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CHEBYSHEV POLYNOMIALS
IN SEVERAL VARIABLES AND THE RADIAL PART

OF THE LAPLACE-BELTRAMI OPERATOR

R. J. BEERENDS

Abstract. Chebyshev polynomials of the first and the second kind in n vari-
ables z. , Zt , ... , z„ are introduced. The variables z, , z-,..... z„ are the
characters of the representations of SL(n + 1, C) corresponding to the funda-
mental weights. The Chebyshev polynomials are eigenpolynomials of a second
order linear partial differential operator which is in fact the radial part of the
Laplace-Beltrami operator on certain symmetric spaces. We give an explicit ex-
pression of this operator in the coordinates zi, z2 , ... , zn and then show how
many results in the literature on differential equations satisfied by Chebyshev
polynomials in several variables follow immediately from well-known results on
the radial part of the Laplace-Beltrami operator. Related topics like orthogonal-
ity, symmetry relations, generating functions and recurrence relations are also
discussed. Finally we note that the Chebyshev polynomials are a special case of
a more general class of orthogonal polynomials in several variables.

1. Introduction

In recent years quite a number of papers on Chebyshev polynomials in several
variable's have appeared. We divide these papers in two groups, namely the
papers by Bacry [1, 2, 3] and the papers by Lidl [19], Dunn and Lidl [11, 12],
Eier and Lidl [14], Eier, Lidl and Dunn [13] and also Ricci [23] (including
some of the references given in these papers). Both groups of papers consider
Chebyshev polynomials of the first and the second kind. In the two variable
case they occur as special cases (a = ±^) in Koornwinder [18, III-IV], which
is the first systematic treatment of classes of orthogonal polynomials associated
with root systems. They are also special cases (y = 0, 1) in Debiard [7],
where Koornwinder's results are generalized to several variables (but no proofs
are given). An important property of the polynomials is the fact that they
are eigenfunctions of certain partial differential operators (cf. [18, 7]). One
of these operators is of second order and for certain values of the parameter
involved (e.g. for the Chebyshev cases) it is the radial part of the Laplace-
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780 R. J. BEERENDS

Beltrami operator on certain symmetric spaces. The main point of the present
paper is to show that the «-dimensional results in [1, 2, 3, 19, 13] on differential
equations satisfied by Chebyshev polynomials all follow from results on the
radial part of the Laplace-Beltrami operator on certain symmetric spaces of
rank n. Here [4, Proposition 8] plays a crucial role. We first concentrate on
Chebyshev polynomials of the second kind.

In the papers by Bacry, Chebyshev polynomials of the second kind are de-
fined as characters of SL(n + 1, C), which can be parametrized by partitions
k = (A,, k2, ... , kn) (X¡ integers and kx > k2 > ■ ■ ■ > kn > 0). He states that
they are eigenfunctions of a certain second order partial differential operator.
This differential operator has homogeneous polynomials Bk ¡ of degree two in
the elementary symmetric polynomials as coefficients. The Bk ¡ are defined
using the so-called Laguerre-emanent. In §3 we define a second order partial
differential operator L(m) involving a complex parameter m . For certain in-
teger values of m, L(m) is the radial part of the Laplace-Beltrami operator
on certain symmetric spaces. If m = 2 (this corresponds to a = ¿ and y = 1
above) then L(2) corresponds to SL(n + 1, C)/SU(n + 1) in the noncom-
pact case and to SU(n + 1), considered as symmetric space, in the compact
case. L(0) is the ordinary Laplacian on a Euclidean space (a flat symmetric
space). In [4, Proposition 8] we obtained L(m) in certain coordinates, which
we will call the " z-coordinates", and for convenience we state this result in §3.
In fact these z-coordinates are the characters of the representations of
SL(n + 1, C) corresponding to the fundamental weights (cf. §3). In §4 we then
show that Bacry's differential operator is precisely L(2) in the z-coordinates.
Since characters are eigenfunctions of L(2) it follows immediately that Cheby-
shev polynomials of the second kind are eigenfunctions of L(2), thus proving
[2, IV.b], [3, (27)-(29)] and answering the open problem [2, V.l] (see §5.b).
Bacry pointed out to me that the Bk ¡ should be the same as the coefficients of
the so-called Bezoutian in Weber's book [28, §79, (8)]. It was not obvious to me
that Weber's definition agreed with the one given by Bacry and we have also not
been able to find an explicit expression for the coefficients of the Bezoutian in
the literature (for small values of n they occur in [28, §79]). Therefore we give
such an explicit expression in §4 by showing that they are indeed the coefficients
in the second order part of L(m) in the z-coordinates. From the orthogonality
of the characters we also obtain Bacry's orthogonality result [2, IV.c], [3, (25)]
(see §5.c).

In §5.a we give a precise definition of Chebyshev polynomials of the second
kind Ux, k = {kx,k2,... ,kn) (ki integers), and we show the relation with
other definitions and special cases in the second group of papers mentioned

1 /2above. In particular we show that the polynomials Pk'¡ in [11, 12, 13] are the
special case k = (k + I, I, ... , /). The case / = 0 was studied in [19, 23].
However, in all these papers the connection with characters of SL(n + 1, C)
is not made. The second order partial differential equation for the P^'¡ given
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CHEBYSHEV POLYNOMIALS 781

in [13, Theorem 2] (and for the case / = 0 in [19, (40)]) involves once more
the operator L(2) in the z-coordinates so that their results again follow from
the differential equation satisfied by characters of SL(n + 1, C) (see §5.b).
Orthogonality is not considered in this second group of papers (but see [14,
§5]).

In §6 we turn our attention to Chebyshev polynomials of the first kind which
are essentially symmetric sums of exponential monomials (see §6.a). It follows
immediately that these are eigenfunctions of the operator L(0), which is simply
the ordinary Laplacian on a Euclidean space. From the expression of L(0) in
the z-coordinates all the results on differential equations satisfied by Chebyshev
polynomials of the first kind in [1, 2, 3, 19, 13] follow (see §6.b). In §6.c we
treat the orthogonality results in [14], [2, V.2.c] and answer the open problem
[2, V.2].

Although our main point concerns differential equations and orthogonality
for Chebyshev polynomials, we also observed that many results on symmetry
relations, generating functions and recurrence relations in the above mentioned
papers could be obtained from known results on characters of SL(n + 1, C)
and related topics. It seemed appropriate to include some remarks on these
matters in the present paper (mainly in §§5.d and 6.d).

The Chebyshev polynomials treated in this paper are associated with a root
system of type A for the values m = 0 and 2 (cf. §2.c). The last section
contains some remarks on generalizations to other values of the parameter m
(which do not necessarily correspond to a symmetric space) and to other types
of root systems; a subject where quite a few new results have been obtained
very recently.

2. Notations and preliminaries

a. Symmetric polynomials. The reference for this subsection is Macdonald
[20]. We use largely the same notation. Consider the ring Z[jc, , ... , xj of
polynomials in n independent variables with integer coefficients. The symmet-
ric group Sn acts on Z[x¡, ... , xn] by permuting the variables. Let A^ be the
subring of symmetric polynomials [20, 1.2]. If a=(a,.an)€ (Z+)" then
we put |a| = a, H-\- an and we let Xa denote the monomial x"' ■ ■ -x^". A
partition k is a sequence k = (kx, k2, ... , kr) such that k{ > k2 > ■ ■ ■ > kr > 0.
Note that we allow the ki to be zero. The number of parts, i.e. the number
of nonzero ki, is called the length of k and is denoted by l(k). We also use
the notation k - ( l^12ßl ■ ■ ■ s^) if exactly /i of the parts of k are equal to j.
The set of all partitions is denoted by & . Given a partition k we define the
dual partition k' = (k\, ... , k's) by k\ = cardij: k- > i}. For a partition k of
length < n we define a symmetric polynomial mx by

(2.1) mk = mk{xx,... ,xv) = Y^xa,

where the sum is taken over all distinct permutations a of k. For each integer
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782 R. J. BEERENDS

r > 0 the rth elementary symmetric polynomial er is defined by

(2.2) e0 = l,    er=       £      *,. x^—x^ = ro(ir
I<ij<--<i,<n

We also define er = 0 if r > n and r < 0. The er are the coefficients of the
polynomial

