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Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the
early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with
well-developed coevolutionary theories of competition, predator–prey and host–parasite interactions. This
has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent
evolutionary instability. The selective advantage of ‘cheating’, that is, reaping mutualistic benefits while
providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interac-
tion, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that
stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show
that asymmetrical competition within species for the commodities offered by mutualistic partners provides
a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms.
Cheating, in effect, establishes a background against which better mutualists can display any competitive
superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well
as to the coexistence of ecologically similar, but unrelated mutualists and cheaters.

Keywords: mutualism; evolutionary stability; cheating; asymmetrical competition;
evolutionary branching

1. INTRODUCTION

Mutually beneficial interactions between members of
different species play a central role in all ecosystems
(Boucher et al. 1982; Thompson 1994; Bronstein 2001a).
Despite the widespread occurrence and obvious impor-
tance of mutualistic interactions, the theory of mutualistic
coevolution is virtually nonexistent (but see Kiester et al.
1984; Law 1985; Frank 1994, 1996; Law & Dieckmann
1998), by contrast with the well-developed coevolutionary
theory of competition, host–parasite and predator–prey
interactions (surveyed in Roughgarden (1983); Frank
(1996), Abrams (2000), respectively). This lack of theory
prevents resolution of the most basic and longstanding
puzzle posed by mutualisms: their persistence in spite of
apparent evolutionary instability. Interspecific mutualisms
inherently exhibit conflicts of interest between the inter-
acting species in that selection should favour cheating stra-
tegies, which are displayed by individuals that reap
mutualistic benefits while providing fewer commodities to
the partner species (Axelrod & Hamilton 1981; Soberon
Mainero & Martinez del Rio 1985; Bull & Rice 1991;
Addicott 1996). Slight cheats arising by mutation could
gradually erode the mutualistic interaction, leading to dis-
solution or reciprocal extinction (Roberts & Sherratt
1998; Doebeli & Knowlton 1998). Although cheating has
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been assumed to be under strict control, recent empirical
findings indicate that cheating is rampant in most mutual-
isms (Poulin & Grutter 1996; Johnson et al. 1997;
Foster & Delay 1998; Irwin & Brody 1998; Addicott &
Bao 1999; Currie et al. 1999); in some cases, cheaters have
been associated with mutualisms over long spans of evol-
utionary time (Pellmyr et al. 1996; Machado et al. 1996;
Addicott 1985). Here, we offer a general explanation for
the evolutionary origin of cheaters and the unexpected
stability of mutualistic associations subject to cheating.

2. MODEL CONSTRUCTION AND MATHEMATICAL
ANALYSIS

The following model concerns a two-species, obligate
mutualism. Each species has a continuous phenotypic trait
that measures the rate at which commodities (i.e. a reward
like nectar or a service like pollination) are provided to the
partner. Provision of commodities is assumed to be costly
in terms of reproduction or survival, and cheating pheno-
types that produce commodities at a lower rate incur a
reduced cost (Boucher et al. 1982; Maynard Smith &
Szathmary 1995; Herre et al. 1999; Bronstein 2001b).
Also, commodities provided by either species represent a
limited resource for the partner species: there is intraspec-
ific competition for commodities (Addicott 1985; Iwasa et
al. 1995; Bultman et al. 2000). Our analysis focuses on
the evolutionary consequences of this form of competition
nested within the mutualistic interaction.
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(a) Ecological dynamics
The mutualistic interaction between species X (density

x) and species Y (density y) is described by a simple
Lotka–Volterra model

dx
dt

= [�r(u) � cx � vy(1 � �x)]x, (2.1a)

dy
dt

= [�s(v) � dy � ux(1 � �y)]y. (2.1b)

