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It is well known that sliding mode control (SMC) is capable of tackling systems with uncertainties. How-
ever, the discontinuous control signal causes a significant problem of chattering. In this paper, a new and
simple approach to chattering free SMC methodology is proposed. The main purpose is to eliminate the
chattering phenomenon. As a result, the chattering is eliminated and error performance of sliding mode
control is improved. The reduction of the chattering of sliding mode control is achieved by using a distance
function which measure the distance between the trajectory of state errors and the sliding surface as the
corrective control term instead of discontinuous sign function. Experimental study carried out on a magnetic
levitation system is presented. Experiments verified that the proposed control has the advantage of less
chattering in SMC.
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1. Introduction

Variable structure control with sliding mode, which is
commonly known as sliding mode control (SMC), is a
nonlinear control strategy that is well known for its ro-
bustness characteristics (1) and has been developed and
applied to closed-loop control systems for the last three
decades (2) (3). The main feature of SMC is that it uses
a high-speed switching control law to drive the system
states from any initial state onto a user-specified sur-
face in the state space (the so-called sliding surface),
and to maintain the states on the surface for all subse-
quent time. This method is well known for its robustness
to disturbance and parameter variations (4)–(6). Conven-
tionally, the SMC is based on the state-space approach.
That is, one first constructs a Lyapunov function and
then tries to find a control law to make the derivative of
the Lyapunov function negative definite.

In the design of the SMC law, it is assumed that the
control can be switched from one value to another in-
finitely fast. However, this is impossible to achieve in
practical systems because finite time delays are present
for control computation, and limitations exist in the
physical actuators. This nonideal switching results in
a major problem, i.e., the chattering phenomenon (7) (8).
This phenomenon is not only highly undesirable by it-
self but it may also excite the high-frequency unmodeled
dynamics which could result in unforeseen instability,
and can also cause damage to actuators or the plant.
Hence, it has received considerable attention from the
research community (8). To reduce the chattering, some
researchers have proposed to use the saturation func-
tion or sigmoid function for replacing the sign nonlin-
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earity (8) (9).
In this paper, a new and simple control strategy based

SMC is proposed to deal with the problem of eliminat-
ing the chattering effect. The proposed control strategy
is based on the concept of point to hyperplane distance,
define a distance function which only need to measure
the distance between the trajectory of state errors and
the sliding surface to generate the corrective control in-
stead of using other function.

On the other hand, magnetic levitation systems have
practical importance in many engineering systems such
as frictionless bearings, levitation of high speed trains,
and vibration isolation tables in semiconductor manu-
facturing (10). Therefore, the performance of the pro-
posed control strategy is then demonstrated through ex-
perimental studies on a magnetic levitation system. The
experimental results show that this control approach ef-
fectively suppresses the vibration action of the magnet.

This paper is organized as follows: the problem for-
mulation is presented in Section 2. Subsequently, the
explanation of new proposed strategy will be given in
Section 3. Section 4 explains the experimental appa-
ratus of magnetic levitation system. Then in Section
5, experimental studies are carried out to demonstrate
the validity of the proposed control schemes. Finally,
conclusions of the design scheme is given in Section 6.

2. Problem Formulation

The sliding mode control based on the state-space for-
mulation is presented in this section. First let us con-
sider a linear system that defined as

ẋ(t) = Ax(t) + bu(t) · · · · · · · · · · · · · · · · · · · · · · · · (1)

Here, x(t) = [x, ẋ, · · · , x(n−1)]T is the state vector and
u(t) is the control input. A ∈ Rn×n, b ∈ Rn×1 are ap-
propriate matrix and vector. We further assume that
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the above system (1) is controllable and observable.
The major steps in the design of a sliding mode con-

troller are (i) to construct a sliding surface that repre-
sents a desired system dynamics, and (ii) to develop a
switching control law such that a sliding mode exists on
every point of the sliding surface, and any states outside
the surface is driven to reach the surface in finite time.

The control objective is to determine a control law
u(t) such that the state vector x(t) asymptotically
tracks a given bounded desired state vector xd(t) =
[xd, ẋd, · · · , x

(n−1)
d ]T .

To begin with, let the tracking error be defined as
e(t) = xd(t) − x(t), and the tracking error vector be
defined as

e(t) = xd(t) − x(t) =
[
e, ė, · · · , e(n−1)

]T

· · · · · (2)

Then a sliding surface in the space of the error state can
be defined as

S(t) = c1e + c2ė + · · · + cn−1e
(n−2) + cne(n−1)

= cT e(t) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (3)

where c = [c1, c2, · · · , cn−1, cn]T is chosen such that
cn = 1 and the coefficients c1, · · · , cn−1 are describing
the dynamics of the sliding surface S(t) = 0. Any states
that reach this surface will then remain on it for all sub-
sequent time, and a sliding mode or sliding motion is
said to occur.

