

the dynamic equation , ,

, and the controller ,

, and . Thus, the closed-loop system is given

by

(10)

where is a disturbance such that .

The fixed point of the system may be shown in

a rather standard way [34] to be globally strongly asymptoti-

cally stable with the nonsmooth Lyapunov function

. Moreover, the system attains in a finite time the sliding

surface where it evolves according to the sliding dynamics

. The condition implies that the

1The underlying crucial property that makes this hold is the maximal mono-
tonicity of the sign multifunction.

origin is not attained directly, but first the system slides on the

surface . On this surface it is apparent from (10) that the

dynamics in evolves as a disturbance-free system. The dis-

crete sliding mode system is implemented as follows:

(11)

and the update procedure representing the plant dynamics is

given by

(12)

Proposition 2: Let be the initial conditions of (11).

Then after a finite number of steps one obtains and

for all . There exists such that

for all and for all .

The proof is in Appendix A. Consequently, the discrete-time

controller guarantees the convergence of the state of the nominal

system in finite time to the origin, while the plant’s state is equal

to the disturbance attenuated by a factor . To summarize, from

(11) and (12) the discrete-time closed-loop system is therefore

(13)

One sees that this is very easily implementable with nested

projections.

C. Extension to Higher Order Systems

In order to show that the foregoing method extends

to th-order systems with the equivalent-control-based

sliding-mode-controller (ECB-SMC [35, Ch. 2]) and also to

better fix the ideas on the structure of the proposed controllers,

let us consider the linear time-invariant system with disturbance

with for all ,

for all and . Let us choose

a sliding surface , where

is the dimension of the input vector . The ECB-SMC

takes the form , pro-

vided is full-rank. Let . The reduced closed-loop

dynamics is , , which

is globally asymptotically stable and is reached in finite

time provided (this can be shown with the

Lyapunov function that satisfies along the

closed-loop trajectories ).

The system is discretized as

(14)
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and the nominal system is simply given by

. The implicit Euler controller is

defined as

(15)

Therefore, is given by [see (1) and (2)]

(16)

where -times. Thus, the

controller to be applied at time is

(17)

We therefore obtain, with and :

(18)

that is similar to (4). Thus, the same conclusions as in Proposi-

tion 1 may be drawn for this discrete-time system provided that

: the sliding surface is attained after

a finite-number of steps whatever the bounded initial state, and

the discrete-time system evolves smoothly on this surface while

the disturbance effects on the variable are attenuated by a

factor .

Remark 1: The discrete-time input obtained from [35,

Eq.(9.36)] (see also [5], [20] and [12] for the original

contribution) when applied to (14) is calculated to be:

, which is linear. The discrepancy with (17) is

the projection on the set that is intrinsically present in

the implicit Euler input (that is nonlinear Lipschitz continuous),

and is not a consequence of adding saturations because of ac-

tuator limitations. Also the controller in (17) remains bounded

when , a property shared by all the controllers considered

in this paper. One may say that both controller designs share

the same “philosophy” since they are both calculated in order

to force the discrete sliding surface to be zero, with a suitable

input. However, they are not at all equivalent. In practice, the

controllers proposed in this paper may be calculated using a

suitable complementarity problem solver [2].

As alluded to in Section II-A, the plant and the controller

have to be discretized with the same method (backward Euler or

ZOH) in order to assure the disturbance attenuation. Let us in-

vestigate the zero-order-holder method (ZOH) on this example.

The input is assumed to be constant on and is com-

puted at . The ZOH discretization of the ECB-SMC con-

troller on takes the form [39]

(19)

with ,

, .

Notice that as then

, , consequently the im-

plicit Euler and ZOH methods yield the same discrete-time

system when the sampling period is small. Also one may

compute that . This yields

the generalized equation

(20)

Suppose that the matrix is symmetric positive definite

(since it follows that for small enough

is guaranteed if is invertible). Then from (1) and

(2) the first two lines of (20) (b) are equivalent to

(21)

where is the projection in the metric defined by

, and . Therefore,

at each step the controller is calculated as the solution of a

quadratic program and is unique. Notice that when is small

then and so that

(22)

The input remains bounded when the sampling time de-

creases. The next result is obvious from (20) (b):

Lemma 1: Let for some . Then

.

