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Abstract 

A fundamental limitation exists in the achievable track- 
ing performance of non-right-invertible systems. This 
limitation manifests itself in the cheap control track- 
ing cost, which we show to be a function of the plant 
non-minimum phase zeros and of the variation with fre- 
quency of the plant direction. The cheap control track- 
ing cost is further connected with an integral relation 
that constrains the performance of any stable closed- 
loop system where the plant has a single input and two 
outputs. 

1 Introduction 

When designing control systems, there is a tradeoff 
between small amplitude inputs and fast transient re- 
sponse of the closed loop system. Large amplitude in- 
put signals may be required to achieve small deviations 
of the system from the desired trajectory. This tradeoff 
becomes evident in the cheap control problem, which 
is concerned with the limiting behaviour of the linear 
quadratic regulator as the cost in control tends to zero. 

The asymptotic value of the cheap control cost has been 
studied by many authors [7, 12, 8, 9, 3, 111. Tn pas- 
ticular, Kwakernaak and Sivan [7] showed that, if the 
system is minimum phase and right-invertible, then the 
cheap control cost will become arbitrarily close to zero 
as the control cost becomes arbitrarily small. On the 
other hand, if the system is either non-minimum phase 
or non-right-invertible (or both), then the cheap coil- 
trol cost will be nonzero. Kwakernaak and Sivan also 
showed that if the plant is non-minimum phase and 
square then as the control cost approaches zero some 
of the closed loop poles will tend to positions in the left 
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half plane determined by the non-minimum phase zeros 
of the plant. For non-right-invertible systems, similar 
results apply except that some of the closed loop pole 
positions arise because the plant is non-square [a, 51. 

Here we are interested in the value of the cheap control 
tracking cost, where the performance variable in the 
quadratic cost functional is the deviation of the system 
output from a constant setpoint. For non-minimum 
phase and right-invertible systems, Qiu and Davison 
expressed the cheap control tracking cost as a function 
of the plant non-minimum phase zeros [8]. For non- 
right-invertible systems, we show that, in addition to 
being a function of the plant non-minimum phase zeros, 
the cheap control tracking cost is increased by a term 
which is a function of the Variation with frequency of 
the plant direction. 

The remainder of this paper is organised as follows. 
Section 2 contains definitions and derives some results 
required for the development of this paper. Section 3 
gives a formula for the cheap control tracking cost for 
non-right-invertible systems. Section 4 provides a con- 
nection, for single input two output systems, between 
the cheap control result given in Section 3 and integral 
relations that have previously been developed. Finally, 
some examples and conclusions are given. 

1.1 Notation and Definitions 
A transfer matrrz is a matrix whose entries are rational 
functions of the complex variable s. The normal rank 
of a transfer matrix P is the maximal possible rank 
of P ( s )  for at least one s E C .  A non-right-invertible 
transfer matrix has full normal rank if its normal rank 
is equal to the number of its columns. 

Let the open and closed right and left halves of the com- 
plex plane be denoted by ORHP, CRHP, OLHP, and 
CLHP, respectively. We use the acronyms STTO for 
“single input two output”; and FTMO for “few inputs 
many outputs”. A transfer matrix with more rows than 
columns will be referred to as a FTMO transfer matrix 
for brevity. A FTMO transfer matrix with full row rank 
i s  non-right invertible. - 
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The zeros (poles) of a transfer matrix are defined to be 
the roots of the numerator (denominator) polynomials 
of the nonzero entries of its Smith-McMillan form. A 
transfer matrix is stable if all its poles are in the OLHP; 
minimum phase if all its zeros are in the CLHP, other- 
wise it is non-mrnimum phase. 

A transfer function P, is said to be znner if P, is stable 
and P:(-s)Pz(s) = I .  'ds E C. A transfer function 
Po is said to be outer if it has full row rank in the 
ORHP. 

