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In this study, treating the large artery as a rigid channel with uniform width and the blood as an 
incompressible Newtonian fluid with variable viscosity due to transverse variation in hematocrit ratio, 
the basic flow structure and its temporal stability to small disturbances were studied. A fourth-order 
Eigenvalues problem which reduces to the well known Orr–Sommerfeld equation in some limiting cases 
was obtained and solved numerically by a spectral collocation technique with expansions in Chebyshev 
polynomials implemented in MATLAB. Graphical results for the basic flow axial velocity, disturbance 
growth rate and marginal stability curve are presented and discussed. It is worth pointing out that a 
transverse increase in the blood hematocrit ratio towards the central region of the artery had a 
stabilizing effect on the flow. 
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INTRODUCTION 
 
The arterial blood flow provides a way for glucose, 
oxygen and hormones to reach various organs around 
the body. The first set of blood leaves the heart from the 
left ventricle into the biggest artery called the aorta 
(Pedley, 1980). It is important that fresh blood from aorta 
goes directly to the brain because the brains need 
oxygen constantly to avoid irreversible damage to it. 
Blood is a suspension of cells in plasma and can be 
separated into microscopically visible element and liquid 
plasma (Fung, 1984). The elements are red cells or 
erythrocytes, the white cells or leukocyte, and the 
platelets or thrombocytes (Figure 1). The concentration of 
erythrocytes in the blood has a strong influence on blood 
viscosity. At a hematocrit of 40 to 45%, blood viscosity is 
approximately 3 times the value for plasma and 
approximately 5 times that of water (Matral et al., 1987). 
Blood viscosity shows a curvilinear relation with the 
hematocrit and it increases sharply when the hematocrit 
is raised much beyond the normal range (Burton, 1966).  

Hematocrit (hemato from the Greek haima = blood; crit 
from the Greek krinein = to separate) is the ratio of the 
volume of packed red blood cells to the total blood 
volume and is therefore also known as the packed cell 
volume, or PCV. In healthy adult individuals the red blood 

cells constitute approximately 40 to 48%, whereas 
newborns may have hematocrits of up to 60% (Fuchs et 
al., 1987). In the course of blood flow in the large arteries, 
the red blood cells in the vicinity of arterial wall move to 
the central region of the artery so that the hematocrit ratio 
becomes quite low near the arterial wall, which results in 
lower viscosity in this region (Ditzel and Kampmann, 
1971; Pedley, 1980). Moreover, due to high shear rate 
near the arterial wall, the viscosity of blood is further 
reduced. Therefore, for flow problems in large blood 
vessels, the blood may be treated as Newtonian fluid with 
transverse variation in viscosity, which takes its maximum 
value at the central region of the artery and minimum 
value near the arterial wall.  

Furthermore, blood viscosity and its major determinants 
such as hematocrit ratio variation, may be important risk 
factor for the early development atherosclerosis (Koenig 
and Ernst, 1992). Atherosclerosis refers to the occlusion 
of the arterial lumen. Therefore, from the mathematical 
standpoint, the study of variable viscosity arterial blood 
flow and its temporal stability to small disturbances is 
paramount in understanding pathological situations in the 
cardiovascular systems (Orszag, 1971; Makinde, 2005). 
Meanwhile, the stability of a constant viscosity Newtonian  
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Figure 1. Content of blood (Fung, 1984). 
 
 
 

 
 
Figure 2. Geometry of the problem. 

 
 
 

fluid flowing through channels of varying width to small 
disturbances has been investigated both analytically and 
numerically by several authors (Squire, 1933; Ho and 
Denn, 1977; Drazin, 1999; Turkyilmazoglu et al., 2000; 
Makinde and Mhone, 2007; Turkyilmazoglu, 2007; 
Makinde, 2009). Recently, Prakash and Makinde (2011) 
investigated the combined effects of magnetic field and 
thermal radiation on arterial blood flow in the presence of 
hematocrit variation due to blood erythrocytes con-
centration. To the best of our knowledge, there has not 
been any reported study concerning stability of arterial 
blood flow with varying hematocrit ratio. 

Motivated by the scarcity of such investigation in the 
literature, the temporal development of small distur-
bances in a variable viscosity arterial blood flow due to 
transverse variation in hematocrit ratio was investigated. 
Treating artery as a rigid channel with uniform width and 
the blood as an incompressible Newtonian fluid with 
variable viscosity, the linear stability analysis was 
performed. The followings were accomplished: problem 

formulation and solution for the steady basic flow; 
derivation of the Eigenvalues problem for temporal 
development of small disturbances; solving the resultant 
Eigenvalues problem by employing the Chebyshev 
spectral collocation numerical technique (the results 
obtained were discussed quantitatively). 
 