Thus, the disturbance attenuation on the nominal discrete-

time system sliding surface holds with the ZOH method. If the

higher order terms in are neglected, one sees that (20) (b) is

the same as (18) where only the disturbance term is modified,

so that once again the conclusions of Proposition 1 apply: the

discrete-time system reaches the nominal system sliding surface

in a finite number of steps. The analysis for any is more

involved because the terms in introduce a coupling between

(20) (b) and (a). However, since we are focusing on the sliding

modes and finite-time convergence to the sliding surface only,

we may assume that the solution of the closed-loop system

is bounded for any bounded initial data, and that the solution

of its ZOH counterpart in (20) (a) is bounded as well, i.e.,

for all and some . Then the following

holds:

Proposition 3: Let be given. Suppose that the solu-

tion of (20) (a) satisfies for all and some

, and that is symmetric positive definite,

with for some known . Then there exists

4



a constant such that if

, for some implies for

all .

Proof: From Lemma 1 the first line of (20) (b) is rewritten

at step as

(23)

Thus, (23) and form a generalized equa-

tion which possesses a unique solution because is

positive definite. We may rewrite it as

(24)

Therefore, if

then is the unique solution of (24). From

the proposition’s assumptions one has

(25)

where is an upper bound for . This upper

bound depends only on , the system’s matrices, and . It is

therefore uniform with respect to the step number .

Then Lemma 1 may be applied to show the disturbance atten-

uation on the nominal system discrete-time sliding surface.

D. Numerical Simulations

The numerical simulations are obtained with the SICONOS

software package of the INRIA2 that is dedicated to non-smooth

dynamical systems. In order to reproduce the continuous-time

nature of the plant, the plant dynamics is integrated in all the

simulations with the machine precision, whereas the controller

sampling time is much larger: . This is equivalent

to implementing a ZOH method. The disturbance is taken as

and we simulate the system in (10).

The above developments are illustrated in Fig. 1 with ,

, and . Illustrations are given in Figs. 2 and

3 with , , , and . The disturbance

attenuation is clearly shown.

III. SECOND-ORDER SYSTEMS

Let us now focus on a more general class of systems and

perform the same steps as for the first-order case (a short recall

of the continuous-time case, and then the time-discretization).

The simulations will be given after the theoretical presentations.

2http://siconos.gforge.inria.fr/.

Fig. 1. Simulation of the system (10), , . (a) State and error
versus time; (b) multiplier and perturbation versus

time.

A. First-Order Sliding-Mode Stabilization With Disturbance

Compensation

1) The Continuous-Time System: The plant dynamics is

given by

(26)

where is the state vector, is the control

input. The disturbance represents the system un-

certainty and its influence on the control process should be re-

jected. It is assumed that is an unknown function with

an a priori known upper estimate such that

(27)

for almost all . The model repeats the structure of the

plant and is given by

(28)

where is the model input. The error dynamics is then

written as follows:

(29)

where is the deviation of the model state from the plant

state. The error dynamics, driven by the sliding-mode input, is

given by

(30)

5



Fig. 2. Simulation of the system (10) with , ,
. (a) State versus time (fine sampling). (b) State versus time (fine sampling,

zoom). (c) Control input .

and it is globally asymptotically stabilized provided that

and where and are positive

constants. To reproduce this conclusion it suffices to rewrite the

state equation for , thus arriving at the equation

(31)

which has as its unique fixed point, which is globally

finite-time stable. Thus, by the equivalent control method one

has that

(32)

on the surface and it is expected that the control law

(33)

Fig. 3. Simulation of the system (10) with , . (a) Mul-
tiplier . (b) Sliding variable .

with , asymptotically compensates for

the disturbance . Indeed, once the sliding mode occurs on

the surface , the plant equation takes the disturbance-free

form

(34)

because on this sliding surface one has

. Since the dynamics (34) has as a glob-

ally asymptotically stable fixed point, the desired disturbance

compensation is thus provided. Summarizing, the following

result, guaranteeing the global asymptotic stability of the

closed-loop system, is obtained. Let us denote by the state

vector . The coupled plant/error dynamics in

the closed-loop system is given by

(35)

It is noteworthy that the subdynamics is decoupled from

the subdynamics without perturbations.
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Proposition 4: Consider the closed-loop system (35) with

positive gains and an external disturbance

such that (27) holds for almost all , and

. Then after a finite time, this system evolves in

the sliding mode along the surfaces and , and

along these surfaces, the system dynamics is governed by the

asymptotically stable, disturbance-free equations (34).