2 Preliminaries 

2.1 Plant Direction and DC coordinates 
For the purposes of this paper, the plant is a strictly 
proper q x p FTMO transfer matrix P of full normal 
rank. An important concept associated with a q x p 
FTMO transfer matrix P is its directzon. Tf P has nor- 
mal rank equal to p ,  then its direction at s E C may be 
defined as the p-dimensional subspace of Cq spanned 
by P ( s ) ,  away from its zeros and poles. 

The precise definition of direction uses a particular 
transfer matrix factorization. For example, in the 
STTO case. we define the direction of 

(0.3s + 1 )2 

a.s the range - a.t each s E C - of the polynomial 
matrix 

N ( s )  = [' + 4 2 s  1)(0.3s + 1 )  + "I 
obtained from the factorization 

1 
P(s )  = N ( s )  (2s + 1)(0.3s + 1 ) 2  ' (2.2) 

Observe that N in (2.1) spans a one-dimensional sub- 
space of C2 for all s E C. A factorization of the form 
(2.2) can always be obtained in the general FTMO case 
as shown below. 

Lemma 2.1 A q x p transfer matrix  P of normal rank 
equal to  p can always be factored as 

P ( s )  = N ( s )  K ( s )  ! 

where N i s  a q x p polynom<ial matrix, and K i s  a 
p x p transfer matrix. Moreoiler, N has the follouring 
properties: 

(b), N i s  invariant under feedback of the states of any  
controllable and observable realization of P. 

Proof: See Woodya.tt et. al. [16]. 

We use the factorization of P given in Lemma 2.1 to 
define its direction. 

Definition 2.2 (Transfer Matrix Direction) Let 
P ( s )  = N ( s ) K ( s )  be as in Lemma 2.1. T h e n  its di- 
rection at  each s E C i s  the range of the matrix N ( s ) .  
If N i s  a constant matrix, we say  that the transfer 
funct ion direction i s  constant with frequency. 0 

The direction of the transfer matrix P is referred to as 
plant dzrectzon. 

Many properties of a feedback system at a given fre- 
quency s = j w  depend only upon the directions of 
the plant and controller at that frequency [4]. More- 
over, the way in which plant direction changes with 
frequency imposes closed-loop performance limitations. 
These limitations were previously expressed [14] as in- 
tegral constraints on closed-loop transfer functions, and 
are further investigated here in the cheap control track- 
ing cost. 

To describe how the plant direction varies with fre- 
quency it is convenient to use a special coordinate basis 
for the output space. The idea is that, in the new co- 
ordinates, the direction at DC (s = 0) of a q x p FTMO 
plant can be "normalized" to be the range space of the 
matrix [ Ip  O I T ,  where I p  is the p x p identity matrix. 

Definition 2.3 (DC Coordinates) Let P = N K be 
as rn Lemma, 2.1 and choose a constant orthogonal ma- 
tmx  M E Rqxq such that 

M T N ( 0 )  = [:] , 

where V i s  a square constant matrix  with ful l  rank. 

Let N t s )  = M " N ( s ) .  T h e n  the plant in DC coordi- 
na.tes P i s  defined as 

P ( s )  = N ( s ) K ( s ) .  (2.4) 

0 

Note that p ( s )  = M T P ( s )  and its direction a.t s = 0 is 
the range of N ( 0 )  = [V' 01'. 

2.2 Inner-Outer Factorization in DC Coordi- 
nates 
We define 

A(s) = N T ( - s ) N ( s )  ~ (2.5) (a). rank N ( s )  = p for all s E C ;  
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or, equivalently, A ( s )  = R'(-s)f i(s) .  

Note that A has no ze:-os on the imaginary axis be- 
cause A ( j w )  = NH( jw)N( jw)  and hence rank A ( j w )  = 
rank N(jw)  = p (cf. Lerrma 2.1). We can then perform 
a spectral factorization of A, namely, find a "minimum 
phase" polynomial matrix (that is, with all its zeros in 
the OLHP) AMP such that 

A ( s )  = ALP(-s)AMP(s) * 

With AMP so defined, and K as in (2.4), let an inner- 
outer factorization of A M ~ K  be 

AMP(S)K(S)  = [ A ~ p ( s ) K ( s ) l ,  [AMP(S)K(S)] ,  . 
where [ A M P K ] ,  is inner, and its zeros are the non- 
minimum phase zeros of K ,  and its poles are the mirror 
image (with respect to the imaginary axis) of the non- 
minimum phase zeros of K .  

