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Chattering Reduction and Error Convergence in the 
Sliding-Mode Control of a Class of Nonlinear Systems 

Pushkin Kachroo and Masayoshi Tomizuka 

Abstruct- To reduce chattering in sliding-mode control, a boundary 
layer around the switching surface is used, and a continuous control is 
applied within the boundary. The effects of various control laws within the 
boundary layer on chattering and error convergence in different systems 
are studied. New functions for chattering reduction and error convergence 
inside the boundary layer are proposed which are discontinuous in 
magnitude but not in sign. The internal model principle has been used to 
generalize the design for the class of nonlinear systems being considered. 

I. INTRODUCTION 
Sliding-mode control is a robust nonlinear feedback control tech- 

nique [4], [5]  but with the drawback of chattering. One approach for 
chattering reduction involves introducing a boundary layer around 
the switching surface and using a continuous control within the 
boundary layer [ 2 ] ,  [3]. The robustness term in the control law is 
k ( x ,  t )  sgn(s( t ) ) .s( t )  is the sliding variable, sgn(s(t))  is defined as 

$1 if .(t) 2 0 
-1 if s ( t )  < 0. sgn(s(t))  = 

In the method proposed in [2] and [ 3 ] ,  this term is replaced by 
k ( z , t )  sat(s(t),Q). where q> is the boundary layer thickness which 
is made varying to take advantage of the system bandwidth. The 
function sat(s(t).d) is defined as 

( 2 )  
s ( t ) / d ,  if 1sjt)l < o c sgn(s(t)) otherwise. 

sa t (s ( t ) ,q>)  = 

However, it is not necessary to vary d. One drawback of varying 
the boundary layer is that for some systems the boundary width can 
become large. An alternate method for chattering reduction is pro- 
posed which achieves the same results without varying the boundary 
layer. In that case the system is still represented by discontinuous 
right-hand side, but the solution does not have chattering. For some 
systems, as shown in this note, the s a t  function does not give 
satisfactory results, and hence some other functions should be used. 
New functions, determined by the system dynamics, are proposed for 
use inside the boundary layer to reduce chattering and cause error 
convergence. 

11. BACKGROUND 
Let a single-input nonlinear system be defined as 
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Here, x ( t )  = [s(t)  i ( t ) .  . . z ( ~ ~ ' ) ] ' '  is the state vector, U is the 
control input, and z is the output state. The superscript rl on z ( t )  
signifies the order of differentiation. 

A time-varying surface S ( t )  is defined by equating variable s ( t )  
to zero, where 

(4) 

Here, e) is a design constant and ?( t )  = s(t)  - z d ( t )  is the error in the 
output state where ~ d ( t )  is the desired output state. The switching 
condition 

makes the surface S ( t )  an invariant set. All trajectories outside S ( t )  
point toward the surface, and trajectories on the surface remain there. 
It takes finite time to reach the surface S ( t )  from outside. Moreover, 
(4) implies that once the surface is reached, the convergence to 
zero error is exponential. Chattering is caused by nonideal switching 
around the switching surface. Delay in digital implementation causes 
s ( t )  to pass to the other side of the surface which in turn produces 
chattering. 

Consider a second-order system 

where f ( x .  t )  is generally nonlinear and/or time varying and is 
estimated as j(z. t ) .  ~ ( t )  is the control input, and ~ ( t )  is the output, 
desired to follow trajectory . r d ( t ) .  The estimation error on f ( x ,  t )  is 
assumed to be bounded by some known function F = F ( x .  t )  sci that 

I.f^(z. t )  - f(z. t)I L F ( z .  t ) .  (7) 

We define a sliding variable according to (4) 

The next two theorems give controls that guarantee the satisfaction 
of (5) .  