 
MATHEMATICAL MODEL 

 
For the development of mathematical model (Figure 2), the 
following assumptions were made: 
 
(i) In the large artery, blood is assumed to be an incompressible 
Newtonian fluid 
(ii) Viscosity of blood varies transversely with maximum value in the 
central region of the artery due to hematocrit ratio variation. 
(iii) A two-dimensional flow problem is considered. 

 
The governing equations of continuity and momentum for 
symmetric flow of blood through an artery in dimensionless form 
under the  above  mentioned  assumption  are  (Mekheimer,  2004): 
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Where, t  is the time; P  is the pressure; Re is the Reynolds 

number; x is the coordinate in the stream-wise direction; y is the 

normal coordinate and ( u , v ) are the velocity components in the x 

and y directions, respectively. Based on the transverse variation in 
the hematocrit ratio within the blood vessel, the variable viscosity 

function  is modeled as:  
 

)(sec)( yhy   ,                (4) 

 

Where,  is the viscosity variation parameter. The shape of the 
profile given by Equation 4 is valid only for very dilute suspension of 
red cells (Matral et al., 1987). The governing Equations (1 - 3) have 
been non-dimensionalized using the following dimensionless 
variables: 
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Where, H is the channel characteristic half width;   is the fluid 

density; U0 is the velocity scale; v  is the kinematic viscosity 

coefficient and G is the constant axial pressure gradient parameter. 
The basic steady state of the arterial blood flow system 
corresponds to a parallel flow with velocities u = U(y) and v = 0. The 
equation and the boundary conditions describing the basic steady 
state flow are: 
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and the solution is given by: 
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Stability analysis  

 
Herein, the temporal stability analysis of two-dimensional small 
disturbances imposed on the basic flow is considered (Squire, 
1933). Let 
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Where vu ˆ  ,ˆ  and p̂  are very small so that products and higher 

powers can be neglected. Substituting Equation 8 into Equations 1 
to 3 and neglecting the nonlinear terms in the disturbance 
quantities, we obtained: 
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Following Orszag (1971), we sought a normal mode solution for 
Equations 9 to 11 defined in terms of a stream-function as: 
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Where,  y  is the amplitude function and ,c are the 

disturbances wave speed and wave number respectively. The 
disturbance velocity components can be expressed as follows: 
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Where the prime symbol denotes differentiation with respect to y. 

Substituting Equations 12 to 14 into Equations 9 to 11 and 
eliminating the pressure terms yields; 
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with the boundary conditions; 
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It is noteworthy that Equation 15 reduces to the classical Orr-

Sommerfield equation (Drazin, 1980) when  =1, which correspond 

to constant blood viscosity situation with  =0. In order to find a 

non-trivial function  satisfying Equation 15 with boundary 

conditions 16, the parameters  Re,,  and c must satisfy a 

certain complex Eigenvalue relation, say: 
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For temporal development of the disturbances,   is real  and  c is  
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complex which can be expressed as: 
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The imaginary part of Equation 18 determines whether the 

disturbances grow or decay. When 0ic  the disturbances 

grow, while when 0ic  they neither grow nor decay, in this 

case the disturbance modes are said to be neutrally stable.  
 
 
Computational approach  
 

The Eigenvalue problem in Equation 15 with the condition (16) is 
solved using the Chebyshev spectral collocation method 
(Turkyilmazoglu and Gajjar, 1999; Makinde and Mhone, 2007). We 
expand the solution of the differential equation and its boundary 
conditions as a finite series in Chebyshev polynomials of the form: 
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Where k  is the k
th
 Chebyshev polynomial defined by: 
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k
~

represents the unknown coefficients and yj are the Gauss-

Lobatto collocation points (Canuto et al. 1988) on the interval [-1,1] 
defined by: 
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Substituting Equation 21 into Equation 19 and requiring that the 
differential Equation 15 be satisfied at the N collocation points, we 
obtain (N+1) x (N+1) algebraic equations which form the 
Eigenvalue problem; 
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is the transpose of the column vector . The clamped boundary 

conditions are incorporated explicitly in the first two and last rows of 
the matrices E and B by setting: 
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U= diag [U(yj)]; I is the (N+1)x(N+1) identity matrix and D is the 
usual differential matrix (cf Canuto et al., 1988). Here diag [ ] means 
that the entries are placed on the main diagonal of an (N+1)x(N+1) 
matrix with the rest of the entries being zero, which usually results 
to matrix B becoming singular. The problem is avoided by 
employing the idea of Weidmann and Reddy (2000) by using 
Hermite interpolating polynomials that satisfy the boundary 
conditions. Thus, we obtained: 
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RESULTS AND DISCUSSION 
 