(2.3) £(/) = n(l+x;0 = f>/-
i=\ r=0

Next we define for each integer r > 0 the rth complete symmetric function hr
by

|A|=r

The generating function for the hr is

(2.4) H(t) = y£h/ = f[(l-xit)-1.
r>0 1=1

Note that H(t)E(—t) = 1.  The power sums /?r are defined for each integer
r > 1 by

n

(2.5) Pr = Y,X,i=m(r)'
1=1

and the generating function for the pr is [20, (2.10)-(2.10)']

(2.6) P(t) = J2p/~1 = n\t)/H{t) = E\-t)/E{-t),

from which we obtain
k

r=l

or equivalently (use the involution co as defined in [20, §2])
k

(2.7) ^fc=E(-1)r"Vjk-r. fe^!'
r=l

which are the so-called Newton identities.
A polynomial p in Z[x,, ... , xn] is called skew-symmetric if wp = e(w)p

for all w £ Sn, where e(w) denotes the sign of the permutation w . Let aa
be the skew-symmetric polynomial given by

wesn

Since t7Q vanishes unless a,, ... , an are all distinct we may assume that ay >
a2 > ■ ■ ■ > an > 0 and thus a = k + p where

p = (n- 1, n- 2,..., 1,0).
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CHEBYSHEV POLYNOMIALS 783

Then
aa = ax+P = L £(^) • w(xi+p) = àet(x-'+K "'),<,,,<„ -

wes„
Note that a   is the well-known Vandermonde determinant

(2.8) ap = det(x,"-;') =    Ü   (*,-*,)•
1 <i<j<n

Each ax+ is divisible by a in Z[x,, ... , xj [20, §3] and the quotient is a
symmetric polynomial. Put

(2-9) SA = Sa(*1 >•••'*„) = aA+/,/V

The following formulas, known as Jacobi-Trudi formulas, express the sx as
polynomials in the er and hr [20, (3.5)]

(2.10) sx = te\{ex,_i+])Xúij<l(Xl) = át\{hk¡_i+j)x^^m .

In particular

(2-11) *(i') = er,       s(r) = hr = det(ex_i+J)x^^r.

Next we recall some results on expansions related to H(t). Let x — (xx, ... , xn)
and y = (yx,..., y.) be two sets of independent variables. Denote symmetric
functions of x (resp. y) by sx{x), px(x), etc. (resp. sx{y), px{y), etc.). Then
one has [20, (4.2)]

(2.12) [[(i-^r^E^Kw.
i,;=l A

where hx = hxhx ■■ -hx if k = (k,,..., kr) and the sum is taken over all
partitions of length < n . From the proof of [20, (4.3)] (which uses (2.10) and
(2.12)) we extract the following result

(2.13) ap(x)fl(l-ylXj)-l=   £   sa_p(y)xa.
ij=i a6(Z+)"

b. Complex semisimple Lie groups. The reference for this subsection is Hel-
gason [16, 17], mainly Chapter VII in [16] and Chapter V in [17]. Let G be
a connected, simply connected complex semisimple Lie group with Lie algebra
Q. Consider a compact real form u of q and let U be the analytic subgroup
of G corresponding to u. Then U is simply connected (follows from Weyl's
theorem [16, Chapter II, Theorem 6.9]; see also [26, Theorem 4.11.14]). Let
T c U be a maximal torus in U and t c u the Lie algebra of T. The subalge-
bra of Q generated by t will be denoteld by h . Then h is a Cartan subalgebra
of g and so we can consider the set A of nonzero roots of 0 with respect to h .
Let (•, •) denote the bilinear form on h induced by the Killing form of g. If
//el)*, the dual of h,, then Hß e f) is determined by {H, H^) = p(H), H € f).
Put (p,v) = (H■   Hv), ix,v € h*.  Let hR = £aeAR-//Q, then t= /hR.
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784 R. J. BEERENDS

Since roots are real-valued on hR we may regard them as elements of the (real)
dual hR of the real vector space hR. Choose a Weyl chamber h+ in hR and
put t+ = z'h+. Denote by A+ the corresponding set of positive roots. Let
ax,..., an denote the simple roots and œx, ... , œn the dual basis given by
2(co ■, a¡)/(a¡, a¡) = <5( (1 < i, j < n). Here ¿( is the Kronecker delta. If A
denotes the weight lattice then A = Yl"=\ Z<y . If A G A and 2(k, a)/(a, a) is
nonnegative for all a e A+ , then k is called a dominant weight. On A we take
the partial ordering defined by h+ , so that k > p. if and only if k - p is a non-
negative linear combination of the simple roots. We also use the (compatible)
notation a > 0 for a positive root a . The Weyl group of A will be denoted by
W. If w e W then e(w) denotes the determinant of w . Put p = \ ^2a>oa •
Let D(u) denote the diagram {H e t\a(H) e 2niZ for some a e A} and put
t s= t — D(u). Fix a component P0 of tr whose closure contains the origin.
We may assume that P0 is inside t+ .

As usual we identify U with the Riemannian symmetric space of the compact
type U x U/K, where K is the diagonal {(«, u)\u e U}. Let Xx be the
character of the irreducible representation of U with highest weight k. Since
Xx is invariant under conjugation, it follows from [17, Chapter V, §1, (16)] that
Xx satisfies the linear partial differential equation (on expP0)

(2.14) A(Lv)xx = ({p, p) - (k + p,k + p))Xx.
Here A(Ll/) denotes the radial part of the Laplacian Lv on U [17, Chapter
II, Proposition 3.12]. For future purposes it is important to note that due to the
identification of U with U x U/K as above, we introduce a factor 2. The set
of restricted roots of (U x U, K) corresponds to the roots of A, but counted
with multiplicity 2. Consequently the linear function p for the symmetric
space (U x U, K) is twice the linear function p arising from A. The weight
function in the integral formula for the Cartan decomposition, which enters in
the explicit expression for A(LV), has to be adjusted accordingly [17, Chapter
I, §5, no. 2B and Chapter II, §3, no. 4, (v)].

By the Schur orthogonality relations we have

J  Xx(u)Xß(u)du = oXfl,

where the bar denotes complex conjugation and 6X — 0 if k ^ p and = 1 if
k = p . Then a variation of Weyl's integration formula [17, Chapter I, Theorem
5.13] implies that

(2.15) f ^(expH)X (exptf)¿(expH)dH = c-ôx

where c is a constant and the weight function S(expH) is given by

S(expH) = H(ea(H)/2-e-am2).
q6A
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CHEBYSHEV POLYNOMIALS 785

In the above integrations, the Haar measure du on U is normalized by j du —
1 and dH is the Euclidean measure on t induced by the Killing form. Since

6{^H) = X[\ea(H)l2-e-a(H)l2\1
a>0

we have

(2.16) S(cxr>H)l/2 = H\ea{H)/2-e-«H)/2\.

Note that if H e P0 then <J(exp H) > 0. We also recall the Peter-Weyl theorem
which states that characters of irreducible representations form a complete or-
thogonal system in the space of all continuous class functions (a class function
is a function invariant under conjugation x -» uxu~ ).

c. SL(n + 1, C)
We now specialize to the case G = SL(n + 1, C), the group of all (n +

1) x (n + 1) complex matrices of determinant one. Then U = SU(n + 1) is
a compact real form of G and the Lie algebra u = su(« + 1) of U is equal
to the subalgebra of q consisting of skew-hermitian matrices of trace zero. As
maximal torus t in u we take the (n + 1) x (n + 1) purely imaginary diagonal
matrices of trace zero. Then h consists of all diagonal matrices of trace zero and
we denote by diag(a,, a2, ... , an+l) {ai e C) the diagonal matrix in h, with
entries ax,a2,..., an+l. Let e¡ e h* be defined by £.(diag(aj,... , an+x)) -
üj   (j = 1, 2, ... , n + 1). Then e, H-h en+x = 0 as elements of h*. Note
that e. is purely imaginary on t. The set A = {e¡: - e 11 < /, j < n + 1, /' ̂  /'}
is the collection of roots of g. As simple roots we take ai = e( - ei+x (i =
1,2,... , n). The fundamental weights col, ... , a>n are given by

(2.17) w; = (" + 1)"1(("-^'+1)(ei+--- + e7)-^;+i+--- + e«+i))

= ex + ■ ■ ■ + 8j,

where for the last equality we used the fact that e, H-l-£„+i =0. The Killing
form on h is given by (H, H1) = 2{n + l)Trace(////'), so that (a¡, a¡) -
(n + 1)~ . The Weyl group is isomorphic to the symmetric group S x and
e(w) equals the sign of the permutation w e Sn+X . For PQ we can choose the
set
(2 18)      P° = {H € t|a,(//) > ° (/ = l ' ■•" ' B)'£'"^'(//) < 2ni}

= {diag(i'fl,,..., ian+l) e t\an+x +2n> a{> a2> ■■■> an+l}.

