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ABSTRACT

Online social networks (OSNs) have become one of the most
effective channels for marketing and advertising. Since users
are often influenced by their friends, “word-of-mouth” ex-
changes so-called viral marketing in social networks can be
used to increases product adoption or widely spread content
over the network. The common perception of viral market-
ing about being cheap, easy, and massively effective makes
it an ideal replacement of traditional advertising. However,
recent studies have revealed that the propagation often fades
quickly within only few hops from the sources, counteracting
the assumption on the self-perpetuating of influence consid-
ered in literature. With only limited influence propagation,
is massively reaching customers via viral marketing still af-
fordable? How to economically spend more resources to in-
crease the spreading speed?

We investigate the cost-effective massive viral marketing
problem, taking into the consideration the limited influence
propagation. Both analytical analysis based on power-law
network theory and numerical analysis demonstrate that the
viral marketing might involve costly seeding. To minimize
the seeding cost, we provide mathematical programming
to find optimal seeding for medium-size networks and pro-
pose VirAds, an efficient algorithm, to tackle the problem
on large-scale networks. VirAds guarantees a relative error
bound of O(1) from the optimal solutions in power-law net-
works and outperforms the greedy heuristics which realizes
on the degree centrality. Moreover, we also show that, in
general, approximating the optimal seeding within a ratio
better than O(log n) is unlikely possible.

Categories and Subject Descriptors

G.2.2 [Mathematics of Computing]: Discrete Mathe-
matics—Graph theory ; I.1.2 [Computing Methodologies]:
Algorithms—Analysis of algorithms
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1. INTRODUCTION
Digitizing real world connections, online social networks

(OSNs) such as Twitter, Facebook have been steadily grow-
ing. Two-third of everyone online is using social networks
with 800 million active users using Facebook [2], 200 million
twitters, 40 millions Google+ subscribers and so on. So-
cial network sites such as Facebook and Youtube are often
among top-ten visited websites on the Internet [1]. Much like
real-world social networks, OSNs inherent the viral property
in which information can spread and disseminate widely into
networks via ‘word-of-mouth’ exchanges, creating an effec-
tive platform for marketing. OSNs quickly become one of
the most attractive choices for brand awareness, encourag-
ing discussion on improving products and for recruiting. No-
table examples include the recent unrest in many Arab coun-
tries which are triggered by Facebook shared posts [23]; the
customer outreach of Toyota on Twitter to repair its image
after the massive safety recalls of its vehicles [22], and many
others. Despite the huge economic and political impact, vi-
ral marketing in large scale OSNs is not well understood
due to the extremely large numbers of users and complex
structures of social links.

A major portion of viral marketing research has been de-
voted to the question of efficiently targeting a set of influ-
ential nodes in order to spread information widely into the
network [16, 17, 11]. Two essential components to address
the question are the diffusion models and the algorithms to
select the initial set of nodes, called seeding. For a social
network represented as a graph, a diffusion model defines
the stochastic process that specifies how influence is prop-
agated from the seeding to their neighbors, and further.
In [16] Kempe et al. proposed two basic diffusion mod-
els, namely independent cascade model and linear threshold
model. These two models and their extensions set the foun-
dation to almost all existing algorithms to find seeding in
social networks [16, 17, 11].

However, all mentioned models and algorithms ignore one
important aspect of influence propagation in the real world.
That is influence propagation often happens only within a
close proximity of the seeding. For examples, study of Cha



et. al. in Flickr network [9] reveals that the typical chain
length is less than four; another study of Leskovec et. al. [18]
suggests that social influence happens on the level of direct
friends. Moreover, shared information in social networks
such as Facebook, in most cases, can be seen only by friends
or friends of friends i.e. the propagation is basically limited
within two hops from the source. When the influence only
propagates locally, is massively reaching customers via viral
marketing still affordable? In addition, can we speed up the
information spreading for time-critical applications such as
political campaigns?

We formulate a new optimization problem, called the cost-
effective, fast, and massive viral marketing (CFM) problem.
The problem seeks for a minimal cost seeding, measured as
the number of nodes, to massively and quickly spread the
influence to the whole network (or a large segment of the
network). The new aspect in our model is that the influence
is limited to the nodes that are within d hops from the seed-
ing for some constant d ≥ 1. In other words, the influence
is forced to spread to the whole networks within d propa-
gation rounds. Hence, adjusting d gives us an important
ability to control how fast the spread of influence within a
network. Unfortunately, the huge magnitude of OSN users
and data available on OSNs poses a substantial challenge to
control how information can quickly spread out to the whole
network.

In this paper, we develop solutions to the CFM problem
and address the above two questions. More specifically, our
contributions are summarized as follows:

• Our first finding shows that the seeding for fast and
massive spreading must contain a non-trivial fraction
of nodes in the networks, which is cost-prohibitive for
large social networks. This is confirmed by both our
theoretical analysis based on the power-law model in
[4] and our extensive experiments.

• We propose VirAds, a scalable algorithm to find a set
of minimal seeding to expeditiously propagate the in-
fluence to the whole network. VirAds outperforms the
greedy heuristics based on well-known degree central-
ity and scales up to networks of hundred of million
links. We prove that the algorithm guarantees a rela-
tive error bound of O(1), assuming that the network
is power-law.

• We show how hard to obtain a near optimal solu-
tion for CFM by proving the impossibility to approx-
imate the optimal solution within a ratio better than
O(log n).