Theorem I 151: For a single-input second-order nonlinear lumped 
parameter system, affine in control, given by (6), where x E R2., t i  E 
R,.x E R: and f :  R2 x R+ i I?.  choosing control law as 

u( t )  = C(t) - k ( x .  t )  sgn(s(t)) with k ( x .  t )  
-. F ( z .  t )  + 71. and iL(t) = -f  + :i.d - ~ f j  (9) 

satisfies the invariant condition of (5 ) .  

given by the following theorem [2]. 

parameter system, affine in control, given by 

Results for a second-order system with uncertain control gain are 

Theorem 2: For a single-input second-order nonlinear lumped 
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wherex E R2:u  E R>x E R,b: R2 x R+ + R. and f :  R2 x R+ + 

u( t )  = i(x, t ) - ' [ ~ ( t )  - k ( z ,  t )  s g n ( s ( t ) ) ]  

-Ag+o(S) 
R, control law 4 l/(p+j) 

Fig. 1. Filter for chattering reduction. 
(1 1) 

where A I 4 1  

varying width z * height 

and 
Fig. 2. Interpolation in the boundary layer. 

a(z ,  t )  = Jbmax(x, t ) / bmin (X,  t )  (14) 

(20). Using (17) with y! we obtain the variation of 4( t )  with time in 
terms of the differential equation of (19). 

This filter removes the high-frequency chattering to give a smooth 
s ( t ) .  The expression for sliding gain is obtained by using (17) and 
(19) 

(21) 

ensures the invariant condition of (5). 

111. METHODOLOGY FOR CHATTERING REDUCTION 
To remove chattering, a thin boundary of thickness (3 around the 

- switching surface is defined as 
k(2. t )  = ?(s(t) + k ( z ,  t )  - k ( Z d ,  t ) .  

(15) Fig. 1 shows the first-order low-pass filter for s ( t ) ,  where p is 
the Laplace operator d / d t .  The same filter can be obtained by 

B ( t )  = {4t), Is( t ) l< 41. 

using a constant width boundary. Note that we could have used 
- 
k ( z .  t ) /d  = 2 instead of z(x,i.  t)/qh(t) = y and would not then 
have the o(  E )  term, but by doing so we keep the gain calculation 
off-line, saving precious on-line computation time. The results for a 

We can guarantee that all the trajectories outside the boundary 
layer are attracted toward the boundary by imposing the following 
condition [2]: 

- _  
constant boundary width can be summarized by following Theorem 
4. First we define a new function msat(a(z,t),s(t),$) as 

I d  
Is(t)l 2 d(t) * ~ % , s ( t ) ~  5 ( $ ( t )  - V ) l . s ( t ) l .  (16) 

The following theorem gives the result for chattering reduction for n2sat(n(lC. t ) .  ,s(t). o) = a ( z , t ) s ( t ) / d  for I s ( t ) l <  4 (22) 
system (6) while satisfying (16). { sgn(s(t)) otherwise. (23) 

Theorem 3: For a single-input second-order nonlinear lumped 
parameter system, affine in control, given by (6) ,  where x E R'. I I  E 
R, x E R, and f: R2 x R+ + R ,  control law 

Theorem 4: For a single-input second-order nonlinear lumped 
parameter system, affine in control, given by (6) ,  where x E R2,  U E 
R..r t R. and f :  R2 x R+ --+ R,  control law 

u ( t )  = C ( t )  - k ( z ,  t )  msat(a(z, t ) ,  s ( t ) ,  4) (24) 'u(t) = C(t) - k-(x; t )  sat(s(t), d ( t ) )  with %(x. t )  

= k ( 2 ,  t )  - i ( t )  (17) 

with k ( z , t )  = F ( z , t )  + 7 + 4 ensures the invariant condition of 
(16). Moreover, when ls(t) l  5 $(t) ,  the variable s ( t )  passes through 
a first-order low-pass filter 

with k ( 2 . t )  = F ( z , t )  + 11 ensures the invariant condition of (16). 
Moreover, when Is(t)l 5 4t the variable s ( t )  passes through the 
first-order low-pass filter (18). 