With the above definitions, an inner-outer factorization 
of P is obtained as follows. 

Lemma 2.4 A n  inner-outer factorization of P = N K  
is 

P ( s )  = P,(s)Po(s) (2.6) 

R ( s )  f i ( s )AGp(s )  [ A M P ( s ) K ( s ) ] ,  U (2.7) 
PO(4 = UT [AMP(S)K(S)I,' AMP(S)K(S) 

where 

(2.8) 

with U E R p x p  any orthogonal matrix. 

Proof: Clearly, multiplying (2.7) and (2.8) yields 
P. As all the zeros of AMP are minimum phase and 
[ A M P K ] ,  is stable, if follows that P7 is stable. Rirther- 
more, easy calculations show that P : ( - S ) ~ ~ ( S )  = I ,  
and so P,(s) is inner. Also, by construction, P,is min- 
imum phase and right invertible. Hence P,P, is an 
inner-outer factorization of P. 

3 Cheap Control Tracking Problem 

The fact that a FTMO system 

y = Pu 

has fewer inputs than outputs limits the set of setpoints 
that are admissible, that is, that the output y can track 
with zero steady-state error. Tf P = N K  is a factor- 
ization as in Lemma 2.1 , and K has no zeros at s = 0, 
then the set of admissible setpoints for the output ! t  
is the set of all r E Rqxl that belong to the range of 
N(O), that is, they are aligned with the plant direction 
at DC. We restrict our attention to plants that have no 
zeros at s = 0 and to the set of admissible setpoints. 

Assumption 3.1 

(i). The q x p FIMO plant P = N K  has no zeros at 
s = 0 (equivalently, K has no zeros at s = 0). 

(ii). The setpoint r E Rqxl i s  admissible, that is, it 
belongs to  the range of N (0 ) .  

0 

For each admissible setpoint there exists an input U 
that makes the output y track it asymptotically. Specif- 
ically, if x = Az + B'IL, y = Cx is a stabilizable and de- 
tectable realization of P ( s )  and r is an admissible set- 
point, then we can find [16] FI E R p X p  and r1 E R P x l  

such that the controller 

where A+BF is Hurwitz, achieves asymptotic setpoint 
tracking y(t) -+ r as t -+ 00. Denoting the tracking 
error by e = y - r ,  and the transient past of the input 
by U, = U - a, where is the steady-state value of 
U, and assuming zero initial conditions for the state 
z, we evaluate tracking performance through the cost 
functional 

J('IL,. r .  E )  = eT( t )e ( t )  + e 2 u T ( t ) u e ( t )  d t  . (3.1) 

Let the minimum value of (3.1), obtained for the opti- 
mal control U, = u z P t ,  be 

ha 

Jopt(r .  E )  = J ( 7 ~ ; p ~ .  r.  E ) .  

Then the best tracking performance is obtained in the 
limit as E ---f 0, that is, 

lim Jopt(r .  E )  
&-+O 

The limit (3.2) is the cheap control tracking cost, so 
called because the cost of control in (3.1) becomes neg- 
ligible as E -+ 0. For square systems ( q  = p ) ,  Qiu and 
Davison [SI showed that (3.2) is a function of the plant 
non-minimum phase zeros. Here we will show that for 
FTMO systems ( q  > p )  there exists an additional non- 
negative cost due to the variation with frequency of the 
plant direct ion. 

Note that, from (2.3), if T is an admissible setpoint for 
the plant in original coordinates, then the correspond- 
ing admissible setpoint for the plant in DC coordinates, 
M T r ,  has the form 

M T r =  ['d] , 
where r1 E R p x l .  