Related Work. Viral marketing can be thought of as a
diffusion of information about the product and its adoption
over the network. Kempe et al. [16, 17] formulated the in-
fluence maximization problem as an optimization problem.
They showed the problem to be NP-complete and devised
an (1 − 1/e − ǫ) approximation algorithm. A major draw-
back of their algorithm is that the accuracy ǫ, and efficiency
depends on the number of times running Monte-Carlo simu-
lation of the propagation model. Later, Leskovec et al. [19]
study the influence propagation in a different perspective in
which they aim to find a set of nodes in networks to detect
the spread of virus as soon as possible. They improve the
simple greedy method to run faster. The greedy algorithm

is furthered improved by Chen et al. [10] by using an in-
fluence estimation. However, the proposed algorithm might
only perform well for small values of propagation probabil-
ities. In addition, the algorithm time complexity should be
O((m+ k) log n) instead of the claimed O(k logm+m).

Influence propagation with limited number of hops is first
considered in Wang et al. [26] in which the proposed heuris-
tic has high time complexity. Feng et al. [27] show NP-
completeness for the problem. We note that none of the
mentioned approaches handled large-scale social networks
of million of nodes as we shall study in Section 6.
Organization. We introduce the limited hop influence
model and the cost-effective, massive and fast propagation
problem (CFM) in Section 2. In Section 3, we answer the
question on the seeding cost by analyzing the propagation
process on power-law networks. We present VirAds, a scal-
able algorithm to find a minimal seeding for the CFM prob-
lem in Section 4. The hardness of finding a cost-effective
seeding is addressed in Section 5. Finally, we perform ex-
tensive experiments on large social networks such as Face-
book and Orkut to confirm the efficiency of our proposed
algorithm and analyze the results to give new observations
to information diffusion process in networks.

2. PROBLEM DEFINITIONS
We are given a social network modeled as an undirected

graph G = (V,E) where the vertices in V represent users
in the network and the edges in E represent social links
between users. We use n and m to denote the number of
vertices and edges, respectively. The set of neighbors of a
vertex v ∈ V is denoted by N(v) and we denote by d(v) =
|N(v)| the degree of node v.

We continue with specifying the diffusion model that gov-
erns the process of influence propagation. Existing diffusion
models can be categorized into two main groups [16]:

• Threshold model. Each node v in the network has
a threshold tv ∈ [0, 1], typically drawn from some
probability distribution. Each connection (u, v) be-
tween nodes u and v is assigned a weight w(u, v).
For a node v, let F (v) be the set of neighbors of v
that are already influenced. Then v is influenced if
tv ≤

∑

u∈F (v) w(u, v).

• Cascade model. Whenever a node u is influenced, it is
given a single chance to activate each of its neighbor v
with a given probability p(u, v).

Most viral marketing papers assume that the probabilities
p(u, v) or weights w(u, v) and thresholds tv are given as a
part of the input. However, they are generally not avail-
able and inferring those probabilities and thresholds has re-
mained a non trivial problem [15]. Therefore, in addition to
the bounded propagation hop, we use a simplified variation
of the linear threshold model in which a vertex is activated
if a fraction ρ of its neighbors are active as follows.

Locally Bounded Diffusion Model. Let R0 ⊂ V be
the subset of vertices selected to initiate the influence prop-
agation, which we call the seeding. We also call a vertex
v ∈ R0 a seed. The propagation process happens in round,
with all vertices in R0 are influenced (thus active in adopting
the behavior) at round t = 0. At a particular round t ≥ 0,
each vertex is either active (adopted the behavior) or inac-
tive and each vertex’s tendency to become active increases



when more of its neighbors become active. If an inactive
vertex u has more than ⌈ρ d(u)⌉ active neighbors at round
t, then it becomes active at round t + 1, where ρ is the in-
fluence factor as discussed later. The process goes on for a
maximum number of d rounds and a vertex once becomes
active will remain active until the end. We say an initial set
R0 of vertices to be a d-seeding if R0 can make all vertices
in the networks active within at most d rounds.

The influence factor 0 < ρ < 1 is a constant that decides
how widely and quickly the influence propagates through
the network. Influence factor ρ reflects real-world factors
such as how easy to share the content with others, or some
intrinsic benefit for those who initially adopt the behavior.
In case ρ = 1/2 the model is also known as the majority
model that has many application in distributed computing,
voting system [21], etc.

Problem Definition. Given the diffusion model, the
Cost-effective, Fast, and Massive viral marketing (CFM)
problem is defined as follows

Definition 1 (CFM Problem). Given an undirected
graph G = (V,E) modeling a social network and an influence
factor 0 < ρ < 1, find in V a minimum size d-seeding
i.e. a subset of vertices that can activate all vertices in the
network within at most d rounds.

Generalization. The diffusion model can be generalized
in several ways. For example, the model can be extended
naturally to cover directed networks or specify different in-
fluence factor ρv for each node v ∈ V . For simplicity we
stick with the current model to avoid setting parameters
during the experiments. Nevertheless, major results such as
the approximation ratio of the VirAds algorithm in Section
4 or the hardness of approximation result in Section 5 still
hold for the generalized models.

3. COST OF MASSIVE MARKETING
In this section, we give a negative answer for the first

question in the introduction about the initial seeding cost.
We exploit the power-law topology found in most social net-
works [7, 8, 12] to demonstrate that when the propagation
hop is limited, a large number of seeding nodes is needed
to spread the influence throughout the network. The size of
seeding is proved to be a constant fraction of the number
of vertices n, which is prohibitive for large social networks
of millions of nodes. We first summarize the well-known
power-law model in [3]; then we use the model to prove the
prohibitive seeding cost for the CFM problem.