When a system is in the sliding mode, its dynamics
is solely governed by the dynamics of the sliding sur-
face. Thus, the coefficients c1, · · · , cn−1 have to be cho-
sen such that the system in a sliding motion produces
the desired behavior. This can be done by ensuring the
roots of the characteristic polynomial (Hurwitz polyno-
mial) describing the sliding surface

p(λ) = λn−1 + cn−1λ
n−2 + · · · + c1 · · · · · · · · · · (4)

where λ denotes the complex variable, have negative real
parts with desirable pole placement.

On the other hand, the process of SMC can be di-
vided into two phases, i.e., the approaching phase with
S(t) �= 0 and the sliding phase with S(t) = 0. A suffi-
cient condition to guarantee that the trajectory of the er-
ror vector e(t) will translate from the approaching phase
to the sliding phase is to select the control strategy such
that

S(t)Ṡ(t) ≤ −η |S(t)|· · · · · · · · · · · · · · · · · · · · · · · · · (5)

where η is a small positive constant, and (5) is called
reaching condition (7). Corresponding to two phases, two
types of control law can be derived separately. In the
sliding phase, we have S(t) = 0 and Ṡ(t) = 0, then
the equivalent control ueq(t) which will force the system
dynamics to stay on the sliding surface is chosen such
that

Ṡ(t) = cT ė(t)
= cT [ẋd(t) − ẋ(t)]
= cT ẋd(t) − cT Ax(t) − cT bueq(t) = 0

· · · · · · · · · · · · · · · · · · · · · · (6)

then

ueq(t) = − (
cT b

)−1 [
cT Ax(t) − cT ẋd(t)

] · · · · (7)

In the approaching phase, where S(t) �= 0, in order
to satisfy the reaching condition (5), a corrective con-
trol term (the so-called switching function) uc(t) must
be added.

First, let the Lyapunov function be selected as below

V (t) =
S(t)2

2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (8)

It can be noted that this function is positive definite. It
is aimed that the derivative of the Lyapunov function is
negative definite. This can be assured if one can assure
that

Ṡ(t) = −ksign(S(t)) · · · · · · · · · · · · · · · · · · · · · · · · (9)

where k is positive gain constant, and sign(S(t)) is de-
fined as

sign(S(t)) =

⎧⎨
⎩

+1, if S(t) > 0
0, if S(t) = 0
−1, if S(t) < 0

· · · · · · · · · · (10)

Taking the derivative of (8) and substitude (9) into it,
the following equation is obtained

V̇ (t) = S(t)Ṡ(t)
= S(t) [−ksign(S(t))]
= −kS(t)sign(S(t)) · · · · · · · · · · · · · · · · · · (11)

Furthermore, when k ≥ η is chosen, the reaching condi-
tion (5) is satisfied.

Again, the time derivative of (3) can be represented
as

Ṡ(t) = cT ẋd(t) − cT Ax(t) − cT bu(t) · · · · · · · (12)

Then substitude (12) into the right hand side of (9) and
the control input signal can be written as

u(t) = − (
cT b

)−1 [
cT Ax(t) − cT ẋd(t)

]
+

(
cT b

)−1
ksign(S(t))

= ueq(t) + uc(t) · · · · · · · · · · · · · · · · · · · · · · · (13)

where

uc(t) =
(
cT b

)−1
ksign(S(t)) · · · · · · · · · · · · · · · · (14)

is the corrective control. Putting

K =
(
cT b

)−1
k

then the final form of corrective control can be rewritten
as

uc(t) = Ksign(S(t)) · · · · · · · · · · · · · · · · · · · · · · · (15)

Here, K is called as switching gain.
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3. Chattering Elimination

The controller of (13) exhibits high frequency oscil-
lations in its output, causing a problem known as the
chattering phenomenon. Chattering is highly undesir-
able because it can excite the high frequency dynamics
of the system and can also cause damage to actuators
or the plant. For its elimination, it is suggested to use
a saturation or a shifted sigmoid function instead of the
sign function.

In this section, a new and simple control method using
the concept of point to hyperplane distance is proposed
to suppress the chattering phenomenon. This alterna-
tive is to define a distance function h(t) for calculate the
distance between the trajectory of state errors and the
sliding surface to generate the corrective control instead
of the other functions.