Prooj? When Is(t)l > q5. (24) reduces to (9) which ensures (16). 
When Is(t)l 5 0. the system trajectories can be expressed in terms 
of the variable s as .(t) 1 - ~ s ( t )  + ( - A f ( z d , t )  + o ( 0 )  

where A f ( x , t )  = f ^ ( x . t )  - f ( z , t ) ? o ( [ )  represents a term of 
relatively small magnitude caused by using a desired state instead 
of actual state vector in (18), and the boundary layer width varies as 

i ( t )  = - k ( z d .  t )  as(t)/d + (-Af(zd, t )  + o(E) ) .  (25) 

To obtain the desired filter, we use the substitution 

Prooj? When ls(t)l > d ( t ) ,  (17) reduces to (9) which ensures 
(16). When Is(t)l 5 ai(t). the system trajectories can be expressed 
in terms of the variable s as 

Theorem 4 shows that the same filter can be obtained by using 
the msat function as the one obtained by using the sat function. 
The advantage of using the rnsat function is that the boundary width 
is kept fixed so that the area in which the system trajectories are 
attracted toward the boundary is not changed. The boundary width, 
however, can become large by using the sat function as is shown in 
Section IV. The msat function produces the same filter as the sat 
function by changing the variation of width of the boundary layer 
into a variation of height as shown in Fig. 2. Notice that the msat 

i ( t )  = -qz. t ) s ( t ) / 4 ( t )  - A f ( X . f ) .  (20) 

Since A f ( z ,  t )  and z(x, t )  are continuous, (20) can be written as 
(18) by using x(xd,t)/d(t) = y, where o([) represents the error 
terms introduced by replacing z ( t )  by xd(t)  in the first two terms in 
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S 

Fig. 3. Chattering across the boundary 

Fig. 4. Integral filter for chattering reduction. 

introduce n integral terms, e.g., for a system with 

function is discontinuous at s(f) = 0. If the trajectories on both sides A f ( z )  = - 2 . 5 x 2 ( t )  and xd(f) = 0.23t. (31) 
of the boundary face inwards, i.e., toward S ( t ) .  the discontinuity 
does not produce any problems. This is the case when the input 
-Af(z<i) + o(<)  to the first-order filter is an impulse input. 

Now if the input -Af(zd)  + . ( E )  to the first-order filter is a 
step input, then the variable s ( t )  has a steady-state value. Similarly, 
if the input term is a ramp, then s ( t )  keeps increasing. In that 
case, if the sat function with a varying boundary is being used, the 
boundary might keep increasing too. When a fixed boundary width 
is used, the variation of s with respect to time may increase until 
it hits the boundary layer, and once it is out of the boundary, it is 
forced back inwards because of the attractiveness of the boundary 
layer. This effect causes chattering on the boundary as shown in 
Fig. 3. This chattering is caused due to the discontinuity in the msat 
function at s ( t )  = d. The amount of discontinuity is governed 
by the variable (L which in turn fixes the bandwidth of' the s-filter 
inside the boundary. Therefore, the amount of discontinuity limits the 
achievable bandwidth of the filter. This problem is solved by forcing 
the trajectories on both sides of the boundary to face inwards for 
which an integral action is needed as explained next by Theorem 5. 

Theorem 5: For a single-input second-order nonlinear lumped 
parameter system, affine in control, given by (6), where z E R2,  U E 
R,.c E R. and ,f: R2 x R+ 4 R. and when -Af (xd . t j  + o(<) is 
time invariant, control law 

u ( t )  = G ( t )  - k(z.t) i i i t(n(z,t) , j(z. t) .si t) .~) (27) 

where 

i r i t ( n ( z .  t) . , j(z .  t ) .  s ( t ) .  dj 

for Is(f)J 5 d (28) 

sgii( 5(f) j otherwise 

with k(z . t )  = F ( a . t j  + 71 ensures the invariant condition of (16). 
Moreover, if 3' s.tls(t'jl 5 9, then we can choose a ( z ; f )  and 
j(z, t )  such that s ( f )  i 0. 