(3.3) 
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Consider the q x p polynomial matrix N = M T N  in- 
troduced in Definition 2.3. Partition it as 

(3.4) 

such that N1 is square. We define the sets: 

(6, : i = 1 , .  . . , Na} of ORHP zeros of A defined in (2.5); 

{ p ,  : i = 1 , . . . , N ~ }  of ORHP zeros of I?, ; 
{-A, : i = 1 , .  .. .Nx} of OLHP zeros of I?,; 
{cyz : i = 1. .  . . N,} of ORHP zeros of K .  

(3.5) 

Then the cheap control tracking cost (3.2) has the fol- 
lowing form. 

Theorem 3.2 Under Assumption 3.1 the cheap con- 
trol tracking cost (3.2) I3 given by 

lim JoPt(r,  E )  = rTHr1 
€ + O  

where r1 is  defined in (3.3) and where 

+ Va.r(P) , (3.6) 

Proof: See R'oodya.tt et. al. [16]. 

Theorem 3.2 shows that the cheap control tracking cost 
for FTMO systems is r F H r l ,  and (3.6) gives an expres- 
sion for trace H as an explicit function of the zeros de- 
fined in (3.5). Theorem 3.2 shows that when the plant 
is non-right-invertible, the cheap control tracking cost 
is not only a function of the non-minimum phase ze- 
ros of the system - given by the term between square 
brackets in (3.6) - but there is also an additional term 
Var(P) which, as we show next, is due to the change 
in the direction of the plant. 

Lemma 3.3 For a plant P in DC coordimates, partr- 
t ion the plant as 

such that Pl is square. Then  $lw log ldet (I + Pzt(-jw)Prat(jw))l 7 dw = Var(P), 

(3.9) 

where P,,,(S) = &(s)FT '  ( s ) .  

Proof: See Woodyatt et. al .  [16]. 

Tf the plant direction varies significantly with frequency, 
in the sense that the integral in (3.9) is large, then 
traceH in (3.6) will be large. Therefore, variations of 
the plant direction with frequency imply a fundamental 
limitation in the tracking ability of FTMO linear sys- 
tems using full state feedback. This limitation has no 
analog in square multivariable systems. 

When the plant direction is constant with frequency we 
recover the result for the square multivariable case. 

Corollary 3.4 Under Assumption 3.1, i f  the plant di- 
rection i s  constant with frequency, the cheap control 
tracking cost (3.2) is  given by 

where r1 is  defined in (3.3) and where 

Proof: Tf the plant direction is constant with fre- 
quency, then by definition the matrix N is constant. 
Therefore the sets (6, : i = 1 , .  . . .N&},  { p z  : z = 
1 . .  . . .N,} and {-Av : z = 1 , .  . . .Nx} are all empty, 
and the result follows. 

4 Connection with an Integral Relation for 
Single Input Two Output Systems 

We have shown that there is a simple expression for the 
cheap control tracking cost for FTMO systems. We now 
provide a link, in the STTO case, between the cheap 
control tracking cost and an integral relation on the 
output complementary sensitivity function. 

Consider a linear time-invariant STTO plant, controlled 
by a linear time-invariant controller. Let the plant and 
controller be represented by rational and proper trans- 
fer functions P(s )  = [ p l ( s )  p2 ( s ) ]  and C(s). De- 
fine the anpcut and output open loop transfer functzons, 
as Lr(s)  C( s )P( s )  and Lo(s)  P(s )C(s)  respec- 
tively; and the input and output complementary sensa- 
trcidy funct7ons as as T , ( s )  L , (s)  ( 1  + L,(s))-'  and 
To(s) Lo( s )  ( I  + Lo(.))-' respectively. Further- 
more, denote by T0.1 and To1 1 the first column of To, 
and the element in the first row and first column of To 
respectively. Consistent with previous notation, denote 
the output complementary -sensitivity fun_ction in DC 
coordinates by T O ,  where TO PC(I + PC)- ' .  The 
norm of the output complementary sensitivity function 

T 
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is invariant under transformation to DC coordinates, 
that is IITo(s)ll = IITo(s)((. 

The following result gives an analytic constraint that 
must be satisfied by the output complementary sen- 
sitivity function of any stable STTO feedback system 
whose plant direction changes with frequency (1 51. 