For preliminary, we first discuss the concept of point
to hyperplane distance.

From Fig. 1, given a plane

n1z1 + n2z2 + n3z3 = k3 · · · · · · · · · · · · · · · · · · · (16)

and a point p(p1, p2, p3), the normal to the plane is given
by

n = [n1, n2, n3]T · · · · · · · · · · · · · · · · · · · · · · · · · (17)

and a vector from the plane to the point is given by

v = −[z1 − p1, z2 − p2, z3 − p3]T · · · · · · · · · · (18)

Projecting v onto n gives the distance H from the point
to the plane as

Fig. 1. Distance between a point and a plane.

0)( =tS

)(te�

)(te

distance

0)( =tS

)(te�

)(te

distance

Fig. 2. Distance of state error trajectory to sliding
surface S(t) = 0.

H =
|n · v|
|n|

=
|n1p1 + n2p2 + n3p3 − k3|√

n2
1 + n2

2 + n2
3

· · · · · · · · · · · · · (19)

Consequently, when considering m-dimensional hyper-
plane, the distance function can be rewritten as below

h(p, α) =
|n · p − km|

|n|
=

|n1p1 + n2p2 + · · · + nmpm − km|√
n2

1 + n2
2 + · · · + n2

m

· · · · · · · · · · · · · · · · · · · · · (20)

where α express the hyperplane, and this time n =
[n1, n2, · · · , nm]T , p = [p1, p2, · · · , pm]T are represented.

Hence, according to (2) and (3), the distance function
that we use in this paper can be expressed as

h(t) =

∣∣c1e(t) + c2ė(t) + · · · + cne(n−1)(t)
∣∣√

c2
1 + c2

2 + · · · + c2
n

· · · · · · · · · · · · · · · · · · · · · (21)

and this (21) is to measure the distance of state error
trajectories to sliding surface S(t) = 0 (Fig. 2).

Dropping the absolute value signs gives the signed dis-
tance

h̄(t) =
c1e(t) + c2ė(t) + · · · + cne(n−1)(t)√

c2
1 + c2

2 + · · · + c2
n

· · · · (22)

which is negative if trajectory of e(t) is on the side
S(t) < 0 and positive if it is on the opposite side
S(t) > 0.

Consequently, (22) also can be expressed as follow

h̄(t) = h(t)sign(S(t)) · · · · · · · · · · · · · · · · · · · · · · (23)

Let the proposed corrective control be defined as

uc(t) = Khh̄(t)
= Khh(t)sign(S(t)) · · · · · · · · · · · · · · · · · · (24)

where

Kh = (cT b)−1kh · · · · · · · · · · · · · · · · · · · · · · · · · · · ·(25)

is defined and kh is a positive constant which defined
as weight of distance function for improving the con-
trol effect. Moreover, Khh(t) can be considered as the
switching gain of the proposed corrective control in here.
Meanwhile, consider the Lyapunov candidate function as

V (t) =
S(t)2

2
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (26)

Thus, the time derivative of V (t) by means of (7), (12),
(24) and (25) becomes

V̇ (t) = S(t)Ṡ(t)
= S(t)

[
cT ẋd(t) − cT Ax(t) − cT bu(t)

]
= S(t)

[
cT ẋd(t) − cT Ax(t) − cT b[ueq(t) + uc(t)]

]
= S(t) [−khh(t)sign(S(t))]
= −khh(t)S(t)sign(S(t)) · · · · · · · · · · · · · · · · · (27)
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If khh(t) ≥ η is chosen, then

−khh(t)S(t)sign(S(t)) ≤ −η |S(t)| · · · · · · · · · · (28)

and the reaching condition (5) is satisfied.
In this paper, for the chattering elimination, (24) is

utilized. Intuitively, using this presented method, the
switching gain becomes small when the state error tra-
jectories approach to the sliding surface, and when the
state error trajectories reach the surface, the distance
becomes zero i.e. the switching gain becomes zero. Thus
the chattering phenomenon can be avoided.

4. Experimental Apparatus and Control
Model

The experimental apparatus, shown in Fig. 3, consists
of upper and lower drive coils that produce a magnetic
field in response to a DC current. One or two magnets
travel along a precision glass guide rod. By energizing
the lower coil, a single magnet is levitated through a re-
pulsive magnetic force. As current in the coil increases,
the field strength increases and the levitated magnet
height is increased. For the upper coil, the levitating
force is attractive. Two magnets may be controlled si-
multaneously by stacking them on the glass rod. Two
laser-based sensors measure the magnet positions. The
lower sensor is typically used to measure a given mag-
net’s position in proximity to the lower coil, and the
upper one for proximity to the upper coil.