Prooj? When Is(t)l > 0. (27) reduces to (9) which ensures (16). 
When / s ( f ) (  5 tl, the system trajectories can be expressed in terms 
of the variable s as 

The control law inside the boundary layer should have integrals up 
to the third order. 

Now, for (10) to satisfy (16) in the presence of uncertainty o on the 
control gain for a variable width saturation function implementation, 
we let 

i ( t )  > 0 5 q., t )  = k ( z .  t )  - J ( t ) / n (z .  t )  
i ( f )  < 0 * Z(Z. f )  =: k ( z .  f )  - i ( f ) C + ,  f) .  (32) 

The balance condition for this system can be written as 

Applying relation (33) to (32) yields 

&t) > 0 =+ - / O ( t ) / n ( L d .  t )  = k ( Z d ,  t )  - O(f)/fi(Xd, t )  
+(t)  < 0 =+ ? O ( t ) / L v ( Z d .  t )  = k ( Z d .  t )  - d ( t ) n ( a .  t) (54) 

that is 

k ( 2 d .  c) 2 ̂( 'd(t)/Q(.d,  i )  3 $ ( t )  + ?h( t )  

N(Zd ,  t ) k . ( z d ,  t )  
k ( X d .  t )  < Y L ) ( f ) / N ( Z d .  f) 3 S(t) + ?o( t ) / [Q(zd ,  f)]' 

= k ( a .  t)/n(cd. t) (35) 

with initial condition 

$(U) ( t (Zd, c ) ) k ( r d ( o ) -  o)/r (36) 

The sliding gain for the %at function can be obtained a? 

k(z .  t )  = (k-(z. f )  - I C ( Z d .  t ) )  + I ; ( % d .  t j  

= ( k ( z .  t )  - k ( 2 d .  t ) )  + O ( t ) ^ ( / f k ( Z d . t ) .  (37) 

We can eliminate the variation of d(t) and use the vrsat function. 
Since, for this case, d ( t j  = 0 .  we obtain X(z.t) = k ( x . f ) .  The 
balance condition 13 changed to 

. i ( f j  = - k ( Z d , t ) ~ z ( Z .  f ) h ( f ) / Q  

To obtain a low-pass filter of bandwidth e), the variable U will be 
taken as 

^ A  

.(z,t) = - ICI (39) 
LY(ZI1. t ) k ( Z d ,  f j  ' 

To obtain s ( t )  4 0 ,  we use cc(z.t) = 2y>/k(ad,t) and 
j ( z , f )  -,zb/X.(zd. t ) .  Note that we could also take n(z , f )  = 

1. x(;zd,  t) /O(t)  = 2Af and , j(z, t )  = 1 2 4 ( t ) / k ( Z d .  t )  with the 
boundary 

Implementation of this scheme is simpler because 6 is constant 
and the design of a ( z ,  f )  is straightforward. For (Io), the system 
trajectories inside the boundary layer can be expressed as 

d t )  + 2-,w(f) = k(2d.t). (30) 

vein, if the hlter input has a term with Laplace transform m / p " .  we 

.(t) = (f(z, t )  - b ( z .  t)L(Z. t ) - ' f ^ ( z . t ) )  
+ (1 - b ( z . t ) ~ ( z . t ) ~ ' ) ( - . d ( t )  + -,L(t)) 
- b(z .  t ) i (z . f j - 'k(z .  tj ign(s( t ) )  

This filter is \hewn in Fig. 4. Extending the argument in the same 
(40) 
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Sliding Error vs. Time Controller 
I lo 7 0.02 ,-I :m E 
.2 
2 

0 
Irl 

!2 
1 2 3 

-0.02 -5 
0 1 2 3 0 

Time(sec) Time (sec) 

Fig. 5.  Simulation results using signum function. 

or 

i ( t )  = - b ( q  t)b(z, t)-’S(z> t )  sgn(s ( t ) )  - i ( z ,  t )  (41) 

with 

i (z ;  t )  = - ( , f (q t j  - b(z,t)i(z, t ) - l f ^ ( z .  t )  
- (1 - b ( z . t ) I ; ( s : t ) ~ ’ ) ( - ~ , ( t )  + * ,k( t ) ) .  (42) 

The input to the filter for s ( t )  variable is -i(zd.f), and therefore 
this term should be analyzed as explained for (6) to ascertain which 
function should replace the sgn function for chattering reduction and 
error convergence. 