From the well-known realization of the finite dimensional representations nk
of SU(n + 1) corresponding to the fundamental weights a>k (k = I, ... , n)
on the exterior powers of C"+ (see e.g. [26, §4.7], [17, Chapter V, Example
A9]) one obtains that the characters x^ oí nk are given by

(2.19) *fc(exp/0= Yl xhxh"xh       (k=l,---,n),
l<i{<i2<—<ik<n+l
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786 R. J. BEERENDS

where Xj = e£j(//) = eia> if H = diag(ial, ... , ian+x) (a. € R) is in t. In
other words, Xk l% *ne ^m elementary symmetric polynomial in the variables
xx,..., xn+l (k = I, ... , n). Since ax + ••• + an+x = 0 (mod2n) we have
xxx2 ■ ■ • xn+x = 1. If k is a dominant weight then we can write

k = p.xcox +p2co2 + --- + pnú)n,

where p( € Z+ (Z+ denotes the set of nonnegative integers). From (2.17) we
get

k = ^-[£|   "T" kjt2 + • • • + k   S     ,

where
k¡ = pi + /ii+l + --- + pn       (i=l,...,n)

and
kx > k2 > ■■■ >kn > 0.

For convenience we put kn+x = 0 and we let k correspond to the parti-
tion (kx, k2,..., kn+i) = (kx, k2, ... , kn, 0) of length < n . With this no-
tation the partition (n, n — 1,..., 1,0) corresponds to the weight p = ne{ +
(n - 1 )e2 H-h e„ = <y, + <y2 H-h fc>n = ^ Z)a>o Q » which explains the notation
in subsection a. Note that k¡ - kj+x = pi so that (kx, ... , kn) is precisely the
dual of the partition (l*^2 ■■■nft"). Since Oj + • • • + a„+1 = 0 (mod27r) we
have
(2.20) fi     (ei{a*-a,)/2-ei{ak-a>)/2)=      ]J     (eia*-eia'),

\<k<i<n+l \<k<l<n+l

so that by Weyl's character formula [17, Chapter V, Theorem 1.7] the character
Xx corresponding to highest weight k = klsl + ■ ■■ + knen (kx > ■■■ > kn >
0 = k x) is precisely the function sx defined by (2.9) if we take xt (i =
1, ... , n + 1) as above and k the partition (kx, ... , k   x). Hence

(2.21) ^(exp//) = [det(xp+"+l~J)^^n+l]/[det(x:+l-J)^^n+l].

In contrast to subsection a, the n + 1 variables xx, ... , xn+1 are subject to
the relation xxx2 ■ ■ ■ xn+x = 1. For future reference we remark that from (2.20)

1 IIfollows that for the weight function S(expH) '   as given by (2.16) we have

ô(expHf2 =      J]      le^-O'»2 - ei{a'-a>)/2\
(2.22) i<*</<«+i

n \xk    x¡
l<k<l<n+\

ja.where, as before, xk= e k (k = 1, 2,..., n +1) if H = diag(/a1, ... , ian+l)
(ak e R). It is worthwhile to note some special cases of the correspondence
between sx and Xx- ^ k = œk = ex-\-h ek then by (2.11) we have

(2.23) y    =S(lk)=ek       (k=l,...,n),
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CHEBYSHEV POLYNOMIALS 787

which proves (2.19) again. And if k = kex = ktox, then (2.11) implies that

(2-24) Xka)] = s(k) = hk .

3. The radial part of the Laplace-Beltrami operator
In this section we describe a result in [4, Appendix 2] which will be cru-

cial for the remainder of this paper.   In R"+    we have the standard basis
ex, e2, ... , e   j and inner product (•, •} for which this basis is orthonormal.
Let E denote the hyperplane in R"+   orthogonal to the vector ex+e2-\-hen+1.
The inner product on R"+ induces an inner product on E which we shall also
denote by (•,•). We identify the dual E* of E by means of this inner prod-
uct. Now consider the root system A of type An in hR as constructed in §2.c.
We identify the Euclidean structure on hR induced by the Killing form with
the ordinary Euclidean structure on E given above. Notice that the Killing
form is (2(n + 1))~ times the ordinary inner product on E . With this iden-
tification we have A = {e( - e |1 < i, j < n + I, i ^ j} and (a, a) — 2 for
a e A. We take simple roots, positive roots, a positive Weyl chamber, funda-
mental weights, etc. as in §2.c. Now if wk (k = 1, ... ,n) are the fundamental
weights of the root system A, then 2cok are the fundamental weights of the
root system A2 = 2A = {2a\a e A} with basis {2a,, ... , 2an}. We denote by
A2 the weight lattice of A2 . Let Z[A2] be the group algebra over Z of A2. If
k e A2 then we write e for the corresponding element of Z[A2]. This group
algebra Z[A2] can also be considered as the algebra of functions on E gener-
ated over Z by the exponentials e (k & A2), where e (v) = e {v £ E).
The Weyl group acts on A2 and so also on Z[A2]. An element x e Z[A2] is
called skew-invariant if s ■ x = e(s)x for all 5 e W, and invariant if s ■ x = x
for all s € W. We now define the invariant elements zk  (k = 1, 2, ... , n) by

*k =   £   e2\
ß€W-ct>k

where W ■ u>k = {scok\s e W). It is well known (see e.g. [5, Chapter VI,
no. 3.4]) that the invariant elements in Z[A2] are precisely the polynomials in
the zk . In particular we have that a differential operator which leaves Z[A2]
invariant can be expressed in the z-coordinates as differential operator with
polynomial coefficients. For meCwe now define a differential operator L(m)
(on the positive Weyl chamber) by

(3.1) L(m) = LE + w^cotha da,
a>0

where LE denotes the ordinary Laplacian on E and da the derivative in the
direction of a. If m = 0 then L(m) = LE . For certain integer values of m ,
L{m) is the radial part of the Laplace-Beltrami operator on certain symmetric
spaces X of the noncompact type (cf. [17, Chapter II, Proposition 3.9]). For
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788 R. J. BEERENDS

example, if m = 2 then X = SL(n + 1, C)/SU(n + 1), n > 1 . In [4, Ap-
pendix 2] we determined the operator L(m) explicitly in the z-coordinates.
For convenience we state the result:
(3.2)

£(/») = 4¿
j=ï I

+ 8 E

J+r 0U-Jr/(n+l))z2-J22rZj_
r=\

U - jk/(n + l))ZjZk - J2(k - j + 2r)z._
r=l

n

+ 2(2/(n + i) + m)Y^j(n-j+ \)zjdj,

*k+r «A

;=i
where z. = 0 if j > n + 1, z. = 1 if j = 0 or _/' - n + 1, and we used the
notation <9 for d/dz-. Instead of using the hyperbolic cotangent in (3.1) we
could have defined a differential operator L\m) (on P0) using the ordinary
cotangent. Then L'(m) would correspond, again for certain integer values of
m, to the radial part A(LX) of the Laplace-Beltrami operator Lx on certain
symmetric spaces of the compact type. One has to be careful here with the case
m = 2 where we consider X = SU(n + 1) as symmetric space; as explained in
section 2.b, a factor 2 enters if we use the explicit expression [17, Chapter II,
Proposition 3.12]. For other values of m one uses [17, Chapter II, Proposition
3.11]. If we now take zk tobe

2í>

lieW-wk

(k=l, n),

then this would lead to exactly the same expression (3.2) for L\m), up to a
minus sign. Of course one has to treat the case m = 2 separately. Here we take
z.  to be defined by

-,'f {k= 1,..., n),(3.3) zk=   £   e
iiew-u)k

and so there will be a factor -4 difference with (3.2).
In [4, Appendix 2] we showed that zk given by (3.3) is precisely the A;th

elementary symmetric polynomial in the variables x- = elt> (j = \ ,2, ... , n +
1), where we consider e   as linear functional on E and use the fact that
£j +-h en+x =0 on E. Recall that in §2 we had t = z'f)R, so that if H e t
then £•(//) = ieÁH/i) if e is considered as element of h*. So with our
identifications we obtain from (2.19) that the zk in (3.3) are the characters of
the fundamental representations of SU{n + 1), i.e. for k — 1,2,...,« we
have

(3.4) zk{H/i) = Xk{expH),        H et,
where H/i on the left-hand side is considered as element of E. This also fol-
lows from general theory. In fact, let Xx oe tne character of a finite dimensional
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representation of a simple Lie algebra over C and with highest weight k. Let
Yl(k) denote the set of all weights of the representation. Suppose that Yl(k) is
equal to the W^-orbit of k, so that Yl(k) = {s • k\s e W) . A dominant weight
k ^ 0 for which this holds is called miniscule. Since the highest weight occurs
with multiplicity one, we obtain that for a miniscule weight we have

Xl(cxpH)=   J2 e"™*        H£t-
new-x

For An the miniscule weights are precisely all the fundamental weights a>k so
that we indeed get (3.4). These results can be found in [6, Chapitre VIII, §§6-7]
where also a list of all miniscule weights for all reduced root systems is given.