The proof of Proposition 4 is rather standard [34] and it is

therefore omitted. The parameter subordination en-

sures a faster convergence of the error dynamics compared to

the state variables of the plant whereas the controller magnitude

is required to be positive only. As a matter of fact, the higher

the higher the plant convergence rate.

2) The Backward Euler Time-Discretization: Let us proceed

with the same discretization as in the above first-order exam-

ples. For this let us consider the first error dynamics in (31), and

discretize it on as

(36)

for all . The first two lines are a generalized equation

with unknown , which we may rewrite as

for some multifunction . It has a unique solution

since the sign multifunction is maximal monotone and is

2-monotone as the sum of a monotone and a 2-monotone mul-

tifunctions (see Definition 2.3.1 and Theorem 2.3.3 in [13], and

Exercise 12.4 in [31]). Notice that if then

and . Also

is a function of only, that is of

and . So there is not an exact compensation as in the contin-

uous-time case, but a disturbance-attenuation by a factor . No-

tice that (36) is exactly (4), by replacing with ,

with . Hence, the conclusions of Proposition 1 hold for

(36). We infer that after a finite number of steps , one obtains

and so that

for all for some finite .

The next result characterizes the evolution of on the sliding

surface .

Lemma 2: Suppose that the sliding surface

is attained at and that the system stays on

it. Take for simplicity . Then

(37)

with .

Proof: One has and .

We infer that

(38)

from which (37) follows.

Notice that if we implement then we obtain

and similar calculations may be

done, using the fact that for small enough

. Therefore, on the sliding surface the discrete-time

error is the sum of an asymptotically vanishing term, plus a term

that depends on the disturbance, attenuated by a factor . The

second part of the error dynamics in (34) is now discretized as

follows:

(39)

Notice that if then and

. For the system evolves on the

sliding surface and we obtain

(40)

From (37) we infer that where

and is exponentially decreasing

since . It follows also that is upper bounded by

a constant not depending on and we may write

for some constant . We therefore rewrite (40) as

(41)

It is noteworthy that (41) is similar to (66) and to (4) except for

the exponentially decaying term . Thus, the following holds,

which shows that the disturbance effects are still attenuated by

a factor :

Proposition 5: Consider the discrete-time system (41) that

represents the system’s dynamics on the sliding surface

, i.e., for . Suppose that

. There exists , , such that for all

one has . Then .

Proof: The first part of the proof follows the same lines as

the above proofs of finite-time convergences and is omitted. The

second part follows easily from (41) by imposing

and inserting the value of into the third line of (41).

The next result characterizes the dynamics of on the

sliding surface . For simplicity we take in

Proposition 5.
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Proposition 6: Suppose that for the system evolves

on the sliding surface , so that (neglecting terms in )

. Then,

(42)

with .

Proof: From one easily derives

(43)

from which (42) is deduced.

The disturbance is therefore attenuated by a factor on the

state “position” . Similarly to (13), using (1) we may rewrite

the discrete-time closed-loop system as

(44)

One has also , , so

that and

. The controller has a nested-projec-

tion structure and is easily implementable at time with

the knowledge of and .

B. Position Feedback Stabilization of a Double Integrator

Let us now pass to other types of sliding-mode discontin-

uous controllers which have been proposed in the literature,

known as the twisting and super-twisting algorithms [14], [35,

§3.6.2, 3.6.3]. They possess advantages (finite-time stability of

the origin, better disturbance attenuation); however, their sta-

bility analysis is more intricate.

1) Finite-Time Stabilizing State Feedback Synthesis: To

begin with, we present a static feedback controller that globally

stabilizes the double integrator

(45)

A feedback law is further referred to as finite-time sta-

bilizing if it renders the origin of the closed-loop system (45) a

finite-time stable equilibrium as defined in [27]. The following

state feedback

(46)

with parameters is proposed to globally stabilize the

double integrator (45).

Theorem 1: Consider the dynamics of the closed-loop system

in (45), (46). This dynamics has a unique fixed point

which is globally finite-time stable, provided that the con-

troller parameters are such that .

The proof may be found in the Example 3.2 and section 4.6

of [27]. Let us now consider the disturbance-corrupted version:

(47)

and investigate the robustness properties of the closed-loop

system (46), (47) against external disturbances ,

being a locally integrable function on all potential trajectories

. According to [27, Th. 4.2], the disturbed system in

(46), (47) renders the system finite-time stable, regardless of

whichever disturbance with a uniform upper bound

(48)

on its magnitude such that

(49)

affects the system. This robustness property is achieved due to

the high frequency controller switching in the sliding mode of

the second-order that occurs in the origin.

