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We carry Chebyshev-polynomial expansion of the inverse localization length of Hermitian and non-Hermitian

random chains as function of energy. For Hermitian models, the expansion produces numerically this energy-

dependent function in one run of the algorithm. This is in strong contrast to the standard transfer-matrix method,

which produces the inverse localization length for a fixed energy in each run. For non-Hermitian models,

as in the transfer-matrix method, our algorithm computes the inverse localization length for a fixed (complex)

energy. We also find a formula of the Chebyshev-polynomial expansion of the density of states of non-Hermitian

models. As explained in more detail in the Introduction, our algorithm for non-Hermitian models may be the

only available efficient algorithm for finding the density of states of models with interactions.
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I. INTRODUCTION

Impurities are ubiquitous in nature and play essential role in

various physical phenomena; one of the most important phe-

nomena is Anderson localization. Anderson [1] had originally

introduced his model to describe localization of electrons dif-

fusing in randomly disordered lattices, but later on it has been

applied to various other systems where waves are present in

a random environment; see e.g. Ref. [2]. Waves, quantum

mechanical or classical, that are scattered by random impuri-

ties, tend to interfere destructively with each other and conse-

quently become localized in space under specific conditions.

These localized waves typically have an envelope with an

exponential tail

|ψ(x)| ∼ e−κ|x−x0| (1)

in the limit |x − x0| → ∞, where x0 is the center of local-

ization. The parameter κ specifies how strongly the wave is

localized, and is referred to as the inverse localization length.

A small value of κ indicates a weakly localized (i.e., widely

spread) wave, while a large value a strongly localized (i.e.,

narrowly spread) one.

The inverse localization length κ of each eigenstate of

the Hamiltonian depends on its eigenenergy. For large

quantum-mechanical systems, the function κ(E) is typically

larger (stronger localization) near energy-band edges, smaller

(weaker localization) away from them, and may even vanish

in an energy range. It is now widely accepted that in one di-

mension, in the absence of inter-particle interactions, almost

all eigenstates are localized, that is, κ(E) > 0 for any E,

while in three spatial dimensions there is an energy region

where κ(E) = 0, namely a phase of extended states, with a
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transition to a phase of localized states at the so-called mo-

bility edge. It has been stressed [3–6] that a detailed finite-

size scaling analysis of numerical data is essential to fix ac-

curately the exponent ν, which determines the energy depen-

dence κ(E) ∼ |E −Ec|ν of the inverse localization length in

the localized phase, as one approaches the mobility edge Ec,

and thereby the universality class of the Anderson localization

transition. Numerical methods for computing the inverse lo-

calization length precisely are still in need for more intricate

systems, such as quantum Hall systems, systems with spin-

orbit coupling, and topological insulators.

In the present paper, we introduce a novel numerical

method for computing the energy dependence of the inverse

localization length κ(E); we derive an expansion of the func-

tion κ(E) in terms of Chebyshev polynomials Tn(E). The

most popular method at present is presumably to find it as

the Lyapunov exponent of the random transfer matrix [3–7].

Our new method is completely different; it extracts the in-

verse localization length directly from the density of states

of the Hamiltonian. The most prominent practical difference

may be the following point. Each run of the transfer matrix

method finds the inverse localization length for a very large

system at a fixed energy. In contrast, each run of our method

finds κ(E) as a function for a moderately large system.

We also present an algorithm for computing the inverse lo-

calization length of non-Hermitian Hamiltonians in the com-

plex energy plane, using again the Chebyshev-polynomial

expansion. Non-Hermitian Hamiltonians and Liouvillians

can appear in quantum mechanics when the environment is

traced out in open quantum systems [8–17]. Interest in non-

Hermitian quantum mechanics was renewed in 1990’s, when

several important studies on non-Hermitian Hamiltonians ap-

peared, including a non-Hermitian extension of a model of

the Anderson localization [18–20] and the PT -symmetric

quantum mechanics [21–23]. In the former, competition be-

tween randomness and non-Hermiticity was found; the in-

verse localization length vanishes at the critical value of a non-

Hermitian parameter. If we go further away from the realm
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of quantum mechanics, the presence of randomness in non-

Hermitian matrices is quite common, such as in the Fokker-

Planck dynamics [24, 25], fluid dynamics [26] and in neural

networks [27, 28], and the concept of the Anderson localiza-

tion flourishes. Our method should come in handy in analyz-

ing such non-Hermitian systems.

Chebyshev-polynomial algorithms, and more generally the

kernel-polynomial methods, employ repeated multiplication

of some vector by the Hamiltonian matrix. Consequently, for

sparse Hamiltonian matrices (which is the case for nearest-

neighbor hopping systems), it is possible to carry out the al-

gorithms by storing in computer memory only several vec-

tors of the size of the Hilbert space. Thanks to this feature,

Chebyshev-polynomial algorithms as a matter of principle,

should be more efficient in analyzing many-body Hamiltoni-

ans with interactions, which typically involve Hilbert spaces

of very large dimensions. The present algorithm for non-

Hermitian models is, as far as we know, potentially the only

one available for finding the density of states of general large

non-Hermitian models, particularly large many-body ones, as

a function of complex energy; we are only aware of existing

algorithms that find individual complex eigenvalues [29–35]

and those that find spectra of specific types of large sparse

non-Hermitian matrices [36–38].

The paper is organized as follows. We first review in Sec-

tion II A the Chebyshev-polynomial expansion of the density

of states ρ(E) of Hermitian Hamiltonians. We then move on

to our new Chebyshev-polynomial expansion of the inverse

localization length κ(E) in Section II B. We present in Sec-

tion II C two demonstrations of the method, employing the

random-potential and random-hopping tight-binding models.

We turn to our method for the inverse localization length of

non-Hermitian Hamiltonians in Section III. After derivation

of the expansion formula, we demonstrate it in the case of a

non-Hermitian random-sign model [39].

We finally present the method for the density of states of

non-Hermitian Hamiltonians in Section IV. A demonstration

with full (i.e., non-sparse) non-Hermitian random matrices

follows.

The methods for the density of states given in Sections II A

and IV do not depend on the dimensionality of the system.

The methods for the inverse localization length given in Sec-

tions II B and III are primarily for one-dimensional systems,

because they utilize the Thouless formula. Some comments

on the applicability of our method to higher spatial dimen-

sional systems are deferred to Sec. II B below.

II. THE CHEBYSHEV-POLYNOMIAL METHOD FOR

DISORDERED HERMITIAN CHAINS

A. Computing the density of states

Let us first briefly overview the Chebyshev-polynomial ex-

pansion method for computing the density of states of a (Her-

mitian) Hamiltonian matrix [40–42]. The method in which

errors due to termination of the expansion are taken care of is

often called the kernel-polynomial method [43]. Throughout

this paper, for the sake of simplicity, we employ the simpler,

straightforward Chebyshev-polynomial expansion, and avoid

any issues of optimized truncation for minimizing errors per-

taining to the kernel-polynomial method. We justify this sim-

plification by demonstrating numerically the convergence of

the expansion as the number of terms summed increases. The

method works most efficiently for large sparse matrices, to

which point we will come back below. We emphasize that the

discussion in the present sub-section is not restricted to one-

dimensional systems.

Suppose that an L × L Hermitian matrix H has the real

(unknown) eigenvalues {Eν |ν = 1, 2, · · · , L}. Its density of

states is given by

ρ(E) :=
1

L

L
∑

ν=1

δ(E − Eν) . (2)

For large systems L ≫ 1, the sum over the dense delta-

function spikes in Eq. (2) is typically smoothed out into a con-

tinuous function ρ(E). The strategy is to expand the density

of states ρ(E) in terms of a set of orthogonal polynomials; of-

ten used are Chebyshev polynomials. To employ Chebyshev

polynomials, we have to rescale the matrix H such that all

its eigenvalues Eν lie in the range [−1, 1], which is the stan-

dard domain of orthogonality of the Chebyshev polynomials.

In order to determine the required scaling factor, the upper

and lower bounds of the eigenvalue spectrum are roughly es-

timated e.g. by the Gershgorin circle theorem. We assume that

the matrix H has been already normalized properly through-

out this and next subsections.