The mutualistic traits u and v are measured as per cap-
ita rates of commodities trading; thus, ux and vy rep-
resent the probabilities per unit time that a partner
individual receives benefit from a mutualistic interaction.
Intraspecific competition for commodities provided by
the partner species is expressed by the linear density-
dependent factors (1 � �x) and (1 � �y) (Wolin 1985).
The terms �cx and �dy measure the detrimental effect
of intraspecific competition for other resources. The
mutualism being obligate, the intrinsic rates of increase,
�r(u) and �s(v), are negative, and r(u) and s(v) increase
with u and v respectively, to reflect the direct cost of pro-
ducing commodities. A standard analysis of the ecologi-
cal model shows that the extinction state x = 0, y = 0 is
always a locally stable equilibrium. Depending on the
trait values u and v, there may also exist two positive
equilibria, one being stable (node) and the other being
unstable (saddle). These equilibria, whenever they exist,
are solutions of

�r(u) � cx � vy[1 � �x] = 0 (2.2a)

�s(v) � dy � ux[1 � �y] = 0, (2.2b)

and in the case where they do exist, we denote the stable
one by (x̂, ŷ). The transition between the two cases (zero
or two equilibria apart from the extinction state) is caused
by a saddle-node bifurcation. The corresponding bifur-
cation curve is the closed, ovoid curve depicted in figure
1a–c, which separates a region of trait values that lead to
extinction from a domain, D, of traits that correspond to
viable ecological equilibria. How this ovoid curve is calcu-
lated is explained in Appendix A.

(b) A mathematical approximation of mutation-
selection processes

To construct a mathematical model for the joint evol-
ution of the partners’ rates of commodity provision, we
assume that individuals’ births, interactions and deaths
occur on a short, ecological time-scale over which the spe-
cies’ abundances quickly equilibrate. Rare mutations in
the phenotypes arise on a long, evolutionary time-scale.
The evolutionary process comprises a sequence of trait
substitutions caused by selection of successful mutants
that spread to fixation on the ecological time-scale. Thus,
the evolutionary dynamics of the rates of commodity pro-
vision follow the fitness gradients generated by the under-
lying ecological dynamics (Hofbauer & Sigmund 1990;
Abrams et al. 1993). By assuming the time-scale separ-
ation of ecological and evolutionary processes, the rates of
change of traits u and v are given by

du
d�

= ku (…) x̂(∂WX /∂umut)umut = u (2.3a)
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Figure 1. Competitive asymmetry and the evolutionary
persistence of mutualism. The ovoid domain (computed
from equation (A 4)) delineates the phenotypic trait values u
and v that make the mutualistic association ecologically
viable. Each orientated curve (computed from equation
(2.3)) depicts an evolutionary trajectory starting from a
different ancestral phenotypic state. (a) Convergence towards
an evolutionary singularity that is ecologically viable (black
circle). Specific degrees of competition asymmetry are
�� = 0.035 and �� = 0.035. (b) Evolutionary suicide through
selection of ever-reduced mutualistic investments (�� = 0.01 and
�� = 0.01). (c) Evolutionary suicide by runaway selection for
ever-increased mutualistic investments (�� = 0.30 and
�� = 0.20). (d ) Dependence of the evolutionary dynamics
regime on the degrees of competitive asymmetry in species X
and Y, as measured respectively by ��� (horizontal axis) and
��� (vertical axis). Hatched region, convergence to an
evolutionary singularity that is ecologically viable; white area,
evolutionary suicide. Points a, b, c correspond to previous
panels. Numerical analysis performed with r(u) = 0.001(u �
u2), s(v) = 0.001(v � v2), c = 1, d = 2. To investigate the
existence and stability of evolutionary singularities, we
performed extensive numerical bifurcation analyses with
respect to the degrees of asymmetry �� and ��; these
parameters have the nice property of not influencing the
ovoid domain D of traits (u, v) that ensure ecological
persistence (figure 1a–c). In general, there is a wing-shaped
region of parameters �� and �� in which the evolutionary
singularity, denoted hereafter by (u∗,v∗), exists as a stable,
hence attracting, equilibrium node within D (figure 1d).
This region is bounded by bifurcation curves of the adaptive
dynamical system that correspond to different routes along
which the attracting evolutionary singularity can be lost: by
collision with an unstable saddle, by collision with the
boundary of D, or through supercritical Hopf and
homoclinic bifurcations.

dv
d�

= kv (…) ŷ(∂WY /∂vmut)vmut = v (2.3b)