The following remark will be used later on. Let w0 denote the longest Weyl
group element, i.e. the Weyl group element that sends all positive roots to nega-
tive ones. Then œk = w0(-con+x_k) so that we obtain (cf. [4, proof Proposition
3])

(3.5) ^k = zn+x_k      (k=l,...,n),

where the bar denotes complex conjugation. This also holds more general. In
fact, since k is purely imaginary on t = zhR, one obtains immediately from
Weyl's character formula that

so that (3.5) is the special case k = (ok. This result follows also from the fact
that if k is the highest weight of a representation, then -wQk is the highest
weight of the contragredient representation.

4.  LaGUERRE'S EMANENT AND SYLVESTER'S BEZOUTIAN

In [2 and 3] Bacry defined a second order partial differential operator using
the so-called Laguerre émanent. We now show that this operator is exactly the
operator L(2) in (3.2). Consider the polynomial E(t) in the indeterminate /
as defined by (2.3), but with n replaced by n + 1, i.e.

«+i n+i

£(o=no+*,■')=£*/■
1=1 r=0

Define the polynomial F(t,s) in the independent variables t and 5 by

(4.1) F(t,s) = ((« + l)(E(t)E'(s) - E'(t)E(s))/(t - s)) - É{t)É{s).
This is the polynomial that is defined by Bacry [2, (2)], [3, (7)] using the so-called
Laguerre émanent. The coefficients of F(t, s) are homogeneous polynomials
of degree two in the elementary symmetric polynomials er (r = 0, ... , n+l).
We want to obtain these coefficients explicitly. First we divide the expression

G{t, s) = E(t)E'(s) - E'(t)E(s) =        Y,       Ü + l Ke«+i (^ - 'V)
p=0,l.n+\

q=0, l,...,n
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explicitly by the factor (t - s). Note that terms with p = q are zero. Since we
also want to factor out the highest power of st, we distinguish between q > p
and q <p . Then

n+\p-\

p=\ ?=0

p=0 «=/>+!

From
— ■> V^ i'  m-l-\ , ..

.m        m       m-1
í    -s V^ ./  W-/-1

1=0

then follows that

p=l ?=0 /=0

p=0?=p+l /=0

In the first term of this difference we change the order of summation. Then we
put

7i=£(<?+D<WV E e^-^ + ts"-«-2+ ■.. + ?-«->),
q=0 P=q+l

and

^ = I>pfV t (í + l)eg+1(í"-1TÍ/-"-2 + ... + í"-1))
p=0 <7=P+1

so that
(£«£'(*) - E'(t)E(s))/(t -s) = Tx-T2.

Now determine the coefficient of t s in Tx and T2. First of all, from the
symmetry in / and 5 follows that we may assume k < I. Also / < n so that
from now on we take n > I > k > 0. Since

k  I       k  k,  l-ks       Jfc-1   fc-1,, l-k-l,
t S   = t S   [S       ) = t       S       (tS ) = •••,

we obtain that the coefficient of í j   in Tx equals

(k + \)ek+xel+x + kekel+2 + ■ ■ • + 2e2el+k + exel+k+x,

and in T2 equals

ekV + 2)ei+2 + ek-\V + 3)^/+3 + --- + ex(k + l+ \)ek+l+x + e0(k + I + 2)ek+l+2,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHEBYSHEV POLYNOMIALS 791

where, as always, ek = 0 if k > n + 1 and eQ = 1. The coefficient of t     s
(n + 1 > / > k > 1) in Tx - T2 is thus equal to

keket + (k-l- 2)ek_xel+x + (k - I - 4)ek_2e¡+2 + ■■■
+ (-k-l + 2)exek+l_x + (-k -l)e0ek+l.

Since
«+i

É{t)É{s) = Y kleke¡t ~ s ~ ,
k,l=\

we obtain that
F(t,s)l(n + l)

k
(4.2, _

\<k, /</!+!
(fc - ^Tf) ***/ + E(fc - ' - 2r)ek-rei+r k-\   l-\

t       S

If we compare with (3.2) then we see that if we substitute e   x = 1 then the
k— 1   /— 1coefficient of t s in (4.2) is exactly the coefficient of dkd¡ in (3.2). Since

these coefficients are used by Bacry to define the operator An [2, IV.b], [3, (27)],
it follows that

(4.3) i(K + l)L(2) = An+1+(K + 2)£>„+1,

where An+| and Dn+X are as in [3, (27), (28)] (in [2, IV.b] the Dn was incor-
rect). Also see [1] for the case n = 2.

Bacry pointed out to me that there was a connection between the coefficients
in (4.2) and the so-called Bezoutian as defined in Weber [28, §79]. Indeed, for
small values of n these coefficients coincide with the examples of the Bezoutian
given in [28, §79]. To define this Bezoutian we first introduce the following
notation. For an arbitrary polynomial p in the variable x we define

s[p] = J2p(x,)>
!=1

where, as always, x, , ... , xn+1 are our n + 1 independent variables. As an
example one has S[xm] = pm , the mth power sum. This notation follows [28,
§46]. Weber's book is the main reference for the remainder of this section. Put

fk=x  -exx ~l+ --- + {-l) ~lek_xx + (-l) ek,        k = 0, 1, ... , n,

(cf. [28, §74, (4)]) and define the polynomials b - b of degree two in the
elementary symmetric polynomials by

(4.4) bn_kn_, = S[fkf,] - (n + l)-lS[fk]S[f,],        \<k,l<n.
The bilinear form in t = (t0, tx, ... , tn_x) and t = (r0, tx, ... , rn_x) defined
by

n-l

E bPj<,\
P,Q=0
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is called Bezoutian in [28, §79]. It is closely related to the Bezoutian of the
polynomials p(t) and its derivative p'(t) as defined (more generally for any
two polynomials) by Sylvester [25, §1, Art. 5-Art. 8]. Although this Bezoutian
plays an important role in the classical algebraic theory of polynomials (cf. [25,
28]), we have not found an explicit expression for the b in the literature.
For small values of « (n = 3, 4 and 5) the b are given in [28, §79] (see
examples below).

Proposition. Let bn_k ||_/   (1 < k, I < n) be defined by (4.4) and substitute
en+x = 1. Then (-l)k+l8bn_k n_, is the coefficient of dkd,  (1 < k < I < n) in
(3.2), and $bn_k n_k is the coefficient of dk   (k = 1, ... , n) in (3.2).
Proof. From the Newton identities (2.7) follows that

S[fk]=pk-expk_x + ---+(-l)k-lek_xpxH-lf(n+l)ek = (-l)k(n+l-k)ek,
so

(4.5) S[fk]S[f] = (-lf+!(n + 1 - k)(n + 1 - l)eke¡.
Since

S[fkf,l = S[(fk - (-l)kek)(f, - (-lje,)] + {-\)kekS[f, - {-\)le{\
+ (-l)'e,S[fk - (-lfek] + {-l)k\e,S[l],

and
S[fk - (-1)\] = S[fk] - (-l)kekS[l] - (-!)*(» + 1 - k)ek - (-!)*(« + \)ek

= (-l)k+lkek,

S[fkf,} = S[(fk - {-\)kek){f, - {-lie,)] + (-l)k+l(n + l-k- l)eke,.
we obtain that