Chebyshev polynomials of the first kind, which are defined

on [−1, 1] by

Tn(x) := cos(n arccosx), (3)

constitute a set of orthogonal polynomials that satisfy the or-

thogonality relation

∫ 1

−1

Tn(x)Tm(x)
dx√
1− x2

=











0 for n 6= m,

π for n = m = 0,

π/2 for n = m > 0

(4)

and the three-term recursion relation

Tn+1(x) = 2xTn(x)− Tn−1(x) , (5)

with T0(x) = 1 and T1(x) = x. These polynomials have

definite parity Tn(−x) = (−1)nTn(x).
We can use this complete set of orthogonal polynomials to

expand the density of states in the form

ρ(E) =
1√

1− E2

∞
∑

n=0

µnTn(E) . (6)

The orthogonality relation (4) determines the expansion coef-

ficients as

µn =
2

π

∫ 1

−1

Tn(E)ρ(E)dE (7)
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for m > 0 along with

µ0 =
1

π

∫ 1

−1

T0(E)ρ(E)dE =
1

π

∫ 1

−1

ρ(E)dE =
1

π
. (8)

Substituting the density of states (2) into the expression (7),

we have

µn =
2

π

1

L

L
∑

ν=1

Tn(Eν) =
2

π

1

L
TrTn(H), (9)

where we used

L
∑

ν=1

Eν
k = TrHk. (10)

The expansion (6) can be therefore rewritten as

ρ(E) =
1

π
√
1− E2

[

1 + 2

∞
∑

n=1

(

1

L
TrTn(H)

)

Tn(E)

]

.

(11)

The key aspect of the method is the fact that we can evaluate

the expansion coefficients by numerical matrix multiplication.

Using the diagonalizing basis of the matrix H , we can show

that the matrix polynomial Tn(H) should satisfy the recursion

relation of the same form as Eq. (5):

Tn+1(H) = 2HTn(H)− Tn−1(H) (12)

with T0(H) = I , which is the L × L identity matrix, and

T1(H) = H . We can therefore recursively generate the ma-

trix polynomial Tn(H) by matrix multiplications (once every

order), and thereby find the expansion coefficient 1
L TrTn(H)

in Eq. (11).

In practical numerical calculation, we of course have to

truncate the summation over n in the expansion (11). Since

all the N real roots of TN (E) lie in the domain [−1, 1], the

Chebyshev polynomial of the N th order accounts for oscilla-

tions of wavelength ∼ 1/N . This implies that the truncation

at the N th order can reproduce structures up to the resolution

of order 1/N . On the other hand, the level spacing is of or-

der 1/L for a matrix with an almost uniform density of states,

which means that the truncation at the order N & L is legit-

imate for finding the general features of the density of states.

Various other methods for minimizing truncation errors have

also been devised [43]; as was mentioned above, for simplic-

ity of discussion and demonstration, we do not employ any

such methods throughout the present paper.

As another comment, any kind of orthogonal polynomial

should work in the expansion, but Chebyshev polynomials

usually work best in practical numerical calculations. We use

only Chebyshev polynomials in the present paper. For prob-

lems with unbounded spectrum, e.g., for a random model with

the Cauchy (Lorentzian) distribution, we would need orthogo-

nal polynomials with infinite support, e.g. the Hermite polyno-

mials, although it is typically less stable numerically because

the expansion coefficients are often less convergent.

When one applies the present algorithm to a many-body

Hamiltonians with interactions, the Hamiltonian matrix can

be sparse but very large. For such matrices, the trace oper-

ation in Eq. (11) is often replaced by Monte Carlo summa-

tion over a set of basis vectors less than L [40–42]. We can

then carry out the algorithm by storing only a few vectors in

the computer memory rather than storing the whole matrix;

furthermore, multiplying a vector by a sparse L × L matrix

only takes CPU time of order L. This is the advantage of

the Chebyshev-polynomial method over the diagonalization

of the matrix itself (which consumes memory size of order L2

and CPU time of order L3). For the sake of demonstration,

however, throughout this paper, we use only matrices that we

can store in the computer memory.

B. Chebyshev-polynomial expansion of the inverse localization

length

We now introduce the Chebyshev-polynomial expansion of

the inverse localization length κ(E) of the Hermitian one-

dimensional random tight-binding model, whose Hamiltonian

is given by

H = −
L−1
∑

x=1

(t∗x,x+1|x+ 1〉〈x|+ tx,x+1|x〉〈x+ 1|)

+

L
∑

x=1

Vx|x〉〈x| . (13)

The idea is simple; we employ the Thouless formula [44],

which relates the inverse localization length κ(E) to the den-

sity of states ρ(E) in the form

κ(E) =

∫ 1

−1

ρ(x) ln |E − x|dx− ln |τ |, (14)

where |τ | is the geometric mean of the moduli of the hopping

amplitudes, and then expand the density ρ(E) according to

Eq. (6).

We can sketch the derivation of the Thouless formula as

follows. The end-to-end Green’s function G1L(E) of a chain

of length L under open boundary conditions is given by

G1L(E) =

L−1
∏

x=1

tx,x+1

det(E −H)
=

L−1
∏

x=1

tx,x+1

L
∏

ν=1

(E − Eν)

, (15)

while it presumably decays as exp(−κ(E)L). Taking loga-

rithm of the moduli of both sides of Eq. (15) results in the

formula (14), with ln |τ | being the average of ln |tx,x+1| over

the L sites.

We note that attempts were made to extend the Thouless

formula beyond one spatial dimension [45]. The Thouless for-

mula (14) relates, essentially, the inverse localization length
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and the trace over the logarithm of the characteristic polyno-

mial of the tight binding hopping Hamiltonian, Tr log(E−H).
The latter trace may be represented straightforwardly as an in-

tegral over the eigenvalue density (see Eq. (14)). The inverse

localization length encodes directional information about the

spatial behavior of the associated wave function. The purely

spectral quantity Tr log(E −H), on the other hand, being in-

dependent of any particular basis in the Hilbert space, does

not express any such spatial information. The fact that these

two quantities can be related is peculiar only to one spatial di-

mension, since the energy eigenstate has only one direction to

decay or grow along. Such a connection between the inverse

localization length and Tr log(E−H) cannot hold, therefore,

in higher spatial dimensions. The authors of Ref. [45] argued

that Tr log(E − H) may contain approximate qualitative in-

formation about localization in higher spatial dimension, but

this claim seems dubious.

After inserting the Chebyshev-polynomial expansion of the

density of states Eq. (6) into the Thouless formula (14) we

obtain

κ(E) =

∞
∑

n=0

µnfn(E)− ln |τ |, (16)

where

fn(E) :=

∫ 1

−1

Tn(x) ln |E − x| dx√
1− x2

(17)

(with |E| ≤ 1, by assumption).

Following the results of Appendix A we obtain

fn(E) = −π
n
Tn(E) (18)

for n > 0, along with

f0(E) = −π ln 2. (19)

We thereby arrive at the expansion

κ(E) = −2

∞
∑

n=1

1
L TrTn(H)

n
Tn(E)− ln(2|τ |). (20)

Note the resemblance of the factor 1/n in Eq. (20) to the one

appearing in the Taylor expansion of logarithm ln(1− x). In-

deed, simple substitution of Eq. (2) into Eq. (14) results in

κ(E) =
1

L

L
∑

ν=1

ln |E − Eν | − ln |τ |

=
1

L
Tr ln |E −H| − ln |τ |, (21)

from which we can derive the expansion (20) directly by ex-

panding the logarithm according to Eq. (A9) in Appendix A.

Thanks to the suppressing factor 1/n in the expansion coeffi-

cient, higher-order Chebyshev polynomials contribute less in

the expansion of κ(E) than in the one of ρ(E), and hence the

former is generally smoother than the latter, as we will demon-

strate below. This paper presents the Chebyshev-polynomial

expansion of the inverse localization length for the first time,

as far as we know.