(Dieckmann & Law 1996). Parameters ku and kv denote
evolutionary rates that depend on the mutation rate and
mutation step variance; x̂ and ŷ are the equilibrium popu-
lation densities of resident phenotypes u and v (the likeli-
hood of a mutation is proportional to the number of
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Figure 2. Evolutionary branching and the diversification of mutualisms. Evolutionary trajectories show the distribution of
phenotypes (in scales of grey: black, highest frequency; white, absence) across time. All trajectories start near the same
attracting evolutionary singularity, u∗ = 50, v∗ = 50. After convergence to this point, selection may turn disruptive and
evolutionary branching may occur in either species or both depending on whether u∗ and v∗ are above branching thresholds ub and
vb (cf. § 2d). Left-hand column, u∗ � ub; right-hand column, u∗ � ub; bottom row, v∗ � vb; top row, v∗ � vb. (a, d ) Unilateral
diversification. (b) Bilateral diversification. (c) No diversification. Colour bars indicate the amount of commodities provided on
average to each individual of the partner species (scaled between 0 = minimum, in blue, and 1 = maximum, in red).
Asymmetrical competition functions and details on simulation schemes are given in Appendices A and B. (a) �(0) = 2.08,
�� = 0.04, �	 = 0, �(0) = 2.05, �� = 0.4, �	 = �9.16; (b) �(0) = 1.1, �� = 0.4, �	 = �7.2, �(0) = 2.05, �� = 0.4, �	 = �9.16; (c)
�(0) = 2.08, �� = 0.04, �	 = 0, �(0) = 4.0, �� = 0.02, �	 = 0; (d ) �(0) = 1.1, �� = 0.4, �	 = �7.2, �(0) = 4.0, �� = 0.02, �	 = 0.
Other parameter values are as in figure 1.

reproducing individuals); WX : =WX(umut, u, v) and
WY : =WY(vmut,u,v) are the invasion fitnesses, defined as
rates of increase from initial rarity (Metz et al. 1992; Ferri-
ere & Gatto 1995) of a mutant phenotype umut of species
X and of a mutant phenotype vmut of species Y in a resi-
dent association u, v; WX and WY are given by

WX(umut,u,v) = �r(umut) � cx̂� v[1 � �(umut � u)x̂]ŷ,
(2.4a)

WY(vmut, u, v) = �s(vmut) � dŷ� u[1 � �(vmut � v)ŷ]x̂.
(2.4b)

(c) Evolutionary dynamics under symmetrical
versus asymmetrical competition

With symmetrical competition, the competition coef-
ficients �(umut � u) and �(vmut � v) are actually inde-
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pendent of umut � u and vmut � v, respectively; therefore
we have

�∂WX

∂umut
�
umut = u

= �r�(u), (2.5a)

�∂WY

∂vmut
�
vmut = v

= �s�(v). (2.5b)

Since r and s are increasing functions of their argu-
ments, from any ancestral state the process of mutation-
selection causes the monotonic decrease of the traits u and
v towards 0. All evolutionary trajectories eventually hit the
boundary of ecological viability; in other words, evolution
leads to extinction of the system.

Asymmetrical competition between two phenotypes
X1 and X2 providing commodities at rates u1 and u2,
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respectively, is modelled by replacing the constant compe-
tition coefficient � with a sigmoid function of the differ-
ence in the rate of commodity provision u1 � u2

(Matsuda & Abrams 1994; Law et al. 1997; Kisdi 1999);
an example of such a sigmoid function that we used to
perform our numerical simulations is given in Appendix
B. A large, positive difference in the rate of commodity
provision implies that � approaches its minimum value,
whereas a large, negative difference results in a value of
� close to its maximum. The absolute value of the slope
of the tangent to this curve at zero provides a measure of
the degree of competitive asymmetry. The first-order
effect on fitness induced by a small difference in the rate
of commodity provision is then measured by the derivative

�∂WX

∂umut
�
umut = u

= �r�(u) � ��vx̂ŷ, (2.6a)

where �� � |��(0)| is the degree of competitive asym-
metry. Likewise, by introducing the asymmetrical compe-
tition function � for species Y, we get

�∂WY

∂vmut
�
vmut = v

= �s�(v) � ��ux̂ŷ, (2.6b)

with �� � |��(0)|. The intersection point of the isoclines
(∂WX /∂umut)umut = u = 0 and (∂WY /∂vmut)vmut = v = 0 defines
a so-called evolutionary singularity (Geritz et al. 1997)
that may either attract or repel phenotype trajectories
(locally).