S
From

fk-(-l)kek = (-l)k \ek_xx-ek_2x2 + --- + (-l)k lxk)
then follows that

s[fkfl] = {-\)k+ls E(-i)'-1^ (£(-irV,*y
u=l /    \j=\

+ (-l)k+'(n + l-k-l)eker
If we now compare with [4, Appendix 2, equation after (A. 10)], then we see
that

S\fkf,} = (-l)k+!(TkJ + {n + \-k-l)eket),
where Tk ¡ is defined as in [4, Appendix 2]. Combining with (4.5) we obtain
that

b^^^i-^'iT.^in + l-k-De^

-{n + \y\n + \-k){n+\-l)eke,)

= (-l)k+l(Tkl-(n + l)-lkleke,).
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Finally we compare with [4, (A. 13)] to conclude that

v*)n_/ = ("+ir2(-i)fcX;
with Sk ¡ as defined in [4, (A. 10)]. From [4, (A.3)] and the definition of Sk ¡,
the proposition follows.   D

Remark. Although there is a great similarity in the definition of the coefficients
of F(t, s) in (4.1) and the b in (4.4), we have not found a simple direct
proof that they are the same (the S[fk] are directly related to E'(t) ; the problem
however is the S[fkf¡]).
Examples. In the examples below we recall that e0= 1 and we substitute en+x =
1. We first give bn_k     ¡ and then the coefficient ck ¡ of dkdl in L(m).

n = \:        b00 = 2-\e2-4e0e2) cxx=2{z]-A)
n = 2:        bx x = 3~ 2(ex - 3e0e2) c, , = 3~ 8(z¡ - 3z2)

b0 0 = 3~ 2(e2 - 3exe3) c2 2 = 3~ 8(z2 - 3z,)
Vi = èi,o = 3"'(%e3-eie2)       ci,2 = 3"'8(ziz2-9)

{bxx = -3_12^0, ¿>0>0 = -3_12^i2 andb0 x = -3~lAx,
with A0, Ax and A2 as in [28, §68, (3)])

n = 3:        b2 2 = 4' (3ex - Se0e7) cx , = 3z, - 8z2
bx x=e2 — 2exe3 - 4e0e4       c2 2 = 4z2 - 8z,z3 - 16
b0 0 = A" (3e3 - ie2eA) c33 = 3z3 - 8z2

b2 , = 2~ (6e0e3 - exe2)        c, 2 = 4zjZ2 - 24z3

b2 0 = 4~l(exei- 16e0e4)       cx 3 = 2z,z3-32
è, 0 = 2~ (6^,^ - ^2^3) c2 3 ~ 4z2z3 - 24z,

(the bk ¡ are taken from [28, §79, (14)]; note that a¡ in

Weber equals (-l)'e(.).
From [28, §79] we also recall some facts about the determinant of the Be-

zoutian matrix.  Let b denote the symmetric matrix (bk ¡)0<k ¡<n_l ■ Recall
the Vandermonde determinant a   in (2.8) and put

d=%= n (*«■ - xj)2 '
\<i<j<n+\

the so-called discriminant of a polynomial with roots x,, x2, ... , xn+x . Since
d is a symmetric polynomial, it can be expressed in terms of the er. In fact
[28, §79]
(4.6) d = (n + l)àetb.
Examples.

n = \:        d = 2b0 0 = e\ - 4e0e2   [28, §50, (8)].
n = 2 :        i/ = 3detè = e\e\ - Ae0e2 - 4ex ei

+ lSe0exe2e} - 21e\e\   [28, §50, (10)].
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5. CHEBYSHEV POLYNOMIALS OF THE SECOND KIND

a. Definition We return to the characters of SL(n + 1, C). Recall the def-
inition (3.3) of the zk (k = I, ... , n), which were the elementary symmetric
polynomials in the variables x = elt> (j = 1,..., n + 1). Also, they are
the characters of the fundamental representations of SL(n + 1, C). As noted
before, every Weyl group invariant exponential polynomial (i.e. PF-invariant
element in the group algebra Z[A] over the weight lattice A) is a polynomial
in the zk . In particular, any character Xx °f SL(n + 1, C) is a polynomial in
the zk . Let us write

Xx = Ul(zl,z2,...,zH)
to indicate that we express Xx as polynomial in zx,..., z . For obvious rea-
sons (see example below) these polynomials are called Chebyshev polynomials
of the second kind. We have Uw  = zk (cf. (2.23)).

Example. Let n = 1 so that G = SL{2, C), U = SU(2) and

T={diag(ew,e-iä)\eeR}.

Then t = {diag(/0, -i6)\6 € R} and h = {diag(a, -a)\a £ C}. Here A+
consists of the single root a given by a(diag(<2, -a)) = 2a and the funda-
mental weight co is \a. So if H = diag(/0, -id) £ t then z = /^(exp/i) =
Trace H = 2 cos 6 and by Weyl's character formula we have for / € Z+

Xla{**pH) = (e{M)a{H)/2 - e-('-H)a(//)/2)/(<?«(")/2 _ e-a(H)/2)

= sin(/+ 1)0/ sino,
so that the Xim expressed in terms of z lead to the classical Chebyshev poly-
nomials of the second kind in one variable.

The above definition of the Ux is also given by Bacry [2]. Weyl's character
formula (2.21) shows that the definitions in [1], [3, (21)] and [14, §5] agree with
the one given here (in [14] no results on the Ux are given). Special cases were
treated before by Lidl [19], Dunn and Lidl [11, 12], Eier, Dunn and Lidl [13],
Ricci [23] (also see the references given there); for n — 2 they occur as the
special case a = \ in Koornwinder [18, III-IV] (also see [24, §2]); for arbitrary
n they are the special case y = 1 in Debiard [7] (but no proofs are given).
The fact that the definition of the Ux in [11, 12, 13] is indeed a special case of
the definition given above, follows again from (2.21). In fact, take A of a very
special form in (2.21), namely (see (2.17) for cok)

(5.1) kk , = {k + l)sx+le2 + --- + len = kcox+lion       {k,l£Z+).

Since xtx2 • • -x^ = 1 we obtain that
,     .   X:+n+l—j. ,     T.

det(V )i<¡>,<n+!=detC/,i/,
and

det(x¡+1~J)x<l;,<„+,= detí/0j0.
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Here kx — k +1 and k- -I if j > 2 and Uk ¡ is as defined in [13, p. 634],
which is the same as [11, (2.10) for b = 1]; the case n = 2 occurs in [12, §4].

1 /2Consequently, the Ux   (z,, ... , zn) are exactly the polynomials Pk ¡(x; 1) in

in [11, 13], and Pl/2{x,y) in [12, §4] for n = 2. Note that only if n = 2 the
kk ¡ (k, I £ Z+) give all dominant weights. In subsection d we will show that
for / = 0 (so kk 0 = kcox) the polynomials Uk(0   have the same generating

function as the one that is used as definition for the y (xx, ... , xn) in [19],
and that they satisfy the same recurrence relation as the one that is used as
definition for the Uk2n+X in [23]. Let us note here that the variables u =
3f0(d) and v = 3f0(-6) in [23, (48), (49)] are the first and second elementary
symmetric polynomials in the es' (j = 1,2,3) (e and fQ as in [23, §§1-
2]). The polynomials Uk are also the subject of Debiard and Gaveau [10,
§2]. Their coordinates xx, x2, ... , xn correspond to the fundamental weights
cox, ..., con and again it is Weyl's character formula which shows that the
Pi,,      „ i(Á as defined in [10, (2.36)] corresponds to the character Xi  Wltri
highest weight k = pxax -\-^^„^n ■ In [18, III-IV] Koornwinder introduced a
class of orthogonal polynomials Pk¡ in two variables and involving a parameter
a > -5/6. From his definition [18, III, (3.7)] it is clear that for a — \ these
polynomials coincide with the U3   (z., z^). The interesting point in [18] is

Ak.l

that one can generalize to arbitrary a > -5/6 .
We end this subsection with some simple symmetry properties of the Uk.