C. Numerical Demonstration

Let us demonstrate the Chebyshev-polynomial expansion

of the density of states, Eq. (11) [40–42], as well as that of

the inverse localization length, Eq. (20), for random-potential

and random-hopping tight-binding models. In Figs. 1 and 3

below in the present subsection, we remove the normalization

of the spectrum into the region [−1, 1] and show the plots in

the original energy scale.

First, Fig. 1 shows the results for the random-potential

model

H = − t

2

L−1
∑

x=1

(|x+ 1〉〈x|+ |x〉〈x+ 1|) +
L
∑

x=1

Vx|x〉〈x| .

(22)

(Here we have set tx,x+1 = t/2 in Eq. (13).) We sampled

the potential Vx at each site randomly from the uniform dis-

tribution on [−1, 1], taking t as the unit of energy. In both

Fig. 1 (a) and (b), we computed the arithmetic average over

the same set of 1000 random samples of length L = 1001 un-

der open boundary conditions and terminated the Chebyshev-

polynomial expansion at the 1000th order.

Notice that the result of our expansion of the localization

length κ(E) in Fig. 1 (b) is much smoother than that of the

density of states ρ(E) in Fig. 1 (a). This is presumably be-

cause, as we mentioned at the end of Section II B, higher-order

polynomials contribute less in the expansion of κ(E) than in

the expansion of ρ(E). We show in Fig. 2 the modulus of the

factor 1
L TrTn(H) in the expansion coefficients. This quan-

tity decays at what appears to be an exponential rate through-

out the first 20 to 30 terms (Fig. 2 (a)), after which it fluctuates

around zero. The amplitude of the fluctuation decreases as the

square root of the number of samples (Fig. 2 (b)), which im-

plies that the fluctuation is statistical rather than systematic;

similar behavior of this quantity is observed for the random-

hopping model mentioned below. This is presumably because

the Lyapunov exponent is self-averaging [46, 47]; as we can

see in Eq. (21), it is the average over many random terms.

The above observation means that the numerical evaluation

of the density of states (11) requires quite many terms, while

that of Eq. (20) for the inverse localization length can be quite

stable; the numerical error due to truncating the series at the

1000th term in the evaluation of the inverse localization length

would result in an error less than 10−5 for only one sample,

because the expansion coefficient is divided by the number

of the order, and would decrease further as we increase the

sample number, whereas that of the density of states would be

of order 10−2, which is indeed the order of fluctuation of the

plot in Fig. 1 (a).

One might alternatively argue that the zigzag features in

Fig. 1 (a) were due to the truncation of the expansion rather

than due to the delta peaks of the individual eigenvalues. In

Fig. 1 (a), we have more than 106 eigenvalues (1000 samples

of 1001 eigenvalues) rather uniformly distributed in the range

around [−1.5, 1.5], which implies that the average level spac-

ing is about 3 × 10−6. On the other hand, the resolution due

to the truncation of the expansion is of order 4× 10−3, which
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FIG. 1. (a) The density of states and (b) the inverse localiza-

tion length computed from the Chebyshev-polynomial expansion up

to the 1000th order of the random-potential chain (22) of length

L = 1001 under open boundary conditions. We averaged over a

set of 1000 random samples. For comparison, we also plotted in

(b) in green dots the inverse localization length given in Fig. 14 of

Ref. [19], which was deduced (see the text for more details) by mon-

itoring the changes in the spectrum as we increase the real parameter

g for one sample of the HN model (23) of length L = 1000 un-

der periodic boundary conditions. (c) An example of the spectrum

of the model (23) of length L = 10000 for g = 0.5 with the ran-

dom potential in the range [−1, 1]. In all panels, we have removed

the normalization of the spectrum into the region [−1, 1] and use the

original energy scale with t = 1.
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FIG. 2. The modulus of 1
L
TrTn(H) from the zeroth order (unity)

(a) to the 20th order and (b) to the 1000th order. For (a), we used

only one random sample of the random-potential chain (22) of length

L = 1001, whereas for (b), we plotted the data for one sample (solid

red line), the average over 100 samples (broken green line) and for

10 008 samples (dotted blue line).

is too coarse to see the delta peaks of individual eigenvalues.

In contrast, such truncation errors are virtually invisible

in Fig. 1 (b). This demonstrates the high potential of our

Chebyshev-polynomial expansion of the localization length.

Incidentally, we superimpose on Fig. 1 (b) a numeri-

cal estimate of κ(E) by an independent method given in

Refs. [18–20], where a non-Hermitian extension of the ran-

dom tight-binding model, also known as the Hatano-Nelson

(HN) model, was introduced by making the amplitude of the

hopping to the right different from the one to the left:

H = − t

2

L
∑

x=1

(

eg|x+ 1〉〈x|+ e−g|x〉〈x+ 1|
)

+

L
∑

x=1

Vx|x〉〈x|,

(23)

where g is a real constant with periodic boundary conditions

being assumed. It was shown in Refs. [18–20] that an eigen-

state for g = 0 with the inverse localization length κ is de-

localized upon increasing the asymmetric parameter g up to

g = κ and at the same time the corresponding eigenvalue,

unchanged (up to small exponential corrections which vanish

in the thermodynamic limit of large systems) for g < κ, gets

off the real axis into the complex energy plane. We can thus
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FIG. 3. The central part of (a) the density of states and (b) the in-

verse localization length computed from the Chebyshev-polynomial

expansion up to the 10 000th order of the random-hopping chain (24)

of length L = 1001 under open boundary conditions. The peak

height of the density of states in (a) at E = 0 is 5.76785 in this

particular calculation. The broken (green) curves in (a) and (b), re-

spectively, follow Eqs. (25) and (26) with proportionality constants 3
and 4 to guide the eye. The inset in each panel shows the result in the

entire range. Here we averaged over a set of 1000 random samples.

In both panels, we have removed the normalization of the spectrum

into the region [−1, 1] and use the original energy scale with t = 1.

obtain an estimation of κ(E) of the Hermitian random model,

which is superimposed on Fig. 1 (b), by monitoring the move-

ment of the eigenvalues (not the eigenvectors) that the change

of the real parameter g gives rise to; e.g. in Fig. 1 (c), the states

on the bifurcating endpoints of the bubble of the spectrum for

g = 0.5 would have inverse localization κ = 0.5 for g = 0.

The result from the model (23) is indeed consistent with the

present computation of κ(E).
Next, we present the results for the random-hopping model

H = −1

2

L−1
∑

x=1

tx (|x+ 1〉〈x|+ |x〉〈x+ 1|) ; (24)

see Fig. 3. Here we sampled the hopping element at each

link tx from a uniform distribution on [−t−∆,−t+∆] with

∆/t = 0.5. In both Fig. 3 (a) and (b), we averaged over a

set of 1000 random samples of length L = 1001 subjected

to open boundary conditions, and terminated the Chebyshev-

polynomial expansion at the 10 000th order.

Note the sharp peak of the density of states and a dip of

the inverse localization length at E = 0. (These are indeed

the reason why we terminated the expansion at the high or-

der.) It is widely accepted [48–52] that the random-hopping

chain (24) has a diverging density of states around E = 0 and

the corresponding singularity of the localization length:

ρ(E) ∼
∣

∣E(lnE2)3
∣

∣

−1
, (25)

κ(E) ∼
∣

∣lnE2
∣

∣

−1
. (26)

These are indeed consistent with our data in Fig. 3. Since

the eigenvalue spectrum of the random-hopping chain (24) is

symmetric underE → −E, chains of odd length has an eigen-

state with the zero eigenvalue, namely a zero mode.

Let us take a look at the zero mode from the point of view

of the Chebyshev-polynomial expansion. At E = 0, the ex-

pansions (11) and (20) reduce to

ρ(0) =
1

π

[

1 + 2
∞
∑

m=1

(−1)m
1

L
TrT2m(H)

]

, (27)

κ(0) = −2
∞
∑

m=1

(−1)m
1
L TrT2m(H)

2m
− ln 2|τ |, (28)

where we used T2m(0) = (−1)m and took advantage of the

fact that only the even-order terms contribute because the

spectrum of this model is symmetric with respect to E =
0. We have noticed in our numerical data that the factor

TrT2m(H) almost alternates in sign with respect to m, which

makes the series non-alternating when combined with the fac-

tor (−1)m. Because of this behavior, the estimates of ρ(0) and

κ(0) change monotonically as we increase the cutoff order N
of the polynomial. Figure 4 shows the cutoff-dependence of

the two quantities ρ(0) and κ(0). The former increases and

the latter decreases seemingly in power of the cutoffN , which

indeed suggests that the density of states diverges and the in-

verse localization length vanishes at E = 0.