Proposition 4.1 Assume that the SIT0 feedback sys- 
t e m  is stable. T h e n  

+ Va.r(P) - I?,',, 
where ai and pi are defined in ( 3 . 5 ) ,  Var(P) is  given 
in (3.7), and is defined by 

0 

The term 
the closed loop system, see [15] for more discussion. 

Clearly the terms containing cy7, p? and Var(P) in the 
above integral constraint provide a link with the cheap 
control tracking cost. 

is related to the transient response of 

Lemma 4.2 Assume that the  feedback system i s  sta- 
ble. T h e n  

We see from (4.1) that the cheap control tracking cost 
appears in an integral formula which applies to all sin- 
gle degree of freedom linear time invariant stabilizing 
controllers for STTO systems. A parallel link exists for 
single input single output (STSO) systems, provided by 
the term Czl  CY,, where cy, are the non-minimum 
phase zeros of the scalar system [ I  11. As expected, in 
the STTO case the linking term also contains informa- 
tion about the variation with frequency of the plant 
direction. In the case where the plant direction is con- 
stant with frequency the results coincide with the STSO 
case. 

which, in DC coordinates takes the form 

s + l  1 [ cs Im P(s) = f i ( S ) K ( S )  = Jz 

The polynomial A = N T N  has only one ORHP zero, 
61 =m. and the (1,l )-element of fi has a zero at 

-A1 = -1  (cf. (3.5)). Using Theorem 3.2 it follows 
that 

lim J O P ~ ( T :  E )  = Jm - I .  
E - 0  

Note that (5.1) has no non-minimum phase zeros; the 
cheap control cost is entirely due to the change in the 
direction of the plant with frequency. Tf < >> 1, then 
the plant direction, given as the range of N ( s )  in (5.1), 
changes a lot with frequency. This directly translates 
into a large value for the cheap control tracking cost. 
On the other hand, << 1 corresponds to  little varia- 
tion with frequency of the plant direction and, hence, 
to a small value for the cheap control tracking cost. 

Example 5.2 Consider the control of a cart of mass 
M attached to a ball of mass m with a massless rod 
of length 1. For a detailed discussion of this system 
see Doyle, Francis and Tannenbaum [ l ] .  The mass M 
slides in the direction z on a horizontal surface; the 
angle that the rod makes with the vertical is denoted 
by 8.  The input to the system is a horizontal force U. on 
the cart. Denote by g the acceleration due to gravity. 
Linearising about the stable equilibrium when the ball 
is directly below the cast yields the following transfer 
function: 

The plant is already in DC coordinates, and has no 
N M P  zeros. Consider the case of a unit step change 
in the reference signal. Figure 1 shows a plot of the 
optimal cost, which was calculated using Theorem 3.2, 
for various pendulum lengths 1. This shows that the 
optimal cost increases for longer pendulum lengths. Tf 
the cost limE-o J o p t  becomes large, then it is necessary 
to have a longer settling time, otherwise large transient 
signals will occur. Therefore, as the longer the length 
of the pendulum. the longer the settling time of the 
closed loop system. 

5 Example 
6 Conclusion 

Example 5.1 Consider the pla.nt 

P ( s )  = N ( s ) K ( s )  = (5.1) 
This paper has extended the results of Qiu and Davi- 
son (81 concerning the cheap control of square linear 
systems to lineal systems t h a t  are not right invertible. 
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Figure 1: Cheap control cost vs. Pendulum length 

Tf the plant is square, then lim,,o Jopt(r. E )  = rTHrl ,  
and trace H is dependent only on the NMP zeros of the 
plant. 

For the case in which the plant is not right invertible, 
we have provided a simple formula for trace N. Tn this 
case, traceH depends not only on the NMP zeros of the 
plant, but also on the variation of the plant direction 
with frequency. 

Previous work has shown a link between the cheap con- 
trol results of Qiu and Davison and integral relations 
which constrain the output complementary sensitivity 
function [ l l ] .  Our results show that if the plant i s  not 
right invertible, then there is an analogous linkage be- 
tween integral relations developed for STTO plants and 
the cheap control cost. 
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