(d) Conditions for a mutualist and a slight cheater
to invade each other

At the attracting evolutionary singularity (AES), the
first-order effect on fitness of a slight change in the rate
of commodity provision vanishes and further evolutionary
dynamics depend on the second-order derivatives

�∂2WX

∂u2
mut

�
umut = u

=
�r 	(u∗) � �	v∗x∗y∗

2
, (2.7a)

�∂2WY

∂v2
mut

�
vmut = v

=
�s 	(v∗) � �	u∗x∗y∗

2
, (2.7b)

where x∗ = x̂(u∗, v∗), y∗ = ŷ(u∗, v∗) and �	 = ��	(0),
�	 = ��	(0). If the second-order derivative given by equ-
ation (2.7a) (equation (2.7b), respectively) is negative, the
AES is a fitness maximum for species X (for species Y),
that is, the evolution of trait u (v) comes to a halt at u∗

(v∗). If the second-order derivative is positive, species X
(Y) encounters a fitness minimum at u∗ (v∗) (Abrams et
al. 1993), with reciprocal invasibility of mutants surround-
ing u∗ (v∗) as a consequence. Reciprocal invasibility
around an AES is an important property that indicates
that selection turns disruptive and evolutionary branching
takes place (Geritz et al. 1997). The conditions for
reciprocal invasibility around u∗ and v∗, respectively, read

�	

��
�
r 	(u∗)
r�(u∗)

, (2.8a)

�	

��
�
s	(v∗)
s�(v∗)

. (2.8b)

For example, specifying r and s as r(u) = r0 � r1u �
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(r2/2)u2 and s(v) = s0 � s1v� (s2/2)v2, reciprocal invas-
ibility occurs at the AES in species X or Y if u∗ or v∗

exceed thresholds given by ub = (��/�	) � (r1/r2) and
vb = (��/�	) � (s1/s2), where the subscripted b stands for
‘branching’.

(e) How does evolutionary divergence affect the
total amount of commodities provided to
partners?

Consider two reciprocally invasible phenotypes u1 and
u2 with equilibrium densities x̂1 and x̂2, around the AES
u∗ in species X, such that u1 = u∗ � ∂u and u2 = u∗ � ∂u.
The total mutualistic commodities offered to any Y indi-
vidual is

U = (u∗ � ∂u)x̂1 � (u∗ � ∂u)x̂2

= u∗(x̂1 � x̂2) � ∂u(x̂1 � x̂2). (2.9a)

At u∗, this amount is

U∗ = u∗�r(u∗) � v∗y∗

c � �(0)v∗y∗ . (2.9b)

Up to second-order terms, a Taylor expansion of U for
small ∂u reads

U = u∗ �r(u∗) � v∗y∗

c� (�(0) � (��2/�	))v∗y∗. (2.9c)

Therefore, whenever the competition asymmetry is such
that �	 � 0, the total amount of commodities always
increases locally through an AES where evolutionary
branching occurs. The same reasoning holds for species Y.

3. BIOLOGICAL IMPLICATIONS

In this model, the mutualistic pair is ecologically stable
as long as the rates of commodity provision are neither
extremely low nor too high. At the boundary of the
domain D of the trait space that permits ecological persist-
ence (i.e. the ovoid curve in figure 1a–c), the system
undergoes a catastrophic bifurcation and collapses
abruptly (cf. § 2a). In the short term, mutualistic popu-
lations within the persistence region thus reach a stable
ecological equilibrium. However, if individuals compete
with equal success for the commodity provided by the
other species, regardless of how much those individuals
invest in mutualism (symmetrical competition), the long-
term evolutionary dynamics will always drive the associ-
ation towards the boundary of the coexistence region D,
irrespective to the ancestral state (equation (2.4)). The
mutualism erodes because cheating mutants that invest
less in mutualism will be under no competitive disadvan-
tage and thus will always be able to invade, ultimately
driving the partner species to extinction. Thus, ecological
stability alone by no means provides a sufficient condition
for the evolutionary persistence of a mutualism subject to
natural selection.