Theorem 2: [27, Sec. 4.6] Given and , the closed-loop

system in (46), (47) has a unique fixed point

which is globally asymptotically finite-time stable, regardless of

whichever disturbance , satisfying (48) and (49), affects the

system.

Let us propose the following implicit Euler time-discretiza-

tion, where :

(50)

from which it follows applying (1) to the second and the fourth

lines of (50) that

(51)

The discrete-time system in (50) is still constructed along the

same lines as the ones in the foregoing sections: one computes

the input from a nominal unperturbed system (the first four lines

of (50)) and then one injects the computed input into the plant

dynamics (the last two lines of (50)). However this time there is

no decoupling between the -dynamics and the -dynamics.

It is easily checked that is the unique fixed

point of the unperturbed system (50) [take in (50)].

The next results hold.
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Lemma 3: The controller is a causal input

at time and there is no singularity in as tends to

zero.

The proof is in Appendix B.

Lemma 4: Suppose . a) Let

and for some . Then

for all , so that for all . b)

If for some , then and

for all .

The proof is in Appendix C. Lemma 4 says that (in the unper-

turbed case), once the system has reached the fixed point it stays

on it without any spurious oscillations. This is an interesting

property of implicit Euler schemes [1]. The lemma shows also

that mode (iii) is the unperturbed system’s mode at the equilib-

rium point. The following results characterize the disturbance

attenuation on the nominal system sliding mode.

Proposition 7: Suppose that and . Then

and . Therefore,

and .

Proof: From the first line of (50) it follows that .

From the third and last lines one has . From the

fifth line it follows that .

There is however a major difference between (50) and the sys-

tems in the foregoing sections. Indeed the conditions of Propo-

sition 7 can hold only at one time step. Assume that

. Then and , so that

implies . One must

refine Proposition 7.

Proposition 8: Suppose that for some . Then

. Moreover if for all , then

and , while

for all .

Proof: Let . Then . Thus,

, so

that . Thus,

.

Now we have implies and

implies . Thus,

so that

. The same can be done for the

next step if . The sum immediately follows. Fi-

nally, so that

.

Propositions 7 and 8 show that the disturbance attenuation

holds for (50); however, the nominal system’s trajectories

cannot slide along both and .

Remark 2: The differential inclusions in (3), (10), (35) and

(46), (47) are written more compactly as

(52)

with obvious definitions of , , , , and . The results

in [1] do not apply to (10), (35) and (46), (47) because the

“input–output” condition with that is

central in [1] is not satisfied for these systems. This means that

the underlying maximal monotonicity arguments which allow

one to draw conclusions about the convergence in [1], are ab-

sent in (10), (35) and (46), (47). The same applies to (47), (53),

and (58). Finally, the twisting algorithm is more complex than

(10) and (35) because it is the equilibrium that is reached in fi-

nite time, not a codimension one sliding surface that allows one

to treat the problem as a two-stage problem.

2) Finite-Time Velocity Observer Design: The focus of the

present study is on the stability analysis of the velocity observer

of the supertwisting observer

(53)

that was first proposed in [11] with and is now aug-

mented with nontrivial linear gains . Clearly, the ob-

servation error , , between

the state of the double integrator (45) and that of the velocity ob-

server (53) proves to be governed by the following second-order

system:

(54)

The following result is extracted from [26] and [28].

Theorem 3: Given , , the system (54) is

globally finite-time stable.

In the rest of this section, we carry out the subordination for

the observer gains , that ensures the robustness

of the perturbed dynamics:

(55)

As a matter of fact, this dynamics corresponds to the observation

errors , , between the state

of the velocity observer (53) and that of the double integrator

(47), affected by an admissible external disturbance.

Theorem 4: Let the system (55) be affected by a uniformly

bounded disturbance (48). Furthermore, let the system gains be

such that

if (56)

Then the system (55) is globally finite-time stable whenever the

upper bound on the magnitude of the external disturbance

meets the condition

(57)

The proof of Theorem 4 follows the same line of reasoning

as that proposed in [26] and [28] and it is therefore omitted.