III. METHOD FOR THE INVERSE LOCALIZATION

LENGTH OF NON-HERMITIAN CHAINS

For non-Hermitian hopping matrices, we need a method

for computing the density of states ρ(ReE, ImE) and the in-

verse localization length κ(ReE, ImE) in the complex en-

ergy plane. These are real functions of the two real variables

ReE, ImE, and are clearly not complex-analytic functions of

the complex variable E. We would therefore need to expand

them in double series of orthogonal polynomials,

∑

m,n

cm,nTm(ReE)Tn(ImE), (29)

for which, however, there are no equivalents of the expan-

sions (11) and (20) available. This is because the non-

Hermitian Hamiltonian in question is typically not a normal
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FIG. 4. (a) The increase of ρ(0) in Eq. (27) and (b) the decrease of

κ(0) in Eq. (28) as we raise the cutoff N of the series for a random-

hopping chain (24) of length L = 1001. We estimated the average

and the error from 24 random samples.

matrix, i.e. it does not commute with its adjoint H†. Con-

sequently, these two matrices cannot be diagonalized simul-

taneously. Therefore,
∑

ν(ReEν)
k is not simply Tr[(H +

H†)/2]k, unlike in Eq. (10), and similarly for powers of the

imaginary part or products thereof.

A. Method of Hermitization

In order to overcome this difficulty, we employ the method

of Hermitization invented in [53] (see also [54]). Given anL×
L non-Hermitian Hamiltonian matrixH , consider the 2L×2L
‘Hermitized’ matrix

H(z, z∗) =

(

0 H − z
H† − z∗ 0

)

. (30)

The density of states ρ(z, z∗) of the non-Hermitian matrix H
in terms of the variables

z = ReE + i ImE and z∗ = ReE − i ImE (31)

is given by [53]

ρ(z, z∗) = − 4

π

∫ ∞

0

∂∂∗
Ω(µ; z, z∗)

µ
dµ, (32)

where

∂ =
∂

∂z
=

1

2

(

∂

∂ ReE
− i

∂

∂ ImE

)

, (33)

∂∗ =
∂

∂z∗
=

1

2

(

∂

∂ ReE
+ i

∂

∂ ImE

)

, (34)

and Ω(µ; z, z∗) is the integrated density of states of the Her-

mitized matrix H(z, z∗). In other words,

Ω(µ; z, z∗) =

∫ µ

−∞

ω(µ′; z, z∗)dµ′, (35)

where ω(µ; z, z∗) is the density of states of H(z, z∗), sup-

ported along the real-µ axis:

ω(µ; z, z∗) =
1

2L

2L
∑

ν=1

δ(µ− µν(z, z
∗)) . (36)

Here µν(z, z
∗) denote the (unknown) eigenvalues of the Her-

mitized matrix H(z, z∗). It turns out that ω(µ; z, z∗) is

an even function of µ, due to the chiral block structure of

H(z, z∗), which implies that eigenvalues of H(z, z∗) come

in pairs ±µν .

For later convenience, let us represent Eq. (32) in terms of

ω instead of Ω. Partial integration gives

ρ(z, z∗) = − 4

π
lim

M→∞

ǫ→0

∫ M

ǫ

∂∂∗Ω(µ; z, z∗)

µ
dµ = − 4

π
lim

M→∞

ǫ→0

(

[∂∂∗Ω(µ; z, z∗) lnµ]
M
µ=ǫ −

∫ M

ǫ

∂∂∗ω(µ; z, z∗) lnµdµ

)

.

(37)

For a largeM , the integrated density of states Ω(M ; z, z∗) ap-

proaches unity, while for a small ǫ, it approaches 1/2 (because

ω(µ; z, z∗) is an even function of µ), losing the dependence

on z and z∗ in both limits. The first term in the parentheses of

Eq. (37) therefore vanishes after the derivative ∂∂∗. We thus
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have

ρ(z, z∗) =
4

π

∫ ∞

0

∂∂∗ω(µ; z, z∗) lnµdµ, (38)

where we took the limit M → ∞, assuming that the density

of states has a compact support, and took the limit ǫ → 0
because the integrand now does not have a singularity there.

We can now exchange the integral and the derivative, arriving

at

ρ(z, z∗) =
4

π
∂∂∗

∫ ∞

0

ω(µ; z, z∗) lnµdµ. (39)

B. Method of Hermitization for the inverse localization length

Our strategy is now obvious. We can obtain the Chebyshev-

polynomial expansion of the density of states ρ(z, z∗) of

H(z, z∗) by applying the method to the density of states

ω(µ; z, z∗), which is supported along the real µ-axis. In fact,

we find that the Chebyshev-polynomial expansion of the in-

verse localization length κ(z, z∗) is easier to carry than that

of ρ(z, z∗). In this section we shall focus on κ(z, z∗), and

return to ρ(z, z∗) in Section IV.

In order to find the Chebyshev-polynomial expansion of the

inverse localization length κ(z, z∗), we first need to express

κ(z, z∗) in terms of the density of states ω(µ; z, z∗) of the

Hermitized matrix. The formula that we utilize is the general-

ized Thouless formula derived by Derrida et al. [55]:

ρ(z, z∗) =
2

π
∂∂∗κ(z, z∗) (40)

for non-Hermitian random chains. In fact, this formula coin-

cides with Eq.(2.9) in Ref. [53] upon the identification

κ(z, z∗) =
1

2L
〈log det(z −H)†(z −H)〉, (41)

which means that Eq. (40) holds also for non-Hermitian matri-

ces H more generic than hopping matrices (e.g., non-sparse,

completely full matrices, such as the matrices analyzed in Sec-

tion IV B). For such matrices, however, κ(z, z∗) in the ex-

pression above does not control the spatial decay (or growth)

of any of its eigenvectors, losing its meaning as the inverse

localization length. Incidentally, noting that Eq. (40) is the

Poisson equation in two dimensions [53], we obtain its func-

tional inverse [55] as

κ(z, z∗) =
1

2

∫∫

dζdζ∗ρ(ζ, ζ∗) ln |z − ζ|, (42)

which is the two-dimensional analog of the Thouless for-

mula (14). Comparing Eq. (40) with Eq. (39), we have

κ(z, z∗) = 2

∫ ∞

0

ω(µ; z, z∗) lnµdµ+ f(z) + g(z∗), (43)

where f(z) and g(z∗) are arbitrary functions, which we fix

hereafter by looking into the limit of |z| → ∞.

To this end, for the sake of concreteness, with no loss of

generality, we focus back on hopping matrices. For very

large values of |z|, we can find the inverse localization length

κ(z, z∗) as follows. Suppose that the one-dimensional Hamil-

tonian matrix is given by

H =

∞
∑

x=−∞

(tx−1,x|x〉〈x− 1|+ tx+1,x|x〉〈x+ 1|

+Vx|x〉〈x|) . (44)

The eigenvalue equation 〈x|H|ψ〉 = E〈x|ψ〉 reads

E〈x|ψ〉 = 〈x|H|ψ〉
= tx−1,x〈x− 1|ψ〉+ tx+1,x〈x+ 1|ψ〉+ Vx〈x|ψ〉.

(45)

We can cast this into the form of the transfer matrix as
(

〈x+ 1|ψ〉
〈x|ψ〉

)

=

(

(E − Vx)/tx+1,x −tx−1,x/tx+1,x

1 0

)(

〈x|ψ〉
〈x− 1|ψ〉

)

.