3.1 Power-law Network Model.
Many complex systems of interest including OSNs are

found to have the degree distributions approximately fol-
lows the power laws [7, 8, 12]. That is the fraction of nodes
in the network having k connections to other nodes is pro-
portional to k−γ , where γ is a parameter whose value is
typically in the range 2 < γ < 3. Those networks have been
used in studying different aspects of the scale-free networks
[3, 5, 14]. We follow the P (α, γ) power-law model in [3] in

which the number of vertices of degree k is ⌊ eα
kγ ⌋ where eα

is the normalization factor. For convenience, we shall refer
to such a network as a P (α, γ) network.

We can deduce that the maximum degree in a P (α, γ)

network is e
α
γ (since for k > e

α
γ , the number of edges will

be less than 1). The number of vertices and edges are

n =
e
α
γ
∑

k=1

eα

kγ
≈











ζ(γ)eα if γ > 1
αeα if γ = 1

e
α
γ

1−γ
if γ < 1

,

m =
1

2

e
α
γ
∑

k=1

k
eα

kγ
≈











1
2
ζ(γ − 1)eα if γ > 2

1
4
αeα if γ = 2

1
2

e
2α
γ

2−γ
if γ < 2

(3.1)

where ζ(γ) =
∑∞

i=1
1
iγ

is the Riemann Zeta function [3]
which converges for γ > 1 and diverges for all γ ≤ 1. With-
out affecting the conclusion, we will simply use real numbers
instead of rounding down to integers. The error terms are
sufficiently small and can be bounded in our proofs.

While the scale of the network depends on α, the pa-
rameter γ decides the connection pattern and many other
important characterizations of the network. For instance,
the larger γ, the sparser and the more “power-law” the net-
work is. Hence, the parameter γ is often regarded as the
characteristic constant for scale-free networks.

3.2 Prohibitive Seeding Costs
We prove that the seeding must contain at least Ω(n) ver-

tices if the propagation is locally bounded. The result is
stated in the following theorem.

Theorem 1. Given a power-law network G ∈ P (α, γ),
with γ > 2 and constant 0 < ρ < 1, any d-seeding is of size
at least Ω(n).

Proof. The proof consists of two parts. In the first part,
we show that the volume i.e. the total degree of vertices, of
any d-seeding must be Ω(m). In the second part, we prove
that any subset of vertices S ⊂ V with volume vol(S) =
Ω(m) in a power-law network with power-law exponent γ >
2, will imply that |S| = Ω(n). Thus, the theorem follows.

In the first part, we consider two separate cases
Case ρ > 1

2
: Let S = R0 be the optimal solution for the

CFM problem on G = (V,E), and S = R0, R1, R2, . . . , Rd

are vertices that become active at round 0, 1, 2, . . . , d, respec-
tively (see Fig. 3). Notice that {Ri}di=0 form a partition of
V . Moreover, for each 1 ≤ t ≤ d the following inequality
holds.

|φ(Rt,

t−1
⋃

i=0

Ri)| ≥ ρ

1− ρ

(

|φ(Rt,

d
⋃

j=t+1

Rj)|+ 2|φ(Rt, Rt)|
)

(3.2)

where φ(A,B) denotes the set of edges connecting one vertex
in A to one vertex in B. The inequality means that at
least a fraction ρ

1−ρ
among edges incident with the vertices

activated in round t must be incident with active vertices in
the previous rounds.

Sum up all inequalities in (3.2) for t = 1..d, we have

d
∑

t=1

|φ(Rt,

t−1
⋃

i=0

Ri)| ≥ ρ

1− ρ

d
∑

t=1

(

|φ(Rt,

d
⋃

j=t+1

Rj)|+ 2|φ(Rt, Rt)|
)



Eliminate the common factors in both sides, we have

d−1
∑

i=0

|φ(Ri,
d
⋃

t=i+1

Rt)|

≥ ρ

1− ρ

d−1
∑

j=1

|φ(Rj ,

d
⋃

t=j+1

Rt)|+ 2

d−1
∑

t=1

|φ(Rt, Rt)|

After some algebra, we obtain

vol(R0) ≥ |φ(R0,
d
⋃

t=1

Rt)|

≥ 2ρ− 1

1− ρ

d−1
∑

j=1

|φ(Ri,

d
⋃

t=j+1

Rt)|+ 2

d
∑

t=1

|φ(Rt, Rt)|

⇔ ρ

1− ρ
|φ(R0, V )| − |φ(R0, R0)|

≥ 2ρ− 1

1− ρ
|E|+ 3− 4ρ

1− ρ

d
∑

t=1

|φ(Rt, Rt)| (3.3)

Hence, when ρ > 1/2, vol(R0) ≥ 2ρ−1
1−ρ
|E| = Ω(m) for any

d-seeding R0.
Case ρ ≤ 1

2
: We say that an edge is active if it is incident

to at least one active vertex. At round t = 0, there are at
most vol(R0) active edges, those who are incident to R0. Eq.
3.2 implies that the number of active edges in each round
increases at most ρ−1 times. After d rounds, the number of
active edges will be bounded by vol(R0) × ρ−d. Since, all
edges are active at the end we have the inequality:

vol(R0) ≥ ρ−d|E|.