First of all, because of Weyl group invariance, we only have to describe Uk for
dominant weights k, i.e. k of the form kxex-\-r-^„£„ where kx >k2>->
kn>0;we also write k = (A,, ... , kn, 0) or (kx, ... , kn, kn+x) with kn+x = 0
(cf. §2.c). In the same way we use the notations

UX= UVt,X1,...,Xn,0) = U(Xi,...,la,Xn+i)-
Now note that by (3.5) and (3.6) we have

(5.2) Ux(zx, ... , zn) = Uk{zn, ... , zx) = U_Wok(zn,..., z,),

where wQ is the longest Weyl group element.  If k = kxex + ••• + knen then
-w0k = kxex + {kx - kn)e2 -\-\-(kx— k2)en , and thus we obtain

(5.3) ^(A,,...,/ln,0)(Zl ' ■•• ' ZJ ~ U(Xl,ki-kn,...,i.l-)i1,Q)\Zn ' ••• ' zi) •

In the special case k — kk ¡ as in (5.1) this gives

(5.4) UkJzx,...,zn) = UkJzn,...,zx),
which is [12, Lemma 4.3(i)] if n = 2.

b. Differential equation. Since the characters Xx satisfy equation (2.14), the
Uk(zx, ..., zn) are eigenfunctions of the operator -4~ L(2) given in (3.2)
(recall the remark in §3 on the factor -4). Consequently

(5.5) L(2)Uk(zx,...,zn) = 4((k,k) + 2(k,p))Uk(zx,...,z),
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where we recall from §2 that in calculating the inner product (•,•), one has to
write k £ R"+l as axex + ■■■ + anen + an+xen+x with £"+/ at = 0.

Example. Take k = cok then Uk = zk and so the eigenvalue should be

4((cok,cok) + 2(cok,p)).

From equation (2.17) we get (cok, cok) = (n + \)~xk{n + 1 - k). Also 2p =
nax + 2(n-l)a2-\-\-j(n-j+l)a--\-\-nan so that 2(cok, p) = k(n-k+l)
and thus the eigenvalue of zk should be 4k(n + I - k)(l + {n + \)~x), which
is indeed correct.

From (5.5) all results on differential equations satisfied by Chebyshev poly-
nomials of the second kind in [1-3, 13, 19] follow. Let us first take kk ¡ as in
(5.1). Then

(h,i>h,i) = ^K , »j) + 2kl(cox, con) + l2(con, con)
(5-6) =(n+ l)~ln{k2 + I2) + {n+ l)~l2kl

= (n+l)~\n(k2 + l2) + 2kl),
and since (co¿, a,) = ¿(.. we obtain that

(kkJ, 2p) = lkcox+ lcon , ¿ j(n -j+ Ify \ = n(k + l).

Hence

(5.7) (kkJ,kkJ) + 2{kkl,p) = {n+iy\nk{n + k+l) + nl(n + l+l) + 2kl),

which is («+ l)~'è(1/2) in [13, Theorem 2]. From (3.2), (5.5), and (5.7) follows
[13, Theorem 2]. The special case / = 0, n = 2 gives [19, Satz 7, (40)], which
again is also the case a = \ in [18, IV, (5.17) with n = 0]. The generalization
to Gegenbauer polynomials in [19, §4.c] is the special case [18, IV, (5.17) with
n — 0] (see also [24, §2]). For the case / = 0, n = 2, Ricci [23, (88)] derives a
second order partial differential equation for the Uk (= t/¿+1 in his notation)
which does not seem to follow from (5.5).

We have already shown in (4.3) that \(n + 1)L(2) is equal to the operator
An+1 + (n + 2)Dn+x in [1, 2, 3]. Let us show how the eigenvalue in [1, 2, 3]
follows from (5.5). The "strange formula" of Freudenthal and de Vries (see
e.g. [17, Chapter V, Exercise A.4]) applied to this case gives us (recall that the
Killing form is (2(« + l))_1 times the usual inner product)

(/>,/>) = (« + l)((«+l)2-l)/12.

Next we recall that [16, Chapter III, §4, (9)]

2{n + l)(k + p, k + p) =£(a,A + p)2,
a€A
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and so for k + p = axa>x H-h anton £ A we have

>2

797

n+1

2(n + l){k + p,k + p)= Y^i-erX + P)
t,j=i

n+1 n+1

i,j=i ¿,7=1

In [1, 2, 3] Bacry uses the notation /m   m      m   0 for the character Xx  °f
SL(/i + 1, C) with

A + /? = w,e1+ ••• + »!„£„ = (m1-w2)w1 + (w2-m3)ft}2 + --- + (wn-mn+1)£(Jn,

where m„,, =0. Hence

.    n+1

(n+l)((k + p,k + p)-(p,p)) = - £(m.-m.)2-(n + l)2((n + l)2-l)/12,
1,7=1

so that (4.3) and (5.5) give us

1 (\  "+1 A
-(« + l)L(2)Ux = U E K - mß2 - (» + 1)2((" + ^2 - !)/12 £/3,

which is Bacry's result [2, (29)].   The result as stated in [1], [2, IV.b] was
incorrect. In our opinion this solves the "open problem" [2, VI].

Another way to calculate (k, k) + 2{k, p) will give us the eigenvalue    ]kIß)
in [10, p. 1299]. First note that if k = pxcox H-h Pncon then we obtain from
(2.17) that

r=l l<r<s<n

(k,k) = (n + l) l   E''(« + l-r)/t2 + 2   £   r(n-s+l)iyi,) ,

which is [10, (2.33)]. Also

(k,p) = (n + l)~i    ¿r(«+l-r)/ir+    £    r(n -5+ l)0ir + jUf) I ,
r=l \<r<s<n

since /j = fo>1 + ■ ■ ■ + ton . Hence (k, k) + 2(k, p) follows immediately.
c. Orthogonality. The fact that the Chebyshev polynomials Uk form a com-

plete orthogonal set follows immediately from Schur's orthogonality relations
and the Peter-Weyl theorem as stated in §2.b. To obtain the weight function
for the orthogonality we have to change the variables in Weyl's integration for-
mula to zx, z2, ... , zn . So let H - diag(za,, ... , ian+x) £ t, then we want to
calculate the Jacobian

\d(zx,...,zn)\
d(ax,... ,an)

= £ e"">   <*=1,...,»)
¡iEW-wk
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Now it is well known (see e.g. [17, Chapter III, Lemma 3.7]) that if ex, e2,...
e x are the elementary symmetric polynomials in the variables x, , x2, ...

then

6{ex,...,en+x)

xn+x then

(5.8) = n (** - xi) ■
Kk<l<n+\d(xx,...,xn+x

So if we put Xj, = eiyi   (j = 1, ..., n + I) then it follows that

d(ex,...,en+x) n11       v   k
\<k<l<n+\\d{y,,-.., y n+l

Introducing the relation yx+y2 + ■ • + yn+x = 0 gives us

x,)

d(ex, ...,en)
\d(yx,...,y„)

so that by (2.22) we have

\d(zx,...,zn)

= n
\<k<l<n+l

xk-x,\

(5.9)
d{ax, ... , an) n

1 <*:</<«+!
xk - x¡\ = S(expH) 1/2

if H = diag(/a,, ... , ian+x) £ t and xk = e1Uk (k = 1,...,«+ 1). Further-
more, if H £ PQ (P0 as in (2.18)) then ô(expH) > 0 so that we can perform
the change of variables in (2.15) to obtain that
(5.10)

/  Ux(zi >•■■> Z*)C/„(Z1>--->Z,XZ1 . • ■ • « zSßdz\ ■■■dzn = C-h,v>

where c is a constant, R is the image of P0 under the transformation (ax, ... , a
-» (z,, ... , z„) and p{zx, ... ,zn) is given by

(5.11) p{zx,...,zn)= n \xk~xi\2-
l<k<l<n+\

Recalling the relation (4.6) we have

p{zx, ... , zn) = (n + l)|detô|,

where b is the determinant of the Bezoutian matrix with zn
us the weight function |det/3|1/2 in Bacry [2, IV.c], [3, (25)]. For the case n = 2
see [18, Theorem 3.5]. In the context of (5.10) it is worthwhile to recall (5.2),
(5.3).

d. Generating function and recurrence relation. As in §2.a we let x = (x,, ... ,
x ,) and y = (yx, ... , yn+x) be two sets of variables. The elementary sym-
metric polynomials in y will be denoted by zx, ... , zn , zn+x. We take zn+x =
yxy2 ■ ■ -yn+x - 1 . Due to the relation between the sx and the characters, as in-
dicated in §2.c, we obtain from (2.13) the following generating function for the