In this paper, we only consider using the lower drive
coil to control one magnet as we consider to use single-
input single-output plant for our experimental studies.
Consequently from Fig. 3, the following equation of mo-
tion for the levitation system can be simply yield ac-
cording to force balance analysis in the vertical plane

mÿ1 = Fu − mg · · · · · · · · · · · · · · · · · · · · · · · · · · · · (29)

where m is the mass of the levitation magnet in kilo-
grams, y1 is the distance of the levitation magnet in me-
ters, g is gravity, and Fu is the magnetic control force in
newtons. The magnetic force term is modeled as having
the following form.

Fu =
i1

a1(y1 + a2)N
· · · · · · · · · · · · · · · · · · · · · · · · (30)

where a1, a2, and N are constants. Typically 3 < N <
4.5. i1 is current of coil.

Here, we replace the coil current i1 to the more gen-
eral term, denoted as u1. The general term may be a
digital word, voltage, or current and is presumed to be
linearly proportional to the coil current. The coefficient
a1 must of course be consistently scaled with the units
of u1. In this paper, we consider u1 to be a voltage,
therefore (30) are redefined as

Fu =
u1

a1(y1 + a2)N
· · · · · · · · · · · · · · · · · · · · · · · · (31)

and a1 = 27926, a2 = 0.062, N = 4 can be determined
by numerical modeling of the magnetic configuration.

On the other hand, for small motions, the system may

Fig. 3. Schematic diagram of magnetic levitation
system (11).

Fig. 4. The practical hardware structure of the ex-
perimental system.

be modeled as being linear. Hence, above system can
be simply linearized at the equilibrium operating point
y = 2 cm magnet height as following state-space repre-
sentation (see Appendix)

ẋ(t) = Ax(t) + bu(t) · · · · · · · · · · · · · · · · · · · · · · · (32)

where

x(t) =
[

y∗
1

ẏ∗
1

]
, A =

[
0 1

−478.54 0

]
, b =

[
0

6.5456

]

The essential components for the real-time control sys-
tem are a M56000 processor family’s DSP board, a host
PC, a magnetic levitation apparatus, servo/actuator in-
terfaces, servo amplifiers, and auxiliary power supplies.
The DSP is capable of executing control laws at high
sampling rate of 1.1kHz allowing the implementation to
be modeled as being in continuous or discrete time. The
16-bit dual-channel A/D and D/A acquistition systems
are mounted on the system board. The Fig. 4 is the prac-
tical hardware structure of the experimental system.

5. Experimental studies

The magnetic levitation system which introduced in
previous section is used to verify the effectiveness of the
proposed SMC control strategy. The system is tested us-
ing the proposed control strategy and compared with the
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Fig. 5. System output for SMC using sign func-
tion: K = 2.
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Fig. 6. System output for SMC using sign func-
tion: K = 0.5.

other two control strategies, i.e., conventional method
which using sign function and shifted sigmoid function.

The three controllers that implemented are defined as
Proposed corrective control:

uc(t) = Khh(t)sign(S(t))

Corrective control with sign function:

uc(t) = Ksign(S(t))

Corrective control with shifted sigmoid function:

uc(t) =
2K

1 + e−µS(t)
− K

respectively, where µ is the gradient of shifted sigmoid
function.

During the experiment, the sliding surface parameters,
c1 = 50, c2 = 1 were used, where the sliding function is
expressed as

S(t) = c1e1(t) + c2e2(t)
e1(t) = yd1(t) − y1(t), e2(t) = ẏd1(t) − ẏ1(t)

All these controllers are implemented at a sampling rate
of 0.565kHz.

The results of using the conventional method sign
function are shown in Fig. 5 and Fig. 6 with differ-
ent value of switching gain K, where the dotted line
shows the desired output. Figure 5 shows the result
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Fig. 7. System output for SMC using distance
function: Kh = 350.
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Fig. 8. System output for SMC using distance
function: Kh = 400.

when switching gain K = 2 is set. Highly chattering ac-
tion occurs especially at the period from 2s to 3s, which
is highly undesirable. The result showed a highly os-
cillatory response when a high switching gain of 2 is
used. The chattering problem can be improved by using
a lower switching gain K = 0.5 where shown in Fig. 6.
However, from Fig. 6 slow convergent speed of system
output to desired output can be observed at every step
changes.