The Eigen solutions of the generalized Eigenvalue 
problem (Equations 22 to 29) obtained numerically are 
presented herein. The numerical solutions have been 
verified for correctness by comparing with the results 

obtained by Orszag (1971) for  = 0. The blood viscosity 
variation model and the flow basic velocity are computed 
from Equations 4 and 6 and the Chebyshev spectral 
collocation method is implemented in MATLAB 5.1 to 
compute the fastest growing mode, although there is no 
reason to believe that more than one mode of the present 

problem grows for given fixed values of  , G,  and Re. 
Figure 3 shows the transverse variation of arterial blood 
viscosity with maximum value in the central region and 
minimum value at the arterial wall. It is noteworthy that 

increasing values of viscosity variation parameter  leads 
to a transverse increase in the hematocrit ratio towards 
the central region of the artery.  

Figure 4 illustrates the arterial blood velocity profile. 
Generally, a parabolic plane Poiseuille profile is observed 
with maximum value along the centerline and minimum at 
the wall. However, an increase in the blood viscosity 
variation parameter causes a further increase in the 
blood velocity. Table 1 shows the numerical results for 
the Eigenvalues of the most unstable mode for increasing 

values of  at fixed values of G,  and Re. It is interesting  
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Figure 3. Arterial blood viscosity variation.    = 0.1; ooooo  =0.5; ×××××  = 1.0. 

 
 
 

 
 

Figure 4. Velocity profile, G = 2;   = 0.1; ooooo  =0.5; ×××××  = 1.0. 
 
 

 
Table 1. Computation showing the Eigenvalues of the most unstable mode (G=2, Re = 

20000,  = 1). 
 

Variable viscosity parameter () Wave speed (c) 

0.0 0.23752648883586 + 0.00373967069853i 

0.1 0.23783691590891 + 0.00364707995371i 

0.2 0.23876667955404 + 0.00337568662317i 

0.3 0.24031185079476 + 0.00294413960238i 

0.4 0.24246778013888 + 0.00238189266321i 

0.5 0.24523135670077 + 0.00172677600741i 

0.6 0.24860316803977 + 0.00102176825239i 

0.7 0.25258895099082 + 0.00031134842668i 

0.8 0.25719998746173 - 0.00036202436167i 

0.9 0.26245247457356 - 0.00096074508379i 

1.0 0.26836621542410 - 0.00145385714220i 
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Table 2. Computations showing the critical values at which unstable 
modes begin to exist (G = 2). 
 

 c Rec 

0.0 1.02052 5772.2283 

0.2 1.01260 6053.6434 

0.4 0.99225 6886.2840 

0.6 0.96705 8176.7969 

0.8 0.94512 9649.2259 

1.0 0.93110 10878.4282 
 

 
 

 
 

Figure 5. Growth rate ci for Re = 20000. 
 
 
 

to note that a slight increase in the values of  due to 
increasing transverse hematocrit ratio variation has the 
effect of decreasing the imaginary parts of the wave 
speed. This shows that an increase in blood viscosity 
transverse variation has a stabilizing effect on the flow. 
Table 2 shows the critical Reynolds number Rec and the 

critical wave number c at the instability threshold for 

varying values of . For  =0, the result obtained is in 
perfect agreement with the one reported in Orszag 

(1971). We observe that an increase in  leads to an 
increase in the critical Reynolds number and a slight 
decrease in the critical wave speed. This means that the 

stable region in (Re, )-plane increases as the hematocrit 
ratio transverse variation increases (Figure 6).  

In addition, Figure 5 shows the variation in the growth 
rate of the most unstable mode against the wave number. 

It is interesting to note that increasing values of  have 
the effect of damping the disturbances. This means that a 
transverse increase in the hematocrit ratio towards the 
arterial central region acts like a control parameter that 

eliminates the growth of small disturbances in the flow 
field.  
 
 

Conclusion 
 

The Chebyshev spectral collocation method implemented 
in MATLAB is employed to investigate the temporal 
development of small disturbances in a variable viscosity 
arterial blood flow due to transverse variation in 
hematocrit ratio. We obtained accurately the critical 

Reynolds number (Rec) and the critical wave number (c) 
for increasing values of viscosity variation parameter. It is 
observed that a transverse increase in the hematocrit 
ratio towards the arterial central region has a stabilizing 
effect on the blood flow.  
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Figure 6. Marginal stability curve for G = 2. 
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