In the second part of the proof, we show that if a subset
S ⊂ V has vol(S) = Ω(m), then |S| = Ω(n) whenever the
power-law exponent γ > 2. Assume that vol(S) ≥ cm, for
some positive constant c. The size of S is minimum when
S contains only the highest degree vertices of V . Let k0 be
the minimum degree of vertices in S in that extreme case,
by Eq. 3.1 we have

cm =
c

2

e
α
γ
∑

k=1

k
eα

kγ
≤ vol(S) ≤ 1

2

e
α
γ
∑

k=k0

k
eα

kγ

Simplify two sides, we have

k0−1
∑

k=1

1

kγ−1
≤ (1− c)

e
α
γ
∑

k=1

1

kγ−1
= (1− c)ζ(γ − 1)

Since, the zeta function ζ(γ − 1) converges for γ > 2, there
exists a constant kρ,γ that depends only on ρ and γ that
satisfies

kρ,γ
∑

k=1

1

kγ−1
> (1− c)ζ(γ − 1)

Obviously, we have k0 ≤ kρ,γ . Thus, the number of vertices
that are in S is at least

e
α
γ
∑

k=kρ,γ

eα

kγ
= (1−

kρ,γ
∑

k=1

1

kγ
)n = Ω(n)

We have the last step because the sum
∑kρ,γ

k=1
1
kγ is bounded

by a constant since kρ,γ is a constant.

In both cases ρ > 1/2 and ρ ≤ 1/2, the size of a d-seeding
set is at least Ω(n). However, we can see a clear difference in
the propagation speed with respect to d between two cases.
When ρ < 1/2, the number of active edges can increase ex-
ponentially (but is still bounded if d is a constant) and, it is
likely that the number of active vertices also exponentially
increases. In contrast, when ρ > 1/2, exploding in the num-
ber of active edges (and hence active vertices) is impossible
as the volume of the d-seeding is tied to the number of edges
m by a fixed constant 2ρ−1

1−ρ
, regardless of the value of d.

4. COST-EFFECTIVE & EXPEDITIOUS

SOCIAL MARKETING ALGORITHM
In order to understand the influence propagation when

the number of propagation hops is bounded, we propose
VirAds, an efficient algorithm for the CFM problem. With
the huge magnitude of OSN users and data available on
OSNs, scalability becomes the major problem in designing
algorithm for CFM. VirAds is scalable to network of hundred
of millions links and provides high quality solutions in our
experiments.

Before presenting VirAds, we consider a natural greedy for
the CFM problem in which the vertex that can activate the
most number of inactive vertices within d hops is selected in
each step. This greedy is unlikely to perform well on practice
for following two reasons. First, at early steps, when not
many vertices are selected, every vertex is likely to activate
only itself after being chosen as a seed. Thus, the algorithm
cannot distinguish between good and bad seeds. Second,
the algorithm suffers serious scalability problems. To select
a vertex, the algorithm has to evaluate for each vertex v
how many vertices will be activated after adding v to the
seeding, e.g. by invoking an O(m+n) Breadth-First Search
procedure rooted at v. In the worst-case when O(n) vertices
are needed to evaluate, this alone can take O(n(m + n)).
Moreover, as shown in the previous section, the seeding size
can be easily Ω(n); thus, the worst-case running time of the
naive greedy algorithm is O(n2(m+n)), which is prohibitive
for large-scale networks.

As shown in Algorithm 1, our VirAds algorithm overcomes
the mentioned problems in the naive greedy by favoring the
vertex which can activate the most number of edges (indeed,
it also considers the number of active neighbor around each
vertex). This avoids the first problem of the naive greedy al-
gorithm. At early steps, the algorithm behaves similar to the
degree-based heuristics that favors vertices with high degree.
However, when a certain number of vertices are selected, Vi-
rAds will make the selection based on the information within
d-hop neighbor around the considered vertices rather than
only one-hop neighbor as in the degree-based heuristic.

The scalability problem is tackled in VirAds by efficiently
keeping track of the following measures for each vertex v.

• rv: the round in which v is activated

• n
(e)
v : The number of new active edges after adding v

into the seeding

• n
(a)
v : The number of extra active neighbors v needs in

order to activate v



Algorithm 1: VirAds - Viral Advertising in OSNs

Input: Graph G = (V,E), 0 < ρ < 1, d ∈ N
+

Output: A small d-seeding

n
(e)
v ← d(v), n

(a)
v ← ρ · d(v), rv ← d+ 1, v ∈ V ;

r
(i)
v = 0, i = 0..d, P ← ∅;
while there exist inactive vertices do

repeat

u← argmaxv/∈P {n(e)
v + n(a)

v };
Recompute n

(e)
v as the number of

new active edges after adding u.

until u = argmaxv/∈P {n(e)
v + n(a)

v };
P ← P ∪ {u};
Initialize a queue: Q← {(u, rv)};
ru ← 0;
foreach x ∈ N(u) do

n
(a)
x ← max{n(a)

x − 1, 0};
while Q 6= ∅ do

(t, r̃t)← Q.pop();
foreach w ∈ N(t) do

foreach i = rt to min{r̃t − 1, rw − 2} do
r
(i)
w = r

(i)
w + 1;

if (r
(i)
w ≥ ρ · dw) ∧ (rw ≥ d) ∧ (i+ 1 < d)

then

foreach x ∈ N(w) do

n
(a)
x ← max{n(a)

x − 1, 0};
rw = i+ 1;
if w /∈ Q then

Q.push((w, rw));

Output P ;

• r
(i)
v : The number of activated neighbors of v up to
round i where i = 1..d.