(46)

For a large value of |E|, we can ignore Vx in the upper-left

element. The eigenvalues of the transfer matrix are then ap-

proximately given by

λ

(

λ− E

tx+1,x

)

+
tx−1,x

tx+1,x
= 0, (47)

which is followed by

λ =
1

2

(

E

tx+1,x
±
√

E2

tx+1,x
2 − 4

tx−1,x

tx+1,x

)

≃ E

tx+1,x
,
tx−1,x

E
. (48)

For the wave function to be normalizable, we choose the sec-

ond eigenvalue for large values of |E|, having

〈L|ψ〉 ≃
(

L−1
∏

x=0

tx−1,x

E

)

〈0|ψ〉. (49)

Identifying them with

|〈L|ψ〉| ≃ e−κL |〈0|ψ〉| , (50)

we conclude that

κ(E) ≃ ln |E| − ln |τ |, (51)

where |τ | is the geometric mean of |tx−1,x|. This is the be-

havior of the left-hand side of Eq. (43) for large values of

|z| = |E|.
On the other hand, we can find the right-hand side of

Eq. (43) for large values of |z| as follows. The Hermitized

matrix H(z, z∗) in Eq. (30) is reduced to

H →
(

0 −z
−z∗ 0

)

(52)



9

for large values of |z|, and hence its eigenvalues degenerate

into µν = ±|z|, which means

ω(µ; z, z∗) =
1

2
(δ(µ− |z|) + δ(µ+ |z|)) . (53)

Therefore, the first term on the right-hand side of Eq. (43) is

reduced to ln |z|, which is the same as the first term of the

right-hand side of Eq. (51).

The remaining terms in Eq. (43), f(z) + g(z∗), therefore

should converge to the constant value − ln |τ | for large values

of |z|. An analytic function in general attains its maximum

in a given domain on the boundary of that domain. More-

over, a bounded analytic function is necessarily a constant.

Since both f(z) and g(z∗) are bounded, they are constants;

they cannot balance each other, since one is holomorphic and

the other is anti-holomorphic. In other words, we can fix the

arbitrary functions as

f(z) + g(z∗) = − ln |τ | (54)

for all z and z∗.

We therefore arrive at the relation

κ(z, z∗) = 2

∫ ∞

0

ω(µ; z, z∗) lnµdµ− ln |τ |. (55)

Comparing this to Eq. (39), we note that we have gotten rid

of the differentiation ∂∂∗ here. This is the reason why the

Chebyshev-polynomial expansion of κ(z, z∗) is easier than

that of ρ(z, z∗).

C. Chebyshev-polynomial expansion of the inverse localization

length

We are now in a position to find the Chebyshev-polynomial

expansion of the inverse localization length κ(z, z∗) by apply-

ing the method to the density of states ω(µ; z, z∗) on the real

axis of µ. Assume that the density of states of the Hermitized

matrix is expanded in the form

ω(µ; z, z∗) =
1

√

1− µ2

∞
∑

m=0

c2m(z, z∗)T2m(µ), (56)

where we used only even-order terms because ω(µ; z, z∗) is

an even function of µ, thanks to the chiral block structure of

the Hermitized matrix H.

We repeat here the important remark that we can employ the

Chebyshev polynomial expansion only after we have properly

rescaled the non-Hermitian Hamiltonian H in such a way that

the support of the spectrum ω(µ; z, z∗) of the Hermitized ma-

trix H is contained in [−1, 1]. Let us find the proper rescaling

factor. Suppose that the sum of the moduli of all elements in

a row or a column of the non-Hermitian matrix H is bounded

by a constant Λ, which also bounds the spectrum, according

to the Gershgorin circle theorem. Let us then rescale H by

a factor r, so that the bound is rescaled as Λ/r. It is then

enough to scan the spectrum over the range |ReE| ≤ Λ/r

and | ImE| ≤ Λ/r, which means that it is enough to in-

vestigate the spectrum in the range |z| = |z∗| ≤
√
2Λ/r.

Therefore, the sum of the moduli of all elements in a row or

a column of the Hermitized matrix H(z, z∗) is bounded by

(1 +
√
2)Λ/r if we scan the spectrum only over the above

domain in the complex z-plane. The support [−1, 1] of the

Chebyshev polynomials (along the µ-axis) should contain this

bound. We therefore rescale the non-Hermitian Hamiltonian

H with a rescaling factor r that is equal to or greater than

(1 +
√
2)Λ. We assume that the matrix H has been already

normalized in this way throughout this subsection.

Let us come back to Eq. (56) and find the expansion coeffi-

cients using the orthogonality relation (4). In a manner similar

to Eqs. (7)–(9) we find that the coefficients are given by

c2m(z, z∗) =
2

π

∫ 1

−1

ω(µ; z, z∗)T2m(µ)dµ

=
2

π

1

2L

2L
∑

ν=1

T2m(µν) =
2

π

1

2L
TrT2m(H(z, z∗))

(57)

for m ≥ 1 and

c0(z, z
∗) =

1

π

∫ 1

−1

ω(µ; z, z∗)T0(µ)dµ

=
1

π

∫ 1

−1

ω(µ; z, z∗)dµ =
1

π
. (58)

The trace on the right-hand side of Eq. (57) is recursively gen-

erated from

Tn+1(H) = 2HTn(H)− Tn−1(H). (59)

Recall that we need only the even-order Chebyshev polyno-

mials of H. As we show in Appendix B, the even-order matrix

polynomials T2m(H) have non-vanishing elements only in the

L×L upper-left and lower-right diagonal blocks, whereas the

odd-order ones have their non-vanishing elements only on the

off-diagonal blocks. We also prove in Appendix B that for the

even-order polynomials of H, the trace of the upper-left block

is equal to the trace of the lower-right block. We can there-

fore reduce the matrix size of the recursion relation (59) from

2L× 2L to L× L:

T
(1,1)
2m = 2(H − z)T

(2,1)
2m−1 − T

(1,1)
2m−2, (60)

T
(2,1)
2m+1 = 2(H† − z∗)T

(1,1)
2m − T

(2,1)
2m−1, (61)

where the superscripts (1, 1) and (2, 1) denote the L × L
upper-left and lower-left blocks, respectively (with obvious

similar notation for the remaining blocks). We can save com-

puter memory storage by using these recursion relations and

write

c2m(z, z∗) =
2

π

1

L
TrT

(1,1)
2m (H(z, z∗)) (62)

instead of Eq. (57).
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We now plug in the expansion (56) into Eq. (55) to have

κ(z, z∗) = − ln |τ |+ 2

π

∫ 1

0

lnµ
√

1− µ2
dµ

+
4

π

∞
∑

m=1

1

L
TrT

(1,1)
2m (H(z, z∗))

×
(

∫ 1

0

T2m(µ)
lnµ

√

1− µ2
dµ

)

, (63)

where we reduced the upper limit of the integration range

from ∞ to 1 because we rescaled H so that ω(µ; z, z∗) van-

ishes beyond unity. The integral in the second term on the

right-hand side of Eq. (63) is given by the formula

∫ 1

0

lnµ
√

1− µ2
dµ = −π

2
ln 2. (64)

The other integrals form ≥ 1 are given by substitutingE = 0
in Eqs. (17) and (18):

∫ 1

0

T2m(µ)
lnµ

√

1− µ2
dµ = −π

2

(−1)m

2m
; (65)

see Appendix C for an alternative derivation. We therefore

arrive at the expansion of the inverse localization length in the

form

κ(z, z∗) = −
∞
∑

m=1

(−1)m

m

1

L
TrT

(1,1)
2m (H(z, z∗))− ln(2|τ |) .

(66)

We show in Appendix D that this indeed reduces to Eq. (20)

when H is Hermitian.

D. Demonstration

Let us now demonstrate our new algorithm of the

Chebyshev-polynomial expansion (66). In Figs. 5 and 7 be-

low, we have removed the normalization of the spectrum and

plotted the results in the original energy scale.

