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Chebyshev acceleration techniques for large 
complex non Hermitian eigenvalue problems 
VINmSNT H~.,vmar,m and Mat.ouo SADKANE 

We propo~ an extensiem of the Arnoldi-Chebyshev algorithm to the large complex non Hermitian ~a~. 
We demonstrate the algorithm on two applied problems. 
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1. Introduction 
The computation of a few eigenvalues and the corresponding eigenvectors of large complex 
non hermitian matrices arises in many applications in science and engineering such as mag- 
netohydrodynamic or electromagnetism [6], where the eigenvalues of interest often belong to 
some region of the complex plane. 

If the size of the matrices is relatively small, then the problem can be solved by the 
standard and robust QZ algorithm [9]. The QZ algorithm computes all the eigenvalues while 
only a few eigenvalues may be of interest, requires a high computational cost and does not 
exploit the sparsity of the matrices and is therefore only suitable for small matrices, 

When the size of the matrices becomes large, then Krylov subspace methods are a good 
alternative since these methods take into account the structure of the matrix and approximate 
only a small part of the spectrum. Among these methods, Arnoldi's algorithm appears to 
be the most suitable. Arnoldi's method builds an orthogonal basis in which the matrix is 
represented in a Hessenberg form whose spectrum, or at least a part of it, approximates the 
sought eigenvalues. Saad [11] has proved that this method gives a good approximation to the 
outermost part of the spectrum. However, convergence can be very slow especially when the 
distribution of the spectrum is unfavorable. On the other hand, to ensure convergence, the 
dimension of the Krylov subspace must be large, which increases the cost and the storage. To 
overcome these difficulties, one solution is to use the method iterativety, that is, the process 
must be restarted periodically with the best estimated eigenvectors associated with the required 
eigenvalues. These eigenvectors can also be improved by choosing a polynomial that amplifies 
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the components of the required eigendirections while damping those in the unwanted ones. 
This amounts to finding, at each restart, a polynomial p* that solves the minimax problem 

min max IP(z)l (l) 
pET ~ tED 

where 7 9 is some set of polynomials and D is a domain that contains the unwanted eigenvalues. 
These techniques have already been used for linear systems [7, 8] and for eigenvalue problems [1, 
5, 11-13]. The domain D is often delimited by an ellipse and the polynomial p* is a Chebyshev 
polynomial. However, the acceleration schemes described in these works deal with real matrices 
and take into great account the symmetry with respect to the real axis of the spectrum of these 
matrices. This property does not hold for complex matrices and therefore the construction of 
the domain D and the polynomial p* is more difficult. 

In this paper, we consider a new acceleration scheme for the complex non hermitian 
eigenvalue problem. W e  will restrict ourselves to the  case where the rightmost eigenvalues 
are needed. Section 2 provides background and notations for the Chebyshev-Arnoldi method. 
Section 3 exhibits a new polynomial acceleration scheme for complex non hermitian matrices. 
Section 4 is devoted to numerical tests taken from practical problems. 

2~ The Arnoldi-Chebyshev method 
Let A be a large sparse complex non Hermitian diagonalizable n x n matrix whose eigenvalues 
AI, .- . ,An are labeled in decreasing order of their real parts: ~eA1 > . . .  >_> ~ReAn and 
ul . . . .  , un their corresponding eigenvectors. We suppose that we are interested in computing 
(Ai, ui) i = 1 . . . . .  r (r << n). These eigenpairs may be approximated in the following way: 
From V1 E C n×r, let ])m = IV1,..., I'm] E Cn×'~r(r < m << n) be the block Arnoldi * basis of 
the Krytov subspace/Cm = span{V1, AVh . . . .  Am-iV1} satisfying: 

AYm = ]),~H,,, + [0 . . . .  ,0, V,~+aHm+l,m] (2) 

where  Hm = ])~mA]),, is a block Hessenberg matrix and Hm+xm = Vmn+~AVm. Let HmY = Y O  
with O = diag(Ol,. . . ,  0r), Y = [Yl,--., Yr] corresponding to the r rightmost eigenpairs of Hm 
and X = ])mY the matrix whose columns approximate the sought eigenvectors of A. Then (2) 

reduces to 

I I A X  - XOll= = llH, ÷x,, Yll= (3) 

where 12 is the last r x r block of Y. In order to improve the approximate eigenpair (O, X) of 
A, we look for a polynomial p* such that the columns of p*(A)X  will be a better approximation 
of ux , . . . ,  Ur than X. This may be done in the following way: 

Algorithm 1: Arnoldi-Chebysehev 
1. Start: 

Choose an initial block V1 E G '~×r and the size m of the Krylov subspace. 
2. Block-Arnoldi: 

Orthonormalize the columns of II1 and generate an orthogonal basis Vrn 
of the grylov subspace X:m(A, = span(V1, AV1,..., Am-IV:}. 