Given those measures, VirAds selects in each step the
vertex u with the highest effectiveness which is defined as

n
(e)
u + n

(a)
u . After that, the algorithm needs to update the

measures for all the remaining vertices.

Except for n
(e)
v , we show that all other measures can be

effectively kept track of in only O((m + n)d) during the
whole algorithm. When a vertex u is selected, it causes
a chain-reaction and activate a sequence of vertices or lower
the rounds in which vertices are activated. New activated
vertices together with their active rounds are successively
pushed into the queue Q for further updating much like what
happens in the Bellman-Ford shortest-paths algorithm. Ev-
erytime we pop a vertex v from Q, if rv, the current active
round of v, is different from r̃v, the active round of v when
v is pushed into Q, we update for each neighbor w of v the

values of rw and r
(i)
w . If any neighbor w of v changes its ac-

tive round and w is not in Q, we push w into Q for further
update. The update process stops when Q is empty. Note
that for each node u ∈ V , changing of ru can cause at most d

update for r
(.)
w where w is a neighbor of u. For all neighbors

of u, the total number of update is, hence, O(d ·d(u)). Thus,
the total time for updating r

(.)
w ∀w ∈ V in VirAds will be at

most O((m+ n) · d).

To maintain n
(e))
v , the easiest approach is to recompute all

n
(e)
v . This approach, called Exhaustive Update, is extremely

time-consuming as discussed in the naive greedy. Instead,

we only update n
(e)
v when “necessary”. In details, vertices

are stored in a max priority queue in which the priority
is their effectiveness. In each step, the vertex u with the

highest effectiveness is extracted and n
(e)
u is recomputed.

If after updating, u still has the highest effectiveness, u is
then selected. Otherwise, u is pushed back to the priority
queue, and the new vertex with the highest effectiveness is
considered, and so on.

Approximation Ratio for Power-law Networks.

The CFM problem can be easily shown to be NP-hard by
a reduction from the set cover problem. Thus, we are left
with two choices: designing heuristics which have no worst-
case performance guarantees or designing approximation al-
gorithms which can guarantee the produced solutions are
within a certain factor from the optimal. Formally, a β- ap-
proximation algorithm for a minimization (maximization)
problem always returns solutions that are at most β times
larger (smaller) than an optimal solution.

Unfortunately, there is unlikely an approximation algo-
rithm with factor less than O(log n) as shown in next sec-
tion. However, if we assume the network is power-law, our
VirAds is an approximation algorithm for CFM with a con-
stant factor.

Theorem 2. In power-law networks, VirAds is an O(1)
approximation algorithm for the CFM problem for bounded
value of d.

The theorem follows directly from the result in previous sec-
tion that the optimal solution has size at least Ω(n) in power-
law networks. Thus, the ratio between the VirAds’s solution
and the optimal solution is bounded by a constant.

5. HARDNESS OF IDENTIFYING

SEEDING WITH GUARANTEES
This section provides the hardness of approximating the

optimal solutions of the CFM problem, the impossibility of
finding near-optimal solutions in polynomial time. In previ-
ous Section, we can obtain O(1) approximation algorithms
for CFM when the network is power-law. However, without
the power-law assumption, there is no algorithm that can
approximate the problem within a factor less than O(log n).
We first prove the hardness for the case when d = 1, which
is an essential step in proving the hardness for the general
case d ≥ 1.

5.1 One-hop CFM
We prove that the CFM problem cannot be approximated

within a factor ln∆−O(ln ln∆) in graphs of maximum de-
gree ∆, unless P=NP. The proof uses a gap-reduction from
an instance of the Bounded Set Cover problem (SCB) to
an instance of CFM problem whose degrees are bounded by
B′ = B poly log B. For background on hardness of approx-
imation and gap-reduction we refer to reference [6].

Definition 2 (Bounded Set Cover). Given a set sys-
tem (U ,S), where U = {e1, e2, . . . , ens} is a universe and S
is a collection of subsets of U . Each subset in S has at most
B elements and each element belongs to at most B subsets,
for a predefined constant B > 0. A cover is a subfamily
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Figure 1: Reduction from SCB to CFM when d = 1

C ⊆ S of sets whose union is U . Find a cover which uses
the minimum number of subsets.

We state the tight inapproximability result for the bounded
set cover by Trevisan [24] in the following lemma.

Lemma 1. There exist constants B0, c0 > 0 such that for
every B ≥ B0 it is NP-hard to approximate the SCB problem
within a factor of lnB − c0 ln lnB.

The proof in [24] reduces an instance of GAP − SAT1,γ

of size nS to an instance F = (U ,S) of SCB by settings
parameters l,m in Feige’s construction [13] to be θ(ln lnB)
and B

poly log(B)
, respectively. Denote by ∆S the maximum

cardinality of sets, and by f the maximum frequency of el-
ements in U , we have

• |U| = mnl
S poly logB, |S| = nl

S poly log B

• ∆S ≤ B, f ≤ poly log B for sufficient large B.

SCB-CFM reduction. For each instance F = (U ,S) of
SCB , we construct a graph H = (V,E) as follows (Fig. 1):

• Construct a bipartite graph with the vertex set U ∪ S
and edges between S and all elements ei ∈ S, for each
S ∈ S.