-n+l 1. This gives
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polynomials Uk(zx, ... , zn):

n+1

(5.12)    n  (**-*/) U(l-yk*,rl= E ua_p(zx,...,zn)X\
\<k<l<n+\ k,l=\ ae(Z+)n+1

where p-(n,n-l,..., 1,0) (i.e. p = nex + (n - l)e2 H-h en). Note that
n"=i'(l ~y¡s) = zC"=o(_l)'ziJ' so mat the left-hand side is indeed a generating
function for polynomials in zx,..., z . If we permute the x¡ in the left-hand
side of (5.12) then we see that

U(«i.«„+,)-/> = e(s)C/(«J(.).-.«í(n+i))-/''        S e S"+i ■

And indeed, in (5.12) we are only interested in those Uk with kx > k2> ■■■ >
kn > kn+x > 0 (kj integer), i.e. corresponding to a partition (kx, k2, ... , kn+x).
Moreover, we have the symmetry (5.3). Also recall that in fact we have kn+x = 0
so that we can actually take xn+x = 0 in (5.12). The generating function (5.12)
is exactly the same as [2, IV.d], [3, (24)] (take A in [2, IV.d] of the form
diag(y[, ... , yn)). We also note that (2.10) gives an expression of the Uk as
determinants in the zk . In particular we obtained that ((2.24))

Xkal = nk •

For the hk we had the generating function (2.4). Hence

n+1

(5.13)        n(i-vrl=Eiw*i'"-.*y
1=1 A:>0

(which can also be obtained from (5.12) by taking x}, = 0   (j = 2, ... , n + 1)
successively). This shows that the Chebyshev polynomials y (zx, ... , zn) of
the second kind as defined in [19, (17)] coincide with the Uka) . The generating
function (5.13) is also given in [11, Lemma 3.7] and [23, (53), (54)] and, for
the case n = 2 in [12, (4.1)] and [23, (43), (44)].

As before we put a (x) = Y\{xk - x¡). Then (5.12) can be written as

n+1
ap{x) Y[{1 - zxXj + z2x) + ■■■ + (-l)"+lz   ,x"+V

(5.14) fJi
-Vf/ Xa'••■xa"xa"+1

where the sum is over all (n + l)-tuples (a,, ... , an+x) with a( £ (Z+)"+   and

(a, ,...,an,an+l) ~      (a,-n,a2-n+l,... ,a„-l ,a„+1) '

We want to obtain recurrence relations for the U . Recall thata

(5.15) U, , = e(s)U< >,       s£Sn+..
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Since by (2.8) we have
n+1

ap(x)=  Y e(s)Hxm~l>
s€Sn+l 1=1

we obtain from (5.12) that

(5-16) ¿V..,an+1)=°    ifa,+--- + a„+1<i«(«+l),
and
(5.17) U,„        „     , = e(s)Üln      „   , = e(s)
V ' (Ps{l)<~'Ps(n+l)) V   '     (P\,-,Pn+\) V   '

if p¡ = n - i + I (i = 1,..., n + 1).
These remarks give us all  ¿/, ,  with 0 < a. , ... , a ,.  < n.   If we° ("i.<*„+i) -      1 '     n+1   -

multiply (5.14) by (-1) zkx for k — 1, 2, ... , n + 1, add these terms up
and compare coefficients, then we obtain for s = 1, 2, ... , n+1 the recurrence
relations

n+1

(5.18) E(-1)^^I,...)Qj.1>aî-,as+1,...,a„+1) = 0,
r=0

a¿ > 0 (i: ̂  5), as > n + 1.
The starting values are given by (5.15), (5.16) and (5.17). If we restrict to
the polynomials Ü{a¡ n_x n_2_, 0) = U{a¡_n0_0) (a, > 0) then it suf-
fices to use (5.18) for s = 1 and a¡. = « - i + 1 (/' ^ 1), together with
the starting values U, 0 0) = Sp 0 (p = 0, 1, ... , «). This special case
gives [19, Satz 4]; it also shows that the Chebyshev polynomials of the sec-
ond kind as defined by the recurrence relation [23, (3), (4)] are precisely the
V{k,0,...,o) = 0*«,,   (k>0) (take r = n + l in [23] then t/(fc0.0) = V$n_x).
To obtain the results in [11, 12] one takes the special case a., = I + n — i + 1
(i = 2,3,...,«) and a¡ = A; + / + n for / > 0 fixed.  This leads to a re-

l iicurrence relation for the polynomials Pkl = C/(fe+/ ,     ¡ 0) = Ux      (cf. sub-
section a) which is precisely [11, Theorem 3.9] and, for the case  n = 2,
[12, Theorem 4.4] (to obtain the other recurrence relation in [11,  12] one
uses U{k+t,i,...,i,o)(zi> •■• > z«) = tW,*,*,...,*^2»' ■•• > *i), which is (5.4)).
Note that in contrast to [11, 12] we do not need any starting values other than

111(5.15)—(5.17). As an example we show how the starting value Px , in [11, The-
1/2 ~orem 3.9] can be obtained. Now Px x — U,2 x 10) = U,n+2 n n_x 2 0) so

that we use (5.18) for s = 1, a, = n + 2, a¡ = n - i + 2 (i ^ 1). Since by
(5.15) Ù, , = 0 if a. = a,,   (i ± j), we obtain

U(n+2,n,n-\,...,0)  = Zl ^(n+1 ,n,n-l ,...,2,0) + l-*) Zn+1 ̂ (1 ,n,n-l ,...,2,0) •
We have

^(n+l,n,n-l,...,2,0)(Zl ' •" ' Zn> =  ^(1,1,..., 1,0)(Z1 ' "• ' Z«)

~ ^(l,0,...,0)(Zn ' •■• ' Zl) = Zn '
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where the second equality follows from (5.3) and the third one is immediate
from (5.18) together with (5.16), (5.17). Furthermore, by (5.17),

u(l,H,n-l,...,2,0)       v    l)        >

so that indeed

P\a = U(2,1 ,...,1,0) = ZlZn - Zn+1 = ZlZn " l ■

For the case n = 2 the polynomials P¡', (0 < i < j < 2) in [12, Theorem 4.4]
follow analogously.

6. Chebyshev polynomials of the first kind

a. Definition. As in §5 we let zk (k = 1,2,...,n+1) be the kth elementary
symmetric polynomial in the variables x = eia>  (j = 1,2, ..., n+1) where we
assume that ax-\-r-an+1 = 0 so that zn+x = xxx2 ■ ■ ■ xn+x - 1. For a partition
k - (kx, k2, ... , kn, kn+x) with k x - 0 we consider the polynomials mk —
m,k      x  0) in x,, ... , xn defined by (cf. (2.1))

mx = mx(xx ,...,*„) = E*i 'x22 • ••x/x,-',

where the sum is taken over all distinct permutations a of 1. We can express
mx as polynomial in the zk and we will write

mk = Tk(zx,z2,...,zn).

The Tx are called Chebyshev polynomials of the first kind. Note that (cf. (2.2))

r(i,...,i,o,...,o) = zk (k times 1 in (1, ... , 1, 0, ... , 0)).

Example. Let n = 1  and put A, = k, mk = m,k 0> and Tk = T,k 0)   (k >
0). Then z, = 2cosa,, and mk(xx) = x, + x2~ = e' "' + e~' a', so that
Tk(zx) = Tk(2cosax) = 2coskax. Hence \Tk(2zx) are the classical Chebyshev
polynomials of the first kind in one variable. Note that if we do not impose the
condition x,x2 = 1, then the Tk(zx, z2) are the polynomials which express the
power sums pk — x, + x2 in terms of the elementary symmetric polynomials
zk-

Up to a constant the above definition is also given in Bacry [3, IV. 1] and Eier
and Lidl [14, §2]. Next take A of the special form A = kk ¡ = (k+l,/,...,/, 0)
(cf. §5.a). Since x,x2 ---x , = 1 it then follows directly from the definition
that

n+1 n+1

"\, = EExÍV'
,=1   7=1

7¥¿

which shows that the Tk (k, I > 0) correspond to Pk\/2{x, 1) the poly-

nomials in [11, Definition 2.1] and, for the case n = 2, P~\,2(x, y) in [12,
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Definition 3.1] (if k,l > 0 then  Tk     = Pkj/2; if k = 0 or / = 0 then

Tx    = n~lPkj/2). If moreover / = 0 then (cf. (2.5))

(6.1) mk = mXkt0=XÍ + — +Xn+l>

so that T. = 7\      expresses the power sums in terms of the elementary sym-
K Ak,0

metric polynomials (modulo the substitution z   , = 1). This also shows that
the Tk are the polynomials g\ ' (k > 0) as defined in [19, §2.a]. As noted
before (in §5.a), the variables u = 3/o(0) and v = 3f0(-6) in [23, (48), (49)]
are the elementary symmetric polynomials in the x = e£j (j = 1,2,3) (f0
and e   as in [23, §§1-2]). Furthermore, 3f0(k6) in [23, §2] is the kth power
sum, so that the Tk as defined in [23, (61)] are equal to the Tk_x defined
above (these remarks also imply that [23, Teorema V] is the statement that the
power sums can be expressed as polynomials in the zk). The polynomials lk as
considered by Bacry [2, V.2], [3, IV. 1] also equal Tk . For n = 2 the Tx occur
as the special case a = — \ in Koornwinder [18, III—IV] (cf. [18, III, (3.3)];
also see the remarks in §5.a); for arbitrary n they are the special case y = 0 in
Debiard [7] (but no proofs are given).