1The block versi, m may, in certain cams, he more efficient than the standard one [12]. 
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Compute the rightmost eigenpairs (),i, Vi)l<i<. of H,,~ = V~AV, n. 
8,  Restart: 

Compute the corresponding approximate eigenvectors ~ = ])raYi i = 1 , . . . ,  r. 
If convergence stop. Else compute polynomial i0" that solves approximately 
(1) and set V, = [ p * ( A ) a l , . . . , p * ( A ) G ] .  Go to 9.. 

The aim of the polynomial acceleration is to enhance the columns of the restarting block 
V1 in the needed eigendirections {Ui}l<i<r. We see that each p(A)uj j = 1 , . . . , r  can be 
expanded in the basis u l , . . . ,  un as follows: 

p(A)~j = ajp(Aj)u~ + Z a~p(~k)u~, j = 1 , . . . ,  r. (4) 
k#j 

Obviously we are thus seeking a polynomial p* which achieves the minimum 

rain m~x Ip(A)I (5) 
petite 

p(,xr)=l. 

where C is a domain containing the unwanted eigenvalues Ai for i E [r + 1, r~], and IIa denotes 
the space of all polynomials of degree not exceeding k. The condition p(A~) = 1 is only used 
for normalization purpose. 

Let E = C(c, e, a) be an ellipse containing the set {At+l, . . . ,  A,~} and having center c, 
focis c + e, c - e and major semi-axis a. An asymptotically best min-max polynomial for (5) is 
the polynomial [3] 

p' ( z )  = (6) 

where Tk is the Chebyshev polynomial of degree k of the first kind. 

In the next section we discuss the strategy that we have adopted for constructing the 
ellipse E. 

31 Computation of the ellipse C 

In practice we replace the set {At+l , . . . ,  An} by 7=4-u = {5~r+a,... , ~mr} which corresponds to 
the rest of the spectrum of Hm. Aninfinity_ of ellipses may endose the unwanted eigenvalues in 
7~  and exclude the wanted ones 7"4,0 = { )q , . . . ,  At}. Hence we will add two more conditions 
that ensure the uniqueness of the desired ellipse. 

Considering At E ~ the nearest approximate unwanted eigenvalue to the wanted ones 
with respect to the Euclidean norm, then we want the following conditions to be fulfilled: 

• ~z belongs to the ellipse and is a minimal point of [p*(z)] on the ellipse. 

• The desired ellipse has the minimal surface. 

The motivation of the first condition is to discriminate as much as possible between the wanted 
and the unwanted eigenvalues which are close to each other. Indeed it is well known that 
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Arnoldi's method may have very slow convergence on clustered eigenvalues. Moreover, the 
approximate wanted eigenvalues may, at least at the be_ginning of the process, be far from the 
exact ones and therefore there is no guarantee that ~ and the wanted eigenvalues will not 
intersect. 

The motivation of the second condition is to minimize the risk mentioned in the first 
situation. Notice that even in the real case, there is no way to fully circumvent this difficulty. 

Considering the above conditions, the computation the ellipse C(c, e, a) occurs in two steps: 
(1) Choice of the center c and (2) Computation of the main axis direction, la! and let. These 
two points are discussed in more details in [4]. We only mention them briefly here: 

• Choice of  the center: The choice of the center of the ellipse is difficult considering the 
fact that it greatly depends on the location of the wanted and unwanted eigenvalues. 
Moreover, an inappropriate choice may imply that any ellipse enclosing the unwanted 
eigenvalues, contains also the wanted ones. 

To avoid such situations we have considered a set of centers {ci}i=l,...,,~ defined by the 
heuristic scheme 

l ' n  

k=~+x i = 1 . . . . .  n~ (7) 

k----:,'+ 1 

which ensures that the centers are in the convex hull of the unwanted eigenvalues 7~. 