• Add a set D consisting of t vertices and a set D′ with
same number of vertices, say D = {x1, x2, . . . , xt} and
D′ = {x′

1, x
′
2, . . . , x

′
t}, where t = |U|

B ln2 B
.

• Connect xi to x′
i, ∀i = 1 . . . t. This enforces the selec-

tion of xi in the optimal CFM.

• Connect each vertex ej ∈ U to ⌈ ρ
1−ρ

f(ej)⌉−1 and each

vertex Sk ∈ S to ⌈ ρ
1−ρ
|Sk|⌉ vertices in D, where f(ej)

is the frequency of element ej . During the connection,
we balance the degrees of vertices in D.

We can assume w.l.o.g. that optimal solutions of CFM
contains all vertices in D but not ones in D′. Then, all
vertices in S will be activated after the first round, and the
a vertex in U is activated if and only if one of its neighbors
in S is selected into the solution. Thus, the following lemma
holds.

Lemma 2. The size difference between the optimal CFM
of H and the optimal SCB of F is exactly the cardinality of
D, i.e., OPTCFM (H) = OPTSC(F) + t.

The key to preserve the hardness ratio is to keep the degree
of vertices in H bounded and the gap between the optimal
solutions’ sizes small.

Lemma 3. If t = |U|

B ln2 B
, then the maximum degree of

vertices in H will be B′ = ∆(H) = O(B poly log B).

Proof. We can verify that vertices in S and U have de-

gree O(B). Vertices in D have degrees at most vol(D)
t

+ 1,
where vol(D) is the total degree of vertices in D. Define
φ(X,Y ) as the set of edges crossing between two vertex sub-
sets X and Y . We have

vol(D) = |φ(D,D′)|+ |φ(D,U)|+ |φ(D,S)|
= |D|+

∑

Sk∈S

⌈ ρ

1− ρ
|Sk|⌉+

∑

ej∈U

⌈ ρ

1− ρ
f(ej)− 1⌉

≤ 2ρ

1− ρ
|S|B + |S|+ t =

(

2ρ

1− ρ
B + 1

)

|S|+ t (5.1)

We have used the facts that
∑

Sk∈S

|Sk| =
∑

ej∈U

f(ej) and

|Sk| ≤ B, ∀Sk ∈ S.
Thus,

B′ ≤ 1

t

((

2ρ

1− ρ
B + 1

)

|S|+ t

)

+ 1

≤
(

2ρ

1− ρ
B + 1

)

B ln2 B nl
S poly log B

mnl poly log B

≤ O(B poly log B) (5.2)

This completes the proof.

Theorem 3. When d = 1, it is NP-hard to approximate
the CFM problem in graphs with degrees bounded by B′ within
a factor of lnB′ − c1 ln lnB

′, for some constant c1 > 0.

Proof. We prove by contradiction. Assume there exists
algorithm A to find in graph with degrees bounded by B′

and d = 1 a CFM of size at most (lnB′−c1 ln lnB′)OPTCFM ,
where OPTCFM is the size of an optimal CFM. Let F = (U ,S)
be an instance of SCB with the optimal solution of size
OPTSC . Construct an instance H of CFM problem us-
ing the reduction SCB-CFM as shown above. From (5.2),
there exists constant β > 0 so that B′ ≤ B lnβ B. Us-
ing algorithm A on H, we obtain a solution of size at most
(lnB′ − c1 ln lnB

′)OPTCFM . We can then convert that to
a solution of SCB by excluding vertices in D (see Lemma 2)
and obtain a set cover of size at most

(lnB′ − c1 ln lnB
′)(OPTSC + t)− t (5.3)

Since each set in S can cover at most B elements, we have

OPTSC ≥ |U|
B

= tB ln2 B
B

, thus t ≤ OPTSC

ln2 B
. If we select

c1 = c0 + β + 1, the solution of SCB is then, after some
algebra, at most (lnB − c0 ln lnB)OPTSC that contradicts
the Lemma 1.

Similarly, with appropriate setting in Feige’s construction
[13], we obtain the following hardness result regarding the
network size n (the proof detail can be found in the technical
report on our website).

Theorem 4. For any ǫ > 0, the CFM problem, when
d = 1, cannot be approximated within a factor ( 1

2
− ǫ) lnn,

unless NP ⊂ DTIME(nO(log logn)).

Note that Theorems 3 and 4 are incomparable in general.
Let ∆ be the maximum degree, Theorem 3 implies the hard-
ness of approximation with factor (1−ǫ) ln∆, which is larger



than ( 1
2
− n) lnn if ∆ ≈ n, but smaller when ∆ <

√
n, for

example in power-law graphs with the exponent γ > 2. In
addition, the Theorem 4 uses a stronger assumption than
that in Theorem 3.

5.2 Multiple-hop CFM
We now present a gap reduction from the CFM problem

to the one-hop CFM problem with d ≥ 2. The hardness
result follows immediately by the Theorem 3 in the previous
section.

Given a graph G = (V,E) as an instance of the CFM
problem. We will construct an instance G′ = (V ′, E′) of the
CFM problem as follows (and as illustrated in Fig. 3). We

Inapproximability: d < 5 
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Figure 2: The transmitter gadget.

add c(ρ) vertices w1, w2, . . . , wc(ρ), called flashpoints, where
c(ρ) = min{t ∈ N | t−1

t+1
≤ ρ < t

t+1
}. These vertices will be

selected at the beginning to kick off the activation of other
nodes. Furthermore, each “flashpoint” wp is connected to a
dummy vertex zp.