We here use a random-sign model, also known as the

Feinberg-Zee (FZ) random-hopping model [27, 39, 56–63],

defined by the Hamiltonian

H =

L
∑

x=1

(tx|x+ 1〉〈x|+ sx|x〉〈x+ 1|) , (67)

where each of the hopping amplitudes {tx} and {sx} is inde-

pendently randomly chosen from ±1 with equal probabilities;

periodic boundary conditions are assumed. The spectrum is a

fuzzy fractal-like object as is shown in Fig. 5 (a); note the ex-

act (deterministic) reflection symmetries with respect to the

real and imaginary axes as well as the statistical reflection

symmetries with respect to the 45◦ and 135◦ lines [27, 39].

The deterministic symmetries are easy to understand. Since

H in Eq. (67) is a real matrix, its complex eigenvalues come

in complex conjugate pairs E,E∗, which means the symme-

try of the spectrum against reflections with respect to the real

axis. The spectrum of H is also symmetric with respect to re-

flection through the origin. This symmetry arises from the fact

that the diagonal matrix D with alternating ±1 diagonal ele-

ments, anticommutes with H (subjected to periodic boundary

conditions), provided the length L is even. (For open bound-

ary conditions, these matrices anticommute for any L.) Thus,

eigenvalues of H come in pairs ±E. Combining these two

symmetries, we see that complex eigenvalues come in quadru-

plets ±E,±E∗.

The statistical symmetry comes from the fact that the statis-

tics of the matrix does not change after multiplying it by a

factor i (or −i). This is so because, as explained in Sec. IV

of Ref. [39] and Sec. II of Ref. [27], the spectrum of H in

Eq. (67) depends only on products of pairs of opposing off-

diagonal, hopping matrix elements Rx = sxtx. In our model,

{Rx|1 ≤ x ≤ L} are statistically independent of each other

and each takes on values ±1 with equal probabilities. Mul-

tiplying H by a factor i is equivalent to choosing an equally

probable element on the ensemble with all {Rx} reversed in

sign, and hence, on average, does not change the spectrum.

The multiplication, on the other hand, rotates the entire spec-

trum by 90◦ on the complex energy plane. Thus, on average,

the spectrum of H should be symmetric against rotation by

±90◦.

The result of our expansion (66) for the inverse localiza-

tion length is shown in Fig. 5 (c) and (d). This is basically

consistent with the result in Fig. 9 (a) of Ref. [27], where

the inverse localization length of the FZ random-hopping

model (67) was estimated by means of the transfer-matrix ap-

proach as the average of the logarithm of the Ricatti variable

〈x+ 1|ψ〉/〈x|ψ〉 .

Note the smoothness of the result in Fig. 5 (c). We attribute

it again to the factor 1/m in the expansion (66), as we did

at the end of Section II B for Hermitian models. We display

in Fig. 6 the modulus of the factor 1
L TrT

(1,1)
2m (H(z, z∗)) in

the expansion coefficients. At z = 1 + i, the factor decays

almost exponentially up to the 200th order but then the mod-

ulus fluctuates around 0.01 with a possible slight decay. This

behavior is qualitatively similar for almost any value of z, ex-

cept for z = 0, where this coefficient decays regularly, as

shown in Fig. 6 (b). The cutoff error is suppressed thanks to

the factor 1/m in the expansion coefficient. Incidentally, as

can be seen from Fig. 6 (a), these fluctuations do not seem

to depend on the number of samples, which implies that it is

not statistical, unlike the case in Fig. 2 (b); the convergence to

the self-averaged value of the Lyapunov exponent may not be

uniform because of the additional z dependence.

While many studies [39, 56–63] had focused on the fractal-

like spectrum of the FZ random-hopping model (67), the

study in Ref. [27] found two new features of the model’s in-

verse localization length, which we here reproduce by means

of our Chebyshev-polynomial expansion (66). First, the in-

verse localization length was found numerically to behave

interestingly around E = 0 [27]. We can prove that the

inverse localization length vanishes at E = 0 [27] just as
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FIG. 5. Plots of the eigenvalue distributions of (a) the FZ random-hopping model (67) and (b) its HN-gauged version (68), both for chains

of length L = 10000, obtained by direct numerical diagonalization. (c) A three-dimensional plot and (d) a contour plot of the result of the

expansion (66) up to the 500th order, averaged over 96 random samples of the FZ random-hopping model (67) of length L = 100. The level

contours in the panel (d) indicate the data from κ(E) = 0.1 inside to 1.0 outside in increments of 0.1. The thick yellow and red curves

superimposed on the panel (d) indicate the rims of the hole in the spectrum of the HN-gauged model with an asymmetric field g = 0.1 (the

spectrum in the panel (b)) and g = 0.2 added [27], respectively. Here we have removed the normalization of the spectrum and plot the results

in the original energy scale.

in the random-hopping model (24), but the behavior around

E = 0 [48–52] seems to be very different from Eq. (26).

Numerical data of the Chebyshev-polynomial expansion in

Fig. 7 seems to be consistent with small-energy behavior

κ(E,E∗) ∼ |E|2f(argE) for some function f of the argu-

ment of the complex energy E. The linearity with respect to

|E|2 seen in Fig. 7 implies a non-singular density of states

around E = 0 according to Derrida’s formula (40), which is

indeed consistent with the results in Ref. [27], where the den-

sity of states is shown to be vanishing around E = 0 in a

non-singular way.

The other feature found in Ref. [27] for the FZ random-

hopping model (67) concerns the “HN-gauged” FZ random-

hopping model introduced in the spirit of the model (23):

H =

L
∑

x=1

(

egtx|x+ 1〉〈x|+ e−gsx|x〉〈x+ 1|
)

, (68)

where g is again a real parameter, and periodic boundary con-

ditions are assumed. As we increase g, a hole opens up in the

fractal-like spectrum as exemplified in Fig. 5 (b) for g = 0.1.

It was conjectured [27] that the eigenstates that reside on the

rim of the hole for g > 0 had the inverse localization length
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FIG. 6. Semi-logarithmic plots of the modulus of
1
L
TrT

(1,1)
2m (H(z, z∗)) (a) at z = 1 + i (thicker curve) and at

z = 0 (thinner curve) to the 1000th order, and (b) zooming into the

left part of the upper figure for z = 1 + i, up to the 200th order. We

here used only one random sample of the random-sign chain (67) of

length L = 1000, except that in (a) we also plotted the average over

10 008 samples (broken green line).
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FIG. 7. The inverse localization length κ(E) at E = |E|eiϕ ac-

cording to the expansion (66) up to the 500 order of the random-sign

chain (67) of length L = 500 for four values of ϕ averaged over 96

random samples. Note that the horizontal axis indicates |E|2. Here

we have removed the normalization of the spectrum and plotted the

results in the original energy scale.

κ = g for g = 0, as was the case for the model (23). As an ex-

ample, the rims of the hole in the spectrum of the HN-gauged

model (68) for g = 0.1 (the one in Fig. 5 (b)) and g = 0.2 are

superimposed on the contour plot of κ(E) of the model (67)

in Fig. 5 (d). The rims of the hole fall nicely on to the contours

of κ(E) = 0.1 and 0.2, which indeed supports the conjecture.

IV. METHOD FOR THE DENSITY OF STATES OF

NON-HERMITIAN MATRICES

A. Chebyshev-polynomial expansion of the density of states

We finally give the algorithm for the density of states of

non-Hermitian matrices. All we have to do is to plug the ex-

pansion (66) for κ(z, z∗) into Eq. (40). Note that the content

of the present section is applicable to systems in any dimen-

sions; in particular, we will demonstrate below how the algo-

rithm works for an example of full random matrices. Thus,

we obtain

ρ(z, z∗) = − 4

π

∞
∑

m=1

(−1)m

2m

1

L
Tr ∂∂∗T

(1,1)
2m (H(z, z∗))

(69)

= − 4

π

∞
∑

m=1

(−1)m

2m

1

2L
Tr ∂∂∗T2m(H(z, z∗)) ,

(70)

where in the last equation we restored the full 2L × 2L ma-

trix (hence the extra 1/2 factor). We can generate the factor
1
2L TrT2m(∂∂∗H(z, z∗)) in Eq. (70) recursively as follows.