The results obtained using the proposed control strat-
egy are shown in Fig. 7 and Fig. 8 where the respective
values of Kh are set as Kh = 350 and Kh = 400. The
system response showed perfect tracking with no any
oscillations. Comparing the results to that of the pro-
posed control strategy, it can be said that the proposed
control strategy gave the better performance than using
the conventional method sign function. Notice that, the
value of Kh is extremely large compared to K. It is be-
cause the distance function h(t) generates a very small
value due to the unit of state error e(t) is in meters.

Other result is shown in Fig. 9 where a larger Kh =
1000 is set. Oscillations can be observed at the period
of 2s till 3s. From these results, a appropriate value of
Kh must be selected such as 400 for this experimental
study when using the proposed control method.

Figure 10 shows the result of using shifted sigmoid
function when switching gain K = 2 and µ = 10 is
set. According to Fig. 10, the chattering phenomenon is
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Fig. 9. System output for SMC using distance
function: Kh = 1000.
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Fig. 10. System output for SMC using shifted sig-
moid function: K = 2, µ = 10.
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Fig. 11. System output for SMC using shifted sig-
moid function: K = 2, µ = 50.

eliminated by using the shifted sigmoid function. Fur-
thermore, comparing Fig. 8 to Fig. 10, the performance
of proposed control strategy is by not means inferior to
performance of using shifted sigmoid function.

Meanwhile, Fig. 11 is the result of using shifted sig-
moid function where its gradient value is µ = 50.
Chattering is unable to be eliminated completely, when
µ = 50 is used. In terms of these points, the value of µ
including the switching gain K are the factors which may
influence the control performance when shifted sigmoid

function is utilized. For the proposed control strategy
(distance function), only Kh is necessary to consider.

6. Conclusions

In this paper, a new contribution to the solution to
the chattering elimination problem in SMC is presented.
The proposed algorithm is simple, only need to use a
defined distance function which to measure the distance
between the trajectory of state errors and the sliding
surface as the corrective control term instead of the con-
ventional method sign function.

Experimental comparison between a classical con-
troller: sign switching function/shifted sigmoid function
and the proposed controller: distance switching function
for controlling a magnetic levitation system was inves-
tigated. The experimental results show that this con-
trol approach effectively suppresses the chattering phe-
nomenon.

In this research, we have considered the design of SMC
on continuous time. Since PC is utilized to operate the
designed controller, we will deal with discrete time de-
sign in the future work.

(Manuscript received June 17, 2004,
revised Dec. 20, 2004)
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Appendix

The equation of motion for the magnetic levitation
system is given as
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mÿ1 = Fu − mg · · · · · · · · · · · · · · · · · · · · · · · · · · · (A1)

Fu =
u1

a1(y1 + a2)4
· · · · · · · · · · · · · · · · · · · · · · · (A2)

When the nonlinear term (right hand side) of (A1) is
presented as α(y1, u1, t), we have

mÿ1 = α(y1, u1, t) = Fu − mg · · · · · · · · · · · · · (A3)

Then the linearized equation of motion is found by cal-
culating

α(y1, u1, t) − α(y10, u10, t)

=
∂α

∂y1

∣∣∣∣
y10,u10

(y1 − y10)

+
∂α

∂u1

∣∣∣∣
y10,u10

(u1 − u10) · · · · · · · · · · (A4)

where y10, u10 are the magnet position and control ef-
fort that define the operating point. For the purposes
of control design, we shall choose the operating point to
be at an equilibrium so that

α(y10, u10, t) = Fu − mg|y10,u10
= 0 · · · · · · · · (A5)

Evaluating (A4) and using (A5) we have

mÿ1 = − 4u10

a1(y10 + a2)5
(y1 − y10)

+
1

a1(y10 + a2)4
(u1 − u10) · · · · · · · · · · (A6)

which may be rewritten as

mÿ∗
1 + k′

1y
∗
1 = k′

2u
∗
1 · · · · · · · · · · · · · · · · · · · · · · · (A7)

where

y∗
1 = y1 − y10, u∗

1 = u1 − u10

k′
1 =

4u10

a1(y10 + a2)5
, k′

2 =
1

a1(y10 + a2)4

From (A5) we may solve for the equilibrium control
input values as

u10 = a1mg(y10 + a2)4 · · · · · · · · · · · · · · · · · · · · (A8)

Hence, according to the values of a1 = 27926, a2 =
0.062, y10 = 0.02m, m = 0.121kg, g = 9.81ms−2

[
ẏ∗
1

ÿ∗
1

]
=

[
0 1

−478.54 0

] [
y∗
1

ẏ∗
1

]

+
[

0
6.5456

]
u∗

1 · · · · · · · · · · · · · · · · · (A9)

can be obtained.
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