 . . . 
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Figure 3: Gap-reduction from one-hop CFM to d-hop CFM.

Replace each edge (u, v) ∈ E by a gadget called transmit-
ter. The transmitter connecting vertex u and v is a chain
of d − 1 path, named uv1 to uvd−1. The vertex u is con-
nected to uv1, uv1 is connected to uv2 and so on, vertex
uvd−1 is connected to v. Each vertex uvi, i = 1..d − 1 is
connected to all flashpoints. An example for transmitter is
shown in Fig. 2. The transmitter is designed so that if all
flashpoints and vertex u are selected at the beginning, then
vertex uvd−1 will be activated after d−1 rounds. Hence, the
number of activated neighbors of v after d − 1 rounds will
equal the number of selected neighbors of v in the original
graph.

Finally, we replace each edge (wp, zp) by a transmitter. In
order to activate all dummy vertices zp after d rounds, we
can assume, w.l.o.g., that all flashpoints must be selected in
an optimal solution. The following lemma follows directly
from the construction.

Lemma 4. Every solution of size k for the one-hop (d = 1)
CFM problem in G induces a solution of size k + c(ρ) for
the d-hop CFM problem in G′.

On another direction, we also have the following lemma.

Lemma 5. An optimal solution of size k′ for the d-hop
CFM problem induces a size k′ − c(ρ) solution for the one-
hop CFM problem in G.

Proof. For a transmitter connecting u to v, if the solu-
tion of the d-hop CFM problem contains any of the inter-
mediate vertices uv1, . . . , uvd−1, we can replace that vertex
in the solution with either u or v to obtain a new solution
of same size (or less). Hence, we can assume, w.l.o.g., that
none of the intermediate vertices are selected. Therefore, all
flashpoints must be selected in order to activate the dummy
vertices. It is easy to see that the solution of d-hop CFM
excluding the flashpoints will be a solution of one-hop CFM
in G with size k′ − c(ρ).

Note that the number of vertices in G′ is upper-bounded
by dn2 i.e. ln |V ′| < 2ln|V | + lnd. Thus, using the same
arguments used in the proof of Theorem 4, we can show
that a ( 1

4
− ǫ) lnn approximation algorithm algorithm lead

to a ( 1
2
− ǫ) lnn approximation algorithm for the one-hop

CFM problem (contradicts Theorem 4).

Theorem 5. The CFM problem cannot be approximated
within ( 1

4
−ǫ) log n for d ≥ 1, unless NP ⊂ DTIME(nO(log logn))

6. EMPIRICAL STUDY
In this section we perform experiments on OSNs to show

the efficiency of our algorithms in comparison with simple
degree centrality heuristic and study the trade-off between
the number of times the information is allowed to propagate
in the network and the seeding size.

6.1 Comparing to Optimal Seeding
One advantage of our discrete diffusion model over prob-

abilistic ones [16, 17] is that the exact solution can be found
using mathematical programming. This enables us to study
the exact behavior of the seeding size when the number of
propagation hop varies.

We formulate the CFM problem as an 0−1 Integer Linear
Programming (ILP) problem below.

minimize
∑

v∈V

x0
v (6.1)

subject to
∑

v∈V

xd
v ≥ |V | (6.2)

∑

w∈N(v)

xi−1
w + ⌈ρ · d(v)⌉xi−1

v ≥ ⌈ρ · d(v)⌉ xi
v

∀v ∈ V, i = 1..d (6.3)

xi
v ≥ xi−1

v ∀v ∈ V, i = 1..d (6.4)

xi
v ∈ {0, 1} ∀v ∈ V, i = 0..d (6.5)

where xi
v =

{

0 if v is inactive at round i

1 otherwise
.

The objective of the ILP is to select a minimum number
of seeds at the beginning. The constraint (2) guarantees all
nodes are activated at the end, while (3) deals with propaga-
tion condition; the constraint (4) is simply to keep vertices
active once they are activated.

We solve the ILP problem on Erdos collaboration net-
works, the social network of famous mathematician, [8]. The
network consists of 6100 vertices and 15030 edges. The ILP
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Figure 4: Seeding size (in percent) on Erdos’s Collaboration network. VirAds produces close to the optimal seeding in only
fractions of a second (in comparison to 2 days running time of the IP(optimal) )

is solved with the optimization package GUROBI 4.5 on In-
tel Xeon 2.93 Ghz PC and setting the time limit for the
solver to be 2 days. The running time of the IP solver in-
creases significantly when d increases. For d = 1, 2, and 3,
the solver return the optimal solutions. However, for d = 4,
the solver cannot find the optimal solutions within the time
limit and returns sub-optimal solutions with relative errors
at most 15%.

The optimal (or sub-optimal) seeding sizes are shown in
Figs. 4a, 4b, and 4c for ρ = 0.4, 0.6 and 0.8, respectively. Vi-
rAds provides close-to-optimal solutions and performs much
better Max Degree. Especially, when ρ = 0.8 the VirAds’s
seeding is only different with the optimal solutions by one
or two nodes. In addition, VirAds only takes fractions of a
second to generate the solutions.

As proven in Section 3, the seeding takes a constant frac-
tion of nodes in the network. For Erdos Colloboration Net-
work, the seeding consists of 3.8% to 7% the number of nodes
in the networks. Further, the seeding can consist as high as
20% to 40% nodes in the network for larger social networks
in next section.