3) Finite-Time Stabilizing Position Feedback Synthesis: In

this section, we proceed with the design of the position feed-

back, stabilizing the double integrator in finite time. For this

purpose, we substitute the velocity estimate in the state feed-

back (46) for and, if desired, augment the resulting control law

with the term that compensates the disturbance on

9



the sliding manifold , to arrive at the finite-time

stabilizing position feedback law:

(58)

(or at

(59)

with the disturbance compensating term). Then the closed-loop

system (47), (53), driven by (58) (or by (59), respectively)

proves to be globally finite-time stable regardless of whichever

admissible disturbance affects the system.

Theorem 5: Let the system (47) be affected by a uniformly

bounded disturbance (48) and let it be driven by the observer-

based dynamic feedback (53), (58) [respectively, (59)] with pos-

itive controller gains subject to (49), and with observer

parameters , satisfying conditions (56), (57).

Then the closed-loop system (47), (53), and (58) is globally fi-

nite-time stable.

Proof: The closed-loop system (47), (53), and (58)

rewritten in terms of the observation error (55), meets the

conditions of Theorem 4. By applying Theorem 4 to the obser-

vation error system (55), we conclude that starting from a finite

time instant , the closed-loop system evolves on the manifold

where , thereby ensuring that the position control

signal (58) coincides with the state feedback signal (46). To

complete the proof it remains to apply Theorem 2 to (47), (53),

(58) for when the position feedback equals the state

feedback. The global asymptotic stability of the closed-loop

system (47), (53), and (58) is thus established.

The system in (47) and (58) and (53) is discretized as follows:

(60)

Lemma 5: The unperturbed discrete-time multivalued

system (60) possesses the unique equilibrium point

.

Proof: recall that in the unperturbed case we may consider

that and for all . From the first line of (60)

it follows that . From the second line

one has , so that

which is satisfied if and only if

because from (49). From the third line

Fig. 4. Simulation of (44) with . (a) State versus time. (b) Sliding
variable .

which

is equivalent to .

The unique solution of this generalized equation is ,

therefore .

Notice from the fourth and seventh lines of (60) that

(61)

where (1) has been used and

(62)

Similarly to the twisting algorithm we may determine three

main modes for (60):

• (i) if

: ,

,

;

• (ii) if

: ,

,

;

• (iii) if

: then one

obtains

; let

and ,

10



then ; finally

.

The decomposition into sub-modes becomes cumbersome and

is not done here for the sake of paper’s brevity. To provide an

idea on how this works let us calculate in a sub-mode of

mode (i). Let us consider (i-1) such that

. Then . The condition for the activation of mode

(i) thus boils down to

, which is equivalent to

. Then

. Since

we have so that

, and .

Hence,

(63)

The computation of is done in the same way, showing that

the discrete-time observer dynamics [the third, fourth and sev-

enth lines of (60)] is causal. Similar calculations may be done

for the sub-modes (i-2): , (ii-1):

, (ii-2): , and

so on. Let us now prove that the disturbance attenuation holds

on the nominal system sliding mode:

Lemma 6: Suppose that , then . If

for all then .

Proof: From (60) it follows that

. Thus, , so that

. Thus,

. The second part

of the lemma follows easily.

Remark 3 (Twisting Controllers Implementation): For

both the twisting (Section III-B1) and the super-twisting

(Section III-B3) controllers, we have shown that in all cases the

inputs and can be computed from the knowledge

of the state values at only. In practice, the controller

may be computed as follows. Let and

. Then the first four lines in (60) are rewritten

compactly as

(64)

where the matrices can be easily identified

from (60). The generalized equation (64) with unknown

may be solved at each step using a specific iterative solver like

those implemented in the software package SICONOS [1], [2],

[4]. In the simulations of this paper Lemke’s algorithm [10] has

been used. The control algorithms presented in this paper can

Fig. 5. Simulation of (44) with , , . (a) State
versus time (fine sampling): i) , ii) , iii) , iv) . (b) Control versus time
i) . (c) Multiplier versus time: i) , ii) . (d) Sliding variable i) ii)

.

therefore easily be implemented online. The same applies to

(50).

C. Numerical Simulations

The system in (44) is simulated with under the same

conditions as those of Section II-D, with the software package

11



Fig. 6. Simulation of (60) with , , . (a) Phase
portrait. i) State versus ii) observer versus ; (b) control versus time
i) ; (c) state and error versus time i) ii) iii) iv) . (d) Sliding
variable versus time. i) ii) iii) .