Although such ‘evolutionary suicide’ would be a general
property of mutualisms involving symmetrical competition
for commodities, as a rule, competition in nature is asym-
metrical (Brooks & Dodson 1965; Lawton 1981; Karban
1986; Callaway & Walker 1997). Clearly, if any competi-
tive asymmetry within either species were to give an
advantage to individuals that provide fewer commodities,
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there would be no way out of the evolutionary suicide
described above. However, individuals often discriminate
among partners according to the quantity of rewards they
provide and associate differentially with higher reward
producers (Bull & Rice 1991; Christensen et al. 1991;
Mitchell 1994; Anstett et al. 1998). Our analysis shows
that such a competitive premium for providing more com-
modities leads to a much richer range of evolutionary out-
comes.

Competitive asymmetry in effect generates a selective
force that can counter the pressure for reducing the pro-
vision of commodities (equation (2.6)): at intermediate
degrees of competitive asymmetry, the mutualistic associ-
ation evolves towards a viable evolutionary singularity
(figure 1a,d). If the asymmetry is too weak in either spec-
ies, selective pressure favouring lower provision of com-
modities will predominate in that population. As the total
amount of commodities offered to the partner species
decreases, the selective pressure induced by competitive
asymmetry in the partner is weakened and selection for
reduced provision of commodities takes over on that side
of the interaction, too; extinction is the inexorable out-
come (figure 1b). If the asymmetry is too strong on either
side, the selective pressure favouring the provision of more
commodities will predominate, causing runaway selection
until the costs incurred are so large that the association
becomes nonviable and extinction is again the outcome
(figure 1c).

Assuming that the degrees of competitive asymmetry
are within the range that allows evolution to an ecologi-
cally viable evolutionary singularity, two things can
happen at this point: either selection stabilizes the associ-
ation at the evolutionary singularity, or selection turns dis-
ruptive (figure 2). In the latter case, all neighbouring
phenotypes are reciprocally invasible, and evolutionary
branching (Geritz et al. 1997) results. That is, a strain of
better mutualists and a strain of cheaters coexist and start
diverging. Whether selection is stabilizing or disruptive at
the evolutionary singularity is chiefly determined by (cf.
equation (2.8)):

(i) the nature of the asymmetry; and
(ii) the cost to the individual of providing commodities.

We say that the asymmetry is ‘rewarding’ if its main
effect is to confer a strong competitive advantage to indi-
viduals that provide more commodities; with our
notations from § 2, this occurs in species X when �	 � 0
and in species Y when �	 � 0. By contrast, ‘punishing’
asymmetry (occurring when �	 � 0 in species X and
�	 � 0 in species Y) primarily induces a strong competi-
tive disadvantage to individuals that provide fewer com-
modities. We say that the costs are ‘accelerating’
(respectively, ‘decelerating’) if a large increase in the rate
of producing commodities impacts the cost dispro-
portionately more (disproportionately less) than a small
increase. The mathematical translation of cost acceler-
ation (respectively, deceleration) writes r 	 � 0 (r	 � 0) in
species X and s	 � 0 (s	 � 0) in species Y. Both rewarding
and punishing asymmetry, and accelerating and decelerat-
ing costs, appear to exist in mutualisms (Iwasa et al. 1995;
Bultman et al. 2000).