Although the mathematical approach can provide accu-
rate measurement on the optimal seeding size, it cannot be
applied for larger networks. The rest of our experiments
measures the quality and scalability of our proposed algo-
rithm VirAds on a collection of large networks.

6.2 Large Social Networks
We select networks of various sizes including Coauthors

network in Physics sections of the e-print arXiv[16], Face-
book[25] and Orkut[20], a social networking run by Google.
Links in all three networks are undirected and unweighted.
The sizes of the networks are presented in Table 1.

Table 1: Sizes of the investigated networks

Physics Facebook Orkut

Vertices 37,154 90,269 3,072,441
Edges 231,584 3,646,662 223,534,301

Avg. Degree 12.5 80.8 145.5

Physics: We shall refer the physics coauthors network
as Physics network or simply Physics. Each node in the
network represents an author and there is an edge between
two authors if they coauthor one or more papers. Facebook
dataset consists 52% of the users in the New Orleans [25].

Orkut dataset is collected by performing crawling in last
2006 [20]. It contains about 11.3% of Orkut’s users.

6.3 Solution Quality in Large Social Networks
We compare our VirAds algorithm with the following heuris-

tics Random method in which vertices are picked up ran-
domly until forming a d-seeding and Max Degree method in
which vertices with highest degree are selected until form-
ing a d-hop seeding. Finally, we compare VirAds with its
naive implementation, called Exhaustive Update, in which
after selecting a vertex into the seeding, the effectiveness of
all the remaining vertices are recalculated. With more accu-
rate estimation on vertex effectiveness, Exhaustive Search is
expected to produce higher quality solutions than those of
VirAds.

The seeding size with different number of propagation hop
d when ρ = 0.3 are shown in Fig. 5. To our surprise, VirAds
even performs equal or better than Exhaustive Update de-
spite that it uses significantly less effort to update vertex ef-
fectiveness. VirAds has smaller seeding in Physics than Ex-
haustive Update; both of them give similar results for Face-
boook; while Exhaustive Update cannot finish on Orkut after
48 hours and was forced to terminate. Sparingly update the
vertices’ effectiveness turns out to be efficient enough since
the influence propagation is locally bounded. In addition,
the seeds produced by VirAds are almost two times smaller
than those of Random.

The gap between VirAds and Max Degree is narrowed
when the number of maximum hops increases. Hence, se-
lecting nodes with high degrees as seeding is a good long-
term strategy, but might not be efficient for fast propagation
when the number of hops is limited. In Facebook and Orkut,
when d = 1, Max Degree has 60% to 70% more vertices in the
seeding than VirAds. In Physics, the gap between VirAds
and the Max Degree is less impressive. Nevertheless, VirAds
consistently produces the best solutions in all networks.

6.4 Scalability
The running time of all methods at different propagation

hop d are presented in Fig 6. The time is measured in second
and presented in the log scale. The running times increase
slightly together with the number of propagation rounds d,
and are proportional to the size of the network. The Exhaus-
tive Update has the worst running time, taking up to 15 min-
utes for Physics, 20 minutes for Facebook. For Orkut, the
algorithm cannot finish within 2 days, as mentioned. The
three remaining algorithms VirAds, Max Degree, and Ran-
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Figure 5: Seeding size when the number of propagation hop d varies (ρ = 0.3). VirAds consistently has the best performance.
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Figure 6: Running time when the number of propagation hop d varies (ρ = 0.3). Even for the largest network of 110 million
edges, VirAds takes less than 12 minutes.
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Figure 7: Seeding size at different influence factors ρ (the maximum number of propagation hops is d = 4).

dom take less than one second for Physics, and less than 10
seconds for Facebook. Even on the largest network Orkut
with more than 220 million edges, VirAds requires less than
12 minutes to complete.

6.5 Influence factor
We study the performance of VirAds and the other method

at different influence factor ρ. The number of propagation
rounds d is fixed to 4. The size of d-seeding sets are shown
in Figures 7. VirAds is clearly still the best performer. The
seeding sizes of VirAds are up to 5 times smaller than those
of Max Degree for small ρ (although it’s hard to see this on
the charts due to small seeding sizes).

Since all tested networks are social networks with small
diameter, the seeding sizes go to zero when ρ is close to zero.
The exception is the Physics, in which the seeding sizes do
not go below 10% the number of vertices in the networks

even when ρ = 0.05. A closer look into the Physics network
reveals that the network contain many isolated cliques of
small sizes (2, 3, 4, and so on) which correspond to authors
that appear in only one paper. In each clique, regardless of
the threshold ρ, at least one vertex must be selected, thus
the seeding size cannot get below the number of isolated
cliques in the networks. To eliminate the effect of isolated
cliques, a possible approach is to restrict the problem to the
largest component in the network.

7. CONCLUSIONS
We present the first work that explores the time aspect of

influence propagation in social networks. We demonstrate
that massively advertising involves costly seeding when im-
posing the limit on the propagation. Because of the power-
law degree distribution observed in social networks, the seed-



ing might involve a constant fraction of nodes in the net-
works, which is prohibitive for large networks. The old strat-
egy for viral marketing that targets nodes with high degree
in the network might be no longer suitable when we need
the influence to propagate quickly throughout the network.
Instead, an optimization-based solution such as VirAds is
more suitable to discover a low-cost set of influential users.
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