SICONOS. With , the results are depicted on Fig. 4. With

, , the results are depicted on

Fig. 5. We have chosen , , ,

. In Fig. 5(c) and 5(d), since and are inside

( 1; 1), one notices that the sliding surfaces and

are reached in finite time as expected from Proposition 4.

Fig. 7. Double logarithmic plot of the attenuation of the disturbance with re-
spect to the sampling time.

The system in (60) is simulated with with the same

condition except for the sampling time chosen as .

The initial conditions are , , , .

We have chosen , and .

With , , the results are depicted

in Fig. 6. In Fig. 6(d), one notices again that the sliding sur-

faces are reached in finite time as expected in Theorem 5. The

attenuation is shown on Fig. 7 and we notice that

and . It is worth noting that the origin is attained

after an infinite number of events (the switches of the sign func-

tions) in the continuous-time twisting controllers. This can be

seen in Fig. 6(b) and (d). Despite we have no convergence proof

for the discrete-time solutions of the twisting algorithms, it is

known that a very nice feature of backward Euler time-stepping

methods is that they can handle accumulations of events (Zeno

phenomena), see, e.g., [2, Ch. 1 and 10]. For this reason they are

sometimes called event-capturing methods.

IV. CONCLUSION

In this paper, a novel discrete-time implementation of sliding-

mode controllers is proposed. It is based on an implicit Euler

method, and also applies to the zero-order-hold discretization.

The controllers are simple and take the form of projections on

the interval [ 1, 1], or may be computed from simple quadratic

programs. Most importantly the discrete-time controllers are

able to represent the intrinsic multivalued feature of their contin-

uous-time counterparts hence avoiding fast switches and high-

gain behaviors. The analysis shows that a smooth stabilization

on the sliding surfaces is obtained in the case there is no dis-

turbance (chattering-free controllers), while when a disturbance

is present its effects are attenuated by factors or . These

properties are independent of the sampling period magnitude,

which can be large. The controller has the nice property that

the continuous-time and the discrete-time sliding surfaces are

the same. Many simulation results illustrate the theory. Future

works should concern the proof of convergence to the origin

in a finite number of steps for the discrete-time twisting and

super-twisting algorithms (as a complement to the numerical

simulations presented in this paper), the extension towards other
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sliding-mode controllers (like systems with mismatched uncer-

tainties), the numerical study of some optimal control problems

that take the form of nonlinear variable-structure systems [8],

and experimental comparisons with existing solutions for chat-

tering reduction [6].

APPENDIX A

PROOF OF PROPOSITION 2

From (11) we have

(65)

which is exactly the first two lines in (4). Therefore, the conclu-

sions drawn for (4) apply, just replacing by . Thus, the -dy-

namics is .

After the discrete trajectory evolves on the sliding surface

while and , and one ob-

tains using (1):

(66)

Then we can redo the same calculations as in the proof of

Proposition 1 (by replacing by in the first line

of (4), and by in the third line), to infer that

after a finite number of steps one gets ,

, and

(67)

Indeed let us now assume that

(68)

that is

(69)

After the update procedure (12), we get

(70)

We can conclude that once the sliding mode in and is

reached we have

for all (71)

and

for all (72)

APPENDIX B

PROOF OF LEMMA 3

One has

. Therefore,

. Thus three “modes” are

possible:

• (i) if one gets

,

and ,

. Also

,

.

There are three sub-modes:

— (i-1) let : then ,

, ,

.

— (i-2) let : then ,

, ,

.

— (i-3) let : then ,

, ,

, , .

• (ii) if one gets

,

and ,

. Also

, .

There are three sub-modes:

— (ii-1) let : then ,

, ,

.

— (ii-2) let : then ,

, ,

.

— (ii-3) let : then

, , ,

, .

• (iii) if one gets

, and

. Also ,

.

In (i) and (ii), the value for is obtained from the general-

ized equation and

using (1). In all cases is obtained from (51).

APPENDIX C

PROOF OF LEMMA 4

(a) From (iii) above it follows that

and imply . Therefore,

. Now suppose that

, one obtains from (i) and (ii) that

since

. So indeed , a contra-

diction. It follows that and therefore

and . Now

. We can repeat the reasoning at the next

step and (a) is proved. (b) From we deduce

that and .

Also form which

we infer that while
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. Since it follows

that . Also so that

. Hence, since ,

. From the fact that it follows that

. The reasoning can be repeated at the next step.

Furthermore, it easily follows that so part (b)

is proved.
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