IV. NUMERICAL EXAMPLES 

Example I :  Consider a second-order system of the form of (6) 
with 

f = -h(t)i’ cos3x; 

f = -1.5,’ cos32 

F = 0.5i:”I  COS 3x1; 

h( t )  = I sin ti + 1 

7 = 0.1; ”/ = 20 

Z d  = s i n ( ~ t / 2 )  (43) 

and the sampling frequency of 0.5 KHz. Control law (9) for this 
example is 

U = 1.5,;;” cos 32 ~ (7i2/4) s in(Tt /2)  - 20.i 
- (0.1 + 0 . 5 i ’ )  cos3zj) sgn(s) (44) 

where the s variable is defined in (8). Fig. 5 shows that tracking 
performance using this control law is excellent but at a price of high- 
control chattering. To remove chattering, we define a constant width 
boundary 0 = 0.1 and use the control law 

U = 1.55’ cos32 - ( r2 /4 )  s in(Tt /2)  - 2 0 i  

- (0.1 +0.5i21 c o s 3 2 / )  sat(s/0.1). (45) 

As is evident from Fig. 6, although the error has increased, the 
performance is still acceptable and chattering has been removed. 
Now, the boundary q5 is made varying and the control law (17) is 
used which for this example is 

u = 1.5,’ cos 32 - (7r2/4) s i n ( r t / a )  - 20.i 

(0.1 + 0.5k’l cos3z1 - 4) sat(s/$) (46) 

with 

4 = -204 + 0.5k%l cos3zdl + 0.1. (47) 

Fig. 7 shows that by using a varying boundary, the error has improved 
and there is no chattering. Now, the boundary is kept constant at 0.1 
which is greater than the maximum value of the varying boundary 
for the previous case. Control law (22) is used as 

U = 1.5,’ cos 3 2  - (n2/4) sin(.irt/2) - 20k 

- (0.1 + 0.5:i’I cos3zI) ncsat(a, s ,O . l j  (48) 

Fig. 6. Simulation results using sat function. 

Time(sec) Time (sec) 

Fig. 7. Simulation results using variable width sat function. 

B o o ; F j  

I - 0  05 

2 - 0 1  
0 1 2 3  

Tune(sec) 

Fig. 8. Result using msat(.) 

TimC(3CC) 

Fig. 9. Form1 system using variable width sat(.). 

where 

a = 20(0.1)/(0.5k;l cos32dl). (49) 

We obtain the same results as were obtained by using the control 
(46) and (47), as is shown in Fig. 8. Now, to show the advantage of 
using the new interpolated functions with fixed boundaries, consider 
the second-order system of the form of (6) 

f = -2.00: f = -1.01 F 1.01; 7 = 0.1 

7 = 20; xd = s i n ( ~ t / 2 ) .  (50) 

Define a term form-n to indicate that the Laplace transform o f  the 
input to the filter inside the boundary layer is m / p n .  For example, 
for a step input, the system will be of form-1, and for a ramp input 
it will be of form-2, and so on. Control law (17) with (50) is applied 

(51) U = 1 - (?r2/4)sin(7it/2) - 20k - (1.11 - $) sat(s/$) 

with 

d, = -204 + 1.11. (52) 

A steady-state error is obtained in the value of s and the output error, 
as shown in Fig. 9. 