By differentiating Eq. (59), we have

∂Tn+1(H) = −2

(

0 I
0 0

)

Tn(H)

+ 2H∂Tn(H)− ∂Tn−1(H), (71)

∂∗Tn+1(H) = −2

(

0 0
I 0

)

Tn(H)

+ 2H∂∗Tn(H)− ∂∗Tn−1(H), (72)

∂∂∗Tn+1(H) = −2

(

0 0
I 0

)

∂Tn(H)− 2

(

0 I
0 0

)

∂∗Tn(H)

+ 2H∂∂∗Tn(H)− ∂∂∗Tn−1(H). (73)

We can thereby generate the series of ∂Tn(H) and the series

of ∂∗Tn(H) with the help of the series Tn(H), and finally the

series of ∂∂∗Tn(H) with the help of the preceding two series.

We therefore need four matrix multiplications to generate one

more element in the series of ∂∂∗Tn(H).

B. Demonstration

We shall demonstrate the expansion (69) of ρ(z, z∗) first

for the FZ random-hopping model (67) and second for corre-

lated random-sign matrices. Note the fractal-like structure of
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FIG. 8. (a) A three-dimensional plot of the density of states of 660

random samples of the FZ random-hopping model (67) of length

500, from the results of the expansion (70) up to the 500th order.

We used the data of the first quadrant to plot the other quadrants. (b)

A contour plot of the first quadrant of the same data. The level con-

tours indicate the data from −0.5 to 0.6 in increments of 0.1. The

peaks around the real and imaginary axes are cut off. We have re-

moved the normalization of the spectrum and plot the results in the

original energy scale.

the spectrum in Fig. 5 (a) of the FZ random-hopping model.

Clearly, truncating the series (70) can only be expected to re-

produce a coarse-grained approximation to its finely featured

spectrum; if it is truly fractal, and hence singular, we will

never be able to express it in terms of a finite-order polyno-

mial. This is indeed what we observe; see Fig. 8. Although

the peaks on the real and imaginary axes are consistent with

the numerical results in Fig. 3 of Ref. [27], we can have only

a rough idea of the spectrum in between.

Next, as promised, we apply the expansion (69) for a non-

Hermitian model with dense and smooth spectrum. We draw a

full L×L random matrix H from an ensemble as follows; for

each pair of off-diagonal elementsHij andHji, we set both of

them equal to ±1 with probability τ (that is, to +1 with prob-

ability τ/2 and to −1 with probability τ/2), but set them inde-

pendently randomly to ±1 with probability 1−τ , while setting

all diagonal elements to zero. This means a partially symmet-

ric real random matrix with the correlation 〈HijHji〉 = τ .

According to Ref. [64] for Gaussian randomness (consis-

tent with 〈HijHji〉 = τ ), the density of states is uniform in-

side an ellipse:

ρ(E,E∗) =

{

(πab)−1 if (ReE/a)2 + (ImE/b)2 ≤ 1,

0 otherwise,

(74)

where a =
√
L(1 + τ) and b =

√
L(1 − τ). This reduces to

the celebrated Wigner semi-circle law [65] on the real axis in

the completely symmetric case, namely τ = 1, and to Girko’s

circle law [66] in the completely asymmetric case, namely,

τ = 0. Figures 9 (a) and (b) show the results of the diagonal-

ization of 10000 × 10000 random-sign matrices with τ = 0
and τ = 0.5, respectively, which are indeed consistent with

the law (74) for Gaussian random matrices, thus demonstrat-

ing universal behavior. Our expansion (70), on the other hand,

produces Fig. 9 (c) and (d) for 100×100 random matrices. We

can see a ridge on the real axis, which is a finite-size effect.

For relatively small full matrices, such as the matrices in

the present demonstration (Fig. 9), the expansion (69) for the

density of states is a much more time-consuming algorithm

than direct numerical diagonalization. For large general non-

Hermitian matrices, on the other hand, the expansion (69)

would be almost the only available algorithm at reasonable

CPU cost. Moreover, since it is of the form of repeated mul-

tiplication of a vector by a matrix, it can be quite efficient for

sparse matrices, which appear often in many-body systems

with interaction. For large dense matrices, we might need to

replace the trace operation in Eq. (69) with Monte Carlo sum-

mation over a set of basis vectors less than L.

In conclusion of this section, let us briefly mention again

the works in Refs. [36–38], which calculated, both analyti-

cally and numerically, spectra of large sparse non-Hermitian

matrices of certain types by alternative methods. All these

works made use of the method of Hermitization described in

Sec. III A; the first one [36], in particular, analyzed as a test

case the same matrix model as in the latter example above.

V. SUMMARY

We have derived the Chebyshev-polynomial expansion of

the energy dependence of the inverse localization length both

for Hermitian and non-Hermitian chains. For Hermitian

chains, the expansion produces the energy dependence as a

function in one run. This is in strong contrast to the standard

transfer-matrix method, which produces the inverse localiza-

tion at a fixed energy in one run. Since our method is based

on the repeated multiplication of some vector by a Hamilto-

nian matrix, which is sparse in many cases, we can, in prin-

ciple, execute the algorithm by storing only vectors; we do

not need to store the entire matrix in the computer memory.
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FIG. 9. Plots of the eigenvalue distributions of (a) the fully asymmetric random matrix (τ = 0) and (b) a partially asymmetric random matrix

(τ = 0.5), both of size 10000× 10000, obtained by means of diagonalization, together with three-dimensional plots of the density of states of

96 random samples of (c) the fully asymmetric random matrix (τ = 0) and (d) a partially asymmetric random matrix (τ = 0.5), both of size

100× 100, from the results of the expansion (70) up to the 500th order. Here we have removed the normalization of the spectrum and plot the

results in the original energy scale.

This feature may come in handy when we try to generalize the

method to models with interactions in the future. Although the

Thouless formula does not apply, at least directly, to interact-

ing systems, the “localization length” (that is, the length scale

governing the decay) of the two-point Green’s function is still

an important concept in studying e.g. the Anderson-Mott tran-

sition [67].

For non-Hermitian chains, the expansion produces only

the inverse localization length at a fixed (complex) en-

ergy in one run. Again, we do not need to store the en-

tire matrix in computer memory. We have also found the

Chebyshev-polynomial expansion of the density of states for

non-Hermitian matrices. The present algorithm may be al-

most the only available algorithm of finding the density of

states without storing the entire matrix in computer memory.

Yet another important application of the method in study-

ing the Anderson localization is to compute the density of res-

onances of open disordered systems, particularly in three di-

mensions. We can find the resonances as eigenvalues of an ef-

fective non-Hermitian Hamiltonian, which we obtain from the

full Hamiltonian, describing the system of interest and the en-

vironment it is coupled to, after properly eliminating the latter

and the outgoing waves in it as described e.g. in Refs. [13, 68–

72]. The density of resonances of an open disordered three-

dimensional system, unlike the density of states of a closed

system, can distinguish the localized and extended phases on

the both sides of the Anderson transition in higher dimensions.

See e.g. Ref. [73].



15

Appendix A: Integration of Equation (17)

In order to find the integral fn(E) in Eq. (17), we first dif-

ferentiate it with respect to E:

f ′n(E) =

∫ 1

−1

− Tn(x)

(E − x)
√
1− x2

dx , |E| < 1. (A1)

We can find the formulae for this integral in 7.344.1 of

Ref. [74]; the answer is

f ′n(E) = −πUn−1(E) (A2)

for n > 0, where Un(x) is the Chebyshev polynomial of the

second kind. For n = 0, we have

f ′0(E) = lim
ε→0

(

∫ E−ε

−1

+

∫ 1

E+ε

)

1

(E − x)
√
1− x2

dx = 0.