Disruptive selection occurs at the evolutionary singular-
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ity of a species incurring a decelerating cost of mutualism
if the asymmetry is rewarding or even slightly punishing
(equation (2.8)). In this case, the competitive advantage
to a slightly better mutualist is sufficient to overcome the
increase in costs it experiences. At the same time, a slightly
less mutualistic type can invade a population of better
mutualists as long as the competitive disadvantage it suf-
fers is not too large, because of the benefit from reduced
costs (this sets a limit on how punishing the asymmetry
may be). Likewise, equation (2.8) shows that a species
characterized by an accelerating cost of mutualism
undergoes disruptive selection at the evolutionary singu-
larity only if competitive asymmetry is rewarding. In this
case, a slightly less mutualistic type does not gain much
through cost reduction and can invade a population of
better mutualists only if its competitive disadvantage is
small; a slightly better mutualist incurs a relatively large
cost and needs a sufficient competitive advantage to
invade successfully a population of cheaters.

Disruptive selection at an evolutionary singularity opens
an evolutionary route to the coexistence of phenotypes
ranging from good mutualists that provide large amounts
of commodities, to cheaters that are almost purely
exploitative (figure 2). Remarkably, the repeated evolution
of cheating phenotypes triggered by rewarding competitive
asymmetry is accompanied by a tendency for the total
amount of commodities offered to partners to increase
(colour bars in figure 2; mathematical underpinning in
§ 2e). The reduced provision of commodities by evolving
cheaters is more than compensated for by the concomitant
evolution of better mutualists. Far from always driving
mutualism to extinction, the evolution of cheating within
one party actually coincides with an increase in the bene-
fits to the other party.

4. CONCLUSION

Our phenotypic model assumes asexual reproduction
and would be most appropriate for the evolution of proka-
ryotic, symbiotic organisms. Sexual reproduction is likely
to affect evolutionary branching, because mating between
individuals would generate intermediate types, preventing
distinct phenotypic branches from evolving. Yet the out-
come might eventually be sympatric speciation, because
intermediate phenotypes would have lower fitness than the
extremes, giving the conditions under which genes for
assortative mating would spread (Dieckmann & Doebeli
1999; Kisdi & Geritz 1999). Another possible outcome
would be for a sexual mutualistic species near a branching
state to be invaded by another species with similar ecologi-
cal properties but with a lower or higher rate of com-
modity provision. Phenotypic evolution in effect leads to
ecological conditions that would permit two species pro-
viding slightly different amounts of commodities to coexist
and to start diverging into a better mutualist and a cheater.
This prediction matches the phylogenetic pattern docu-
mented for the well-studied yucca–yucca moth mutual-
ism, in which mutualists and cheaters are ecologically
similar in many respects but are not sister species
(Pellmyr & Leebens-Mack 1999).

Mutualist and cheater phenotypes or species are known
empirically to coexist in many mutualisms (Machado
et al. 1996; Pellmyr & Leebens-Mack 1999; Després &
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Jaeger 1999; Bronstein 2001b). Our theory shows that
asymmetrical competition for commodities can explain the
long-term persistence of mutualistic partnerships in spite
of the evolution or incorporation of cheaters. Competition
for benefits from partners is a cornerstone in the theory
of sexual selection, but surprisingly, its effects had been
minimally evaluated in the context of the evolution of
cooperative behaviour (Noë et al. 1991; Noë & Ham-
merstein 1995). Cheaters in effect provide a background
against which better mutualists can display any competi-
tive superiority. The approach we have used is based on
the simplest possible ecological model (similar to the
model of Frank (1994) for the origin of symbiosis); we
have analysed other simple ecological models of mutual-
ism, as well as more detailed models of particular biologi-
cal systems, with similar results (Gauduchon et al. 2002;
Law et al. 2001). We predict that different evolutionary
trajectories should be found in mutualisms characterized
by different functional forms of competitive asymmetry
and investment costs. Documenting the shapes of these
functions is therefore an important avenue for future
empirical research.
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A. Gonzalez for discussions and comments, and A. Gragnani
for her help in producing the figures. This work is supported
by a NATO Collaborative Research Grant (CRG 973145) to
J.L.B., R.F. and R.L. and a NSF grant (DEB-9973521) to
J.L.B.