Example 2: Consider a form-2 system with the following param- 
eters and desired output: 

f = -2.00t; f = -1.0t; F = 1.01t; 7 = 0.1 
y = 20; z d  = sin(nt/2).  (53) 

Authorized licensed use limited to: University of Nevada Las Vegas. Downloaded on March 26,2010 at 15:30:25 EDT from IEEE Xplore.  Restrictions apply. 
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o,l S W  Err. Y. Boundary V. GENERALIZATION 

The claim made in Section 111 can be generalized to a class of 
nonlinear systems by using the internal model principle approach 
[6].  Consider the nonlinear systems (6) and (10). Denote the input 
to the filters described in Section 111, for both nonlinear systems, by 
d(zd, t ) .  Note that z d ( t )  is a function of time so that we can write 
the input as d ( t ) .  The disturbance d ( f )  satisfies 

E 

4 -0.1 

M O  
8 

0.5 1 
T t n ( S e C )  

Fig. 10. Form-2 using variable width sat(.) 

-0 01 

g-002 

0.5 

Fig. 11. Form-l system using msat(.). 

SlidingEnurm.Time 
I I 

Time(3CC) 

Fig. 12. Form-I using sat(.). 

Fig. 13. SForm-l system using int(.). 

When the control law given by 

U = t - (nL /4 )  sin(nt/a) - 20; - (1.11t - $1 sat(s/&) 

with 

q j = -  204 + l . l l t  

(54) 

(55) 

is applied, the error as well as the boundary keep increasing. This 
phenomenon can be seen in Fig. 10. The chattering surface is shifted 
from zero to the boundary ( 4  = 0.02 here) when the control law 
given by 

U = l - ( r r 2 / 4 ) s i n ( n t / 2 ) - 2 0 ~  - l.llmsat(0.0018. s,0.02) (56) 

is applied to the form-1 system with (50). This phenomenon is seen 
(Fig. 11) because the trajectories inside the boundary as well as 
outside are attracted toward the lower boundary. When the control 
law with the sat function, and a fixed boundary is used for the system 
with (50), for a low value of sliding gain k ,  s tends to hit the boundary 
and stay there as shown in Fig. 12. For a higher value of 5 it would 
either start chattering across the lower boundary or across the whole 
boundary width depending on the value. 

Finally, the result of using the control law 

with 

q = -204 + 7.5 (58 )  

to (6) with form-I parameters of (50) is shown in Fig. 13. Here, 
the output error and s go to zero. We could have also used a fixed 
boundary here. 

i l ( p ) d ( t )  = 0. (59) 

Examples of such d ( t ) s  are: a) p d ( t )  = 0 for d ( t )  = constant; b) 
p 2 d ( t )  = 0 for d ( t )  = t; c) ( p z  t U ' )  d ( t )  = 0 for d ( t )  = sin(&) 
or cos(&). 

Corollary 1: For a single-input second-order nonlinear luimped 
parameter system, affine in control, given by (6) ,  where z E R2,  71 E 
R , x  E R, and f :  R2 x R+ -+ R, and when -Af(xd, t )  + o([) 
is a disturbance d ( t )  and the dynamics inside the boundary layer 
are j. = -g (s )  + d ( t ) ,  where the Laplace transform of g(s)  is 
[ R ( p )  + T ( p ) / A ( p ) ] S ( p ) :  R ( p )  and T ( p )  are polynomials in p :  S ( p )  
is the Laplace transform of s ( t )  , control law 

U = ci -- k gen(s) (60) 

where 

gen(s) =sgn(s )  for JsI 2 d 
gen(s) = g ( s ) / k  for / S I  < d (61) 

with k ( z .  t )  = F ( z ,  t )  + q ensures the invariant condition of (16). 
Moreover, if 3' s.t(s(t')( 5 cb, then we can choose a(z . t )  and 
j ( z , t )  such that ~ ( t )  - 0. 

Proo$ When I s ( t ) l >  4, (60) reduces to (9) which ensures (16). 
Taking the Laplace transform of equation j. = -g(s) + d( t )  and 
rearranging terms, we obtain 

In this equation, R ( p )  and T ( p )  can be chosen by using the 
Diophantine equation to place the poles in the left half-plane of the 
complex variable p .  Hence, s ( t )  --t 0. 