(A3)

Equation (A2) is followed by

fn(E) = −π
∫ E

Un−1(x)dx = −π
n
Tn(E) + const. (A4)

for n > 0 since

d

dx
Tn(x) = nUn−1(x). (A5)

Equation (A3) gives

f0(E) = const. (A6)

Finally, we can fix the constants in Eqs. (A4) and (A6) as

follows. First, we have

f0(1) =

∫ 1

−1

ln(1− x)√
1− x2

dx = −π ln 2, (A7)

f1(1) =

∫ 1

−1

x ln(1− x)√
1− x2

dx = −π; (A8)

see 4.292.3 and 4.292.4 of Ref. [74], respectively. Further

integrations can be obtained from Eq. (2.10) of Ref. [75]:

ln(1− x) = − ln 2− 2

∞
∑

n=1

Tn(x)

n
. (A9)

We therefore have

fn(1) =

∫ 1

−1

Tn(x) ln(1− x)√
1− x2

dx = −π
n

(A10)

for n > 0. We thereby conclude that

f0(E) = −π ln 2, (A11)

fn(E) = −π
n
Tn(E) (A12)

for n > 0, where we used Tn(1) = 1.

Appendix B: Structure of the recursion relation (59)

We here show the matrix structure of the recursion rela-

tion (59). Throughout this appendix, we use the shorthand

notation A = H − z and A† = H† − z∗.

It is easy to prove inductively that the even-order matrix

polynomials T2m(H) have non-vanishing elements only in

the L × L upper-left and lower-right diagonal blocks, which

we denote by T
(1,1)
2m and T

(2,2)
2m , respectively, while the odd-

order ones T2m+1(H) have non-vanishing elements only in

the upper-right and lower-left blocks, which we denote by

T
(1,2)
2m+1 and T

(2,1)
2m+1, respectively. The recursion relation (59)

indeed reads

(

T
(1,1)
2m 0

0 T
(2,2)
2m

)

= 2

(

0 A
A† 0

)

(

0 T
(1,2)
2m−1

T
(2,1)
2m−1 0

)

−
(

T
(1,1)
2m−2 0

0 T
(2,2)
2m−2

)

, (B1)

(

0 T
(1,2)
2m+1

T
(2,1)
2m+1 0

)

= 2

(

0 A
A† 0

)

(

T
(1,1)
2m 0

0 T
(2,2)
2m

)

−
(

0 T
(1,2)
2m−1

T
(2,1)
2m−1 0

)

, (B2)

which obviously prove the point.

The explicit forms of the first few matrix polynomials are

T0(H) =

(

I 0
0 I

)

, (B3)

T1(H) =

(

0 A
A† 0

)

, (B4)

T2(H) =

(

2AA† − I 0
0 2A†A− I

)

, (B5)

T3(H) =

(

0 A(4A†A− 3)
A†(4AA† − 3) 0

)

, (B6)

T4(H) =

(

8(AA†)2 − 8AA† + I 0
0 8(A†A)2 − 8A†A+ I

)

.

(B7)

Let us presume that

T
(1,1)
2m = T2m

(√
AA†

)

, (B8)

T
(2,2)
2m = T2m

(√
A†A

)

, (B9)

T
(1,2)
2m+1 = AT̃2m+1

(√
A†A

)

, (B10)

T
(2,1)
2m+1 = A†T̃2m+1

(√
AA†

)

, (B11)

where we used a temporary notation T̃2m+1(x) =
x−1T2m+1(x). It is indeed easy to prove this inductively by

inserting Eqs. (B8)–(B11) into the recursion relations (B1)

and (B2).
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We thereby conclude that

1

2L
TrT2m(H) =

1

L
TrT

(1,1)
2m =

1

L
TrT

(2,2)
2m , (B12)

1

2L
TrT2m+1(H) = 0 . (B13)

Appendix C: Integration of Equation (65)

In view of the representation Tn(x) = cos(n arccosx)
[Eq. (3)] for Chebyshev polynomials, we rewrite the left-hand

side of Eq. (65) as

I2m =

∫ π/2

0

cos(2mθ) ln(cos θ)dθ. (C1)

For m > 0, we integrate by parts and obtain

I2m =
1

2m
[sin(2mθ) ln cos θ]

π/2
θ=0

+
1

2m

∫ π/2

0

sin(2mθ)
sin θ

cos θ
dθ. (C2)

The boundary term clearly vanishes. We thus have

I2m = − 1

2m

∫ π/2

0

cos[(2m+ 1)θ]− cos[(2m− 1)θ]

2 cos θ
dθ.

(C3)

We know this integration from the formula

∫ π

0

sin[(2m+ 1)θ]

sin θ
dθ = π (C4)

independently of m. We therefore have

∫ π/2

0

cos[(2m± 1)θ]

cos θ
dθ

= ±(−1)m
∫ π/2

0

sin[(2m+ 1)θ]

sin θ
dθ = ±(−1)m

π

2
, (C5)

and arrive at the final formula

I2m = −π
2

(−1)m

2m
. (C6)

Appendix D: Equations (20) and (66) for Hermitian matrices

We here show that the Chebyshev expansion (66) for non-

Hermitian matrices reduces to the expansion (20) whenH is a

Hermitian matrix. For the purpose, we first introduce summa-

tion formulas for Chebyshev polynomials. We start from the

Fourier series

∑

m=1

(−1)m
cos 2mθ

m
= − ln |2 cos θ| . (D1)

Setting θ = arccos(x − y) in Eq. (D1) to use the definition

Tn(x) = cos(n arccosx), we have

∞
∑

m=1

(−1)m
T2m(x− y)

m
= − ln 2|x− y|. (D2)

We then next use the formulas

∞
∑

n=1

cosnθ cosnφ

n
= −1

2
ln 2| cos θ − cosφ|, (D3)

∞
∑

n=1

(−1)n
cosnθ cosnφ

n
= −1

2
ln 2| cos θ + cosφ|, (D4)

which we can prove as follows:

∞
∑

n=1

cosnθ cosnφ

n
=

1

2

∞
∑

n=1

cosn(θ + φ)

n
+

1

2

∞
∑

n=1

cosn(θ − φ)

n

= −1

2
ln

∣

∣

∣

∣

2 sin
θ − φ

2

∣

∣

∣

∣

− 1

2
ln

∣

∣

∣

∣

2 sin
θ + φ

2

∣

∣

∣

∣

= −1

2
ln

∣

∣

∣

∣

4 sin
θ + φ

2
sin

θ − φ

2

∣

∣

∣

∣

= −1

2
ln |2(cos θ − cosφ)|, (D5)

∞
∑

n=1

(−1)n
cosnθ cosnφ

n
=

1

2

∞
∑

n=1

(−1)n
cosn(θ + φ)

n
+

1

2

∞
∑

n=1

(−1)n
cosn(θ − φ)

n

= −1

2
ln

∣

∣

∣

∣

2 cos
θ − φ

2

∣

∣

∣

∣

− 1

2
ln

∣

∣

∣

∣

2 cos
θ + φ

2

∣

∣

∣

∣

= −1

2
ln

∣

∣

∣

∣

4 cos
θ + φ

2
cos

θ − φ

2

∣

∣

∣

∣

= −1

2
ln |2(cos θ + cosφ)|. (D6)
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We set θ = arccosx and φ = arccos y in Eqs. (D3) and (D4)

this time, having

∞
∑

n=1

Tn(x)Tn(y)

n
= −1

2
ln 2|x− y|, (D7)

∞
∑

n=1

(−1)n
Tn(x)Tn(y)

n
= −1

2
ln 2|x+ y|. (D8)

Comparing Eqs. (D2) and (D7), we arrive at the formula

∞
∑

m=1

(−1)m
T2m(x− y)

m
= 2

∞
∑

n=1

Tn(x)Tn(y)

n
. (D9)

We use the formula (D9) to prove that Eq. (66) reduces to

Eq. (20) for a Hermitian matrix H . We here make use of

the last form of Eq. (B12) for the expansion coefficient in

Eq. (66). For Hermitian matrices, the eigenvalues {Eν} of

H are all real. We put z to the real variable E, because we

are interested in κ(E) on the real axis in Eq. (20). We can

therefore cast Eq. (66) into the form

κ(E) = − 1

L

L
∑

ν=1

∞
∑

m=1

(−1)m

m
T2m(Eν − E)− ln(2|τ |).

(D10)

We are now in a position to employ the formula (D9) to trans-

form Eq. (D10) into

κ(E) = − 2

L

L
∑

ν=1

∞
∑

n=1

Tn(Eν)Tn(E)

n
− ln(2|τ |), (D11)

which is indeed equal to Eq. (20).
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