The choice of the weights {w~ i)} is discussed in [4]. 

• Computation of the main axis direction: Considering the Joukowski mapping we can 
show that the Chebyshev polynomial of degree k, T~(~-~) maps the ellipse E(c, e, a) onto 
the ellipse E(0, 1, a') with a' > 1 [4, t0]. Moreover, one rotation on the initial ellipse 
E(e, e, a) is mapped on k rotations onto the target ellipse E(0, 1,a')_ Consequently, for 
z E £(c,e ,a) ,  Ip'(z)l as defined in (6) has 2k minimums. We impose At defined above to 
correspond to one of these minimums. Scanning for all possible constructions such that 
the searched dlipse contains 7~u and excludes ~ we then choose the ellipse of minimal 
su r f ace .  

These two steps involve only scalar operations and therefore the computation of the ellipse 

is cheap. 

Q Numerical experiments 
The numerical experiments described in this section have been performed on an IBM/RISC 
6000-590 computer using double precision. The stopping criterion is such that the relative 
residual corresponding to the computed pair (A,x) must satisfy ttA~-X~ll~ < ~[1AII2 with ~ = tizll2 - 
10 -8. I f  the spectral norm ]]AH2 is not known we use the Frobenius norm I1AIIF. Before 
considering our test examples, it is worth mentioning that the code we have implemented uses 
a block version of Arnoldi-with a deflation technique that eliminates all the converged eigenpairs 
in previous steps. Let us illustrate the behavior of the'algorithm on two representative test 

problems. 
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* The Orr-Sommerfeld operator [6]: Consider the operator defined by aA~L2y- i(ULy- 
U"y)-ALy = 0, where ot and R are positive parameters, A is a spectralparameter number, 

d 2 -- ~2. U = i - x  2, y is a function defined on [ - 1 , + I ]  with y(q-1) = y'(q-1) = O, L = 
Discretizing this operator using the following approximation xj = - 1  + jh, h = n+l ' 
Lh = ~ T r i d i a g ( 1 , - 2 -  a2h 2, 1), Uh = d iag (1 -  x~ , . . . ,  1 -  x~) gives rise to the eigenvalue 
problem Au = ;~u with A = ~ L h -  iL-~l(UhLh + 2In). Taking a = 1, R = 5000, 
n = 2000 yields a complex non Hermitian matrix .,4 (order = 2000, number of nonzero 
elements = 4.10 s, IIAItF = 21929), whose spectrum is plotted in Figure I. We computed 
the five rightmost eigenpairs of A. The results are shown in Figure 1 and Table 1. 
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Figure 1. Spectrum (left) and the residual norm versus the number of iterations (right) for 
Orr-Sommerfeld 

Method for Orr-Sommerfeld 
a = 1, R = 5000, n = 2000 

5 eigenvalues 

Krylov Basis Deflation Cheby. Degree nmult Iterations 
40 No No co co 
40 Yes No co co 
40 Yes 40 67840 189 
40 Yes 70 48530 81 
70 No No co co 
70 Yes No 103000 1482 
70 Yes 40 38940 101 
70 Yes 70 9620 21 

Table 1. nmult: Number of matrix vector multiplications 



116 V.  HEUVELINE t M .  S A D K A N E  

• The matrix Younglc: This matrix comes from the Harwdl-Boeing [2] set of test matrices. 
It arises when modeling the acoustic scattering phenomenon. It is complex with order 841 
and contains 4089 nonzero elements. IIAIIF = 6484. The spectrum is plotted in Figure 2. 
The results obtained with a basis m = 40 are given in Figure 2 and Table 2. 

Figure 2 .  
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Spectrum (left) and the residual norm versus the number of iterations (right) for 

Method 6 eigenvalues 8 eigenvalues " 
nmutt Iterations nmult Iterations 

Block Arnoldi 36000 1000 oo oo 
+ Deflation 1908 53 14160 354 
+ Chebyshev T30 1182 7 4723 21 

Table 2. nmult: Number of matrix vector multiplications 

5. Conclusion 

We have shown how to apply Chebyshev eigenvalue acceleration in the complex case. Numerical 
results indicate that the algorithm performs well and that the acceleration is useful and may 
be necessary in some practical problems. 
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