As an example, let us take ar constant d ( t ) .  Obviously, we hiave 
A(p) = p .  We can obtain the following characteristic equation by 
choosing R(p) = 2y, and T ( p )  = y2 : 

The Laplace transform of the dynamic equation for s inside the 
boundary is 

which verifies control law (27). 

VI. CONCLUSIONS 
Various control laws were proposed within the boundary layer for 

chattering reduction and error convergence in sliding-mode control 
for a class of nonlinear systems, and example simulation resultlj are 
shown to illustrate their effect. 
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Reduced-Order Observer Design for Descriptor 
Systems with Unknown Inputs 

M. Darouach, M. Zasadzinski, and M. Hayar 

for descriptor systems with unknown inputs [ 191-[21]. Descriptor 
systems are very sensitive to slight input changes, and the presence 
of immeasurable disturbances or unknown inputs is very detrimental 
to the design of observers. This fact justifies the importance of the 
observers design for descriptor systems in the presence of unknown 
inputs. On the other hand, many practical systems can be described 
by descriptor models, and the fault diagnosis of these systems may 
be based on the unknown input observer design. 

In [19] and [20] only square singular systems have been considered 
under the regularity condition. In addition, the strong observability 
[19] and the modal observability [20] have been assumed. In [Zl], a 
coordinate transformation is used to design a reduced-order observer. 

In this paper, we present a new method to design a reduced-order 
observer for continuous-time descriptor systems subject to unknown 
inputs and unknown measurement disturbances. 

As in [21], systems considered are in a general form and less 
restrictive conditions are required. 

11. STATEMENT OF THE PROBLEM 

Consider the linear time-invariant descriptor system 

where 2 E R“, U E R k ,  w E R q ,  and y *  E Wp are the state vector, the 
control input vector, the immeasurable input vector, and the output 

R m X i l .  G* E @”*. and c” E W p x ”  are known constant matrices. 
We assume that rank E* = T < n, and without loss of generality 
rank [C* G’] = p .  

Abstract-A new method for the design of reduced-order observers 
for descriptor systems with unknown inputs is presented. The approach 
is based on the generalized constrained Sylvester equation. Sufficient 
conditions for the existence of the observer are given. 

vector, respectlve’y. E* E I w m x n >  A* E W m X n ,  B* E w 7 n x k  ,F” E 

Assumptions: In the sequel we assume that 

1. INTRODUCTION 
The problem of observer design for standard systems with unknown 

inputs has received considerable attention in the last two decades 
(see [1]-[4] and references therein). This problem is of great impor- 
tance in theory and practice, since there are many situations where 
disturbances or partial inputs are inaccessible. In [5] a technique for 
computing an efficient solution for the unknown input observer design 
is given. This solution uses the constrained Sylvester equation. The 
usage of constrained and coupled Sylvester equation in automatic 
control is well known [6]-[8]. Recently, a great deal of work has 
been devoted to the observer design for descriptor systems, and many 
approaches to design such observers exist [9]-[16]. In 191 a method 
based on the singular value decomposition and the concept of a 
matrix generalized inverse to design a reduced-order observer has 
been proposed. In [ I  11 the generalized Sylvester equation was used 
to develop a procedure for designing reduced-order observers. In [ 121 
a method based on the generalized inverse was presented. Observers 
for continuous descriptor under less restrictive conditions and using 

ii) ’* :* 0 C’ 0 G* 
0 0 O G ’  

I - rank [“* “1 rank 

A 

= n + y .  

These conditions are not restrictive. Condition i) can always be 
met by redefining the unknown input. If rank [ ] = s < q ,  then we 
have [ ] is of full column rank, and v 
can be considered as a new unkno4n input. Condition ii) generalizes 
the condition of the impulse observability of singular square systems 
(i.e., T I L  = n and det E’ = 0 )  when F* = G‘ = 0. 

For m = n, E* = I ,  and G” = 0, (1) becomes a standard one 
with unknown inputs; in this case condition ii) can be written as 

F =  F* 
] U !  = [ .’; ] 1):  where [ 

rank [$ :* ] = n + q or equivalently 
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