APPENDIX A: ECOLOGICAL DYNAMICS

The ecological system equation (2.1) possesses either
zero or two equilibria in the positive orthant. Equilibria
are sought by solving the system dx/dt = 0, dy/dt = 0,
which yields

y =
1
v
r � cx
1 � �x

, (A 1a)

x =
1
u
s � dy
1 � �y

. (A 1b)

Since dy/dx� 0 and dx/dy� 0, it follows that the three
potential equilibria (the origin and the two positive
equilibria) are ordered in the phase portrait, thus defining
a ‘small’ equilibrium and a ‘large’ equilibrium.

The condition separating the two cases (zero or two
positive equilibria) is a saddle-node bifurcation. To deter-
mine the condition that must be satisfied by the model
parameters for this bifurcation to occur, we first recast
equation (A 1a) into the single equation

Ay2 � By � C = 0, (A 2)

where

A = uv� � v�d, (A 3a)

B = �uv� ur� � v�s� cd, (A 3b)

C = ur� cs. (A 3c)

Notice that A and C have the same sign (�), therefore
the two roots of equation (A 2), should they exist, are both
positive or both negative. The bifurcation condition
obtains from taking the discriminant B2 � 4AC of equ-
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ation (A 2) as equal to zero, which leads to the following
quartic relationship between the mutualistic traits u and v:

u2v2 � 2�ru2v� 2�suv2 � �2r2u2

� 2(cd� ��rs � 2c�s � 2d�r)uv � �2s2v2

� 2cd�ru � 2cd�sv � c2d2 = 0. (A 4)

Equation (A 4) defines a curve in the (u, v) trait space
(the ovoid curve depicted in figure 1a–c) that bounds the
domain D of ecological viability of the mutualistic associ-
ation. The fact that the large equilibrium is actually stable,
and that the small one is a saddle, can be verified by look-
ing at the Jacobian J of equation (2.1) evaluated at the
equilibrium

J = ��(c � v�y)x v(1 � �x)x

u(1 � �y)y �(d � u�x)y
�. (A 5)

One may easily check that the trace of J is negative; the
determinant of J is given by

det J = xy[(cd � uc�x � vd�y � uv�x � uv�y) � uv].
(A 6)

Notice that the term between parentheses is always
positive. At the bifurcation, one has det J = 0 and there is
a single equilibrium, but the two equilibria that appear for
a small parameter perturbation are one smaller, and the
other larger than the bifurcation equilibrium. Since the
negative term in the bracketed part of equation (A 6) does
not depend upon x and y, while the positive term increases
with x and y, it follows that the large equilibrium is charac-
terized by det J � 0 and is therefore stable; by contrast,
the small equilibrium is characterized by det J � 0 and is,
therefore, a saddle.

APPENDIX B: STOCHASTIC, INDIVIDUAL-BASED
SIMULATIONS OF EVOLUTIONARY DYNAMICS

Our mathematical analysis (§ 2) is based on the time-
scale separation of ecological and evolutionary processes.
This assumption has been relaxed in the numerical simul-
ations of the mutation-selection process underlying figure
2, by making use of a stochastic, individual-based model
in which individuals of species X with phenotype u die at
rates r(u) � cNX/K, where NX is X’s population size and
K is the carrying capacity (1000 for both species) and give
birth at rates (
k�k)·(1 � 
i�(u � ui)/K), where the sums

 are respectively taken over all Y individuals (indexed by
subscript k) and all X individuals (indexed by subscript
i). Similar expressions apply to the death and birth rates
of species Y individuals. In both species, offspring usually
inherit their parent’s phenotype, but mutations occur at
small rates (set to 0.001); the phenotypic value of a
mutant is normally distributed around the parent’s trait
(variance = 1.0). Asymmetrical competition functions are

�(u2 � u1) = 2�X{1 � (1 � Xe��X(u2�u1))�1} (B 1)

and

�(�2 � �1) = 2�Y{1 � (1 � Ye��Y(�2��1))�1}. (B 2)

To run the simulations presented in figure 2, the para-
meters �X, X and �X (�Y, Y and �Y, respectively) were
adjusted to yield the prescribed values of �(0), �� and
�	 (�(0), �� and �	 respectively).
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