We end this subsection with a simple symmetry property of the Tx . Consider
W~x, where the bar denotes complex conjugation. Then mj consists of a sum
of terms of the form

where s £ Sn+X. Suppose s(j) = 1, then

-Ku)aj = -Wj =ll(al + -~ + a._x + aj+x + ■■■ + an+x),

so that

_^(l)fll K(n+\)an+\

= (*l - K(\))a\ + ' ■ • + (¿i - K(j))ai + ' ' • + (¿i - K(n+l)K+l
Consequently,

mx = m-w0X'

where -w0k is the partition (kx, kx-kn, A, —kn_x, ... , A, - A2, 0) (compare
with §5.a). In particular we have z^ = zn+x_k (cf. (3.5)), so that we obtain

,62v r(A,,...,^,0)(Zl' ■•• ' Zn)~ T(Xl,...,Xn,0)(Zn' ■•■ ' Zl)

= r(A|,A1-A„,...,A,-A2,0)(Zn' ••• ' Zl)-

This result generalizes [11, Lemma 3.1] and reduces for n — 2 to [12, Lemma
3.5]. In this context we note that the polynomials n~ P$ k = n~ PZk 0 (k >
0)  in [11, (2.8) for b = 1], [12, §3] are equal to  T{k' JcJ))(zx, ...', zn) =

_i j'y
T,k 0     0Jzn , ... , Zj).   More generally, the polynomials P¡ k     fork,l<
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0 correspondió T(k+¡k.kQ)(zx, ... , z„) = T{k+¡^J0)(zn, ... , z,) (they
are equal if k, / < 0).

b. Differential equation. As in the beginning of §3 we put E = {v £ Rn+ \
(v, ex + • • • + 6„+1) = 0} and we consider e. as linear functional on E.  So
e : E -> R, Sj(v) = a- if v — Hfl,e, e £■ Also e¡ -I-h en+1 =0 on E.
Since a. = -ax - • • • - a,_, + «a. - aj+x-an+x, each x , and thus also
mx, can be considered as function on E by putting

/    v ((-£,-£,    ,+n£:-E,,.-8.4.1»«) _   r-  / • 1 ,    i\x.(u) = e    '       ;_1    '  i+'       "+l    ,      veE(j = l,...,n + l).

Let Aa denote the Laplacian in the coordinates ax, ... , an+x , i.e.

n+1    „2

7=1 daj

considered as differential operator on E (cf. [4, Appendix 2]). Then it follows
immediately that

where the inner product is taken on E, i.e.
n+1 n+1 n+1

{k,k)=Y^p)    if   ¿ = E<"A    with    E^;=0-
;=1 ;=1 j=l

If k = kxex + ---+knen then /i;. = (-A,-A^ + hA^-A^j-AJ/(« + l)
so that we obtain

(A,A) = (A2 + --- + A2)-(A1+-.. + AJ2/(« + l).

For the special case kk t = (k + l)ex + le2 -\-h len we recover (5.6). Now the
operator Aa is exactly the operator L(0) as given by (3.1). In particular we get
from (3.2) the expression of Afl = L(0) in the coordinates zx,... , zn, where
again we have to remember to put in a factor -4~    (cf. §5.b). Consequently
the Tk satisfy the following differential equation

(6.3) L(0)Tk(zx,..., zn) = 4(k,k)Tk(zx,..., z„).
Example. Take k = cok = (1,..., 1,0,...,0)   (k times 1) then

■'(1.1,0.0) = Zk

so the eigenvalue should be 4(cok , cok) = 4k(n-k+ l)/(« + 1) (cf. §5.b), which
is indeed correct.

From (6.3), and the expression for (A, A) above, all results on differential
equations satisfied by Chebyshev polynomials of the first kind in [1, 2, 3, 13,
19] follow. If we take A = kk ¡ as above then [13, Theorem 1] follows from
(3.2), (5.6) and (6.3). The special case / = 0 and n = 2 or 3 gives [19, (31),
(32) and Satz 7, (39)]; for n = 2 this is also the case a = -¿ in [18, IV,
(5.17)]. For the case / = 0, n = 2, Ricci [23, (86)] only derives a third order
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partial differential equation for the Tk = Tk (= tL'+X) in his notation), which
is [18, IV, (6.6) and (6.4)] (replace (m, n) in [18] by (« - 1, 0)) ; also see [24,
§2]. In §5.b we noted that \{n + 1)L(2) is equal to An+X + (n + 2)Dn+x in [3,
III.4]. Since

n

L(2) - L(0) = 4^7(n - J + l)z7^ = 4Z)„+1,
7=1

it follows immediately that

\(n + l)L(0) = An+x+Dn+x.
This gives the differential equation for the Tk = T,k 0 0) in [2, V.2.b], [3,
IV. 1] and, for the case n = 2, [1].

c. Orthogonality. In §5.c we have already shown how one can obtain the
Jacobian (5.9) for the transformation {ax, ... , an) —► (z, , ... , zn) from the
well-known result (5.8). We also noted that this Jacobian is positive on P0 —
{(ax, ... , a x) eRn+1|£a( = 0, an+1+27c > ax > ■■■> an+x}. Consequently,
the polynomials Tx and Tv (A and v partitions, k±v) are orthogonal on the
transformed region R with respect to the weight function p{zx, ... , zn)_1/2,
where p(zx, ... , zn) is given by (5.11). This proves all main results in [14].
It also gives [2, V.2.c] and answers the "open problem" [2, V.2] (also see [3,
IV. 1]). For « = 2 these results are contained as the special case a = -\ in
[18, III-IV].

d. Generating function and recurrence relation. Notations are as in §5.d. From
(2.12) one obtains a generating function for the Tk :

n+1

(6.4) n(i-zA+---+(-i)',+lzn+^r1r1=E7;(z.'---'zn)^w-
k=l

Here the sum is taken over all (n + l)-tuples kx, ... , kn+x with A, > A2 > • • • >
kn+1 > 0. We have not been able to obtain a simple recurrence relation for the
Tx from (6.4). The reason is that although the hk form a basis for the symmetric
polynomials, the left-hand side of (6.4) seems to have no simple expression
directly in terms of the hk . For the special case A = kex = kcox one can proceed

k kas follows. Recall from (6.1) that mk(y) = m(k 0     0)(y) =yx H-tyn+x, the
kxh. power sum pk{y) ■ Also, if E(t) = f]"=i (1 +y¡t) (cf. (2.3)), then we obtain
from (2.6) that

(6.5) £ Tk(zx ,..., Zy-' = E'(-t)/E(-t).
k>\

Since
tE\-t) + (n + \)E(-t) = {n + l)-nzxt + (n- l)z/ + ■■■ + {-l)"zntn ,

it also follows that

(6.6) n + 1 + £ Tk(zx,..., zn)tk =    ¿(-\)\n - j + l)z/    /E(-t).
k>l \j=o I
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This gives [19, Satz 1], [11, Lemma 3.4] and, for the case n = 2, [12, (3.2),
(3.3)] and [23, (63), (64)]. From (6.5), or equivalently from (6.6), the recurrence
relations and starting values for the Tk follow immediately. In fact,

fc-i
(6.7) 2~2(-l)jzJTk_j = (-l)k-lkzk,        k> 1,

7=0

where zk = 0 if k > n + 1 and z0 = zn+x = 1. Of course these are just the
Newton identities (2.7). This result is [19, Satz 2] (also see [11, Lemma 3.4])
and, for the case n = 2, [23, (69)]. The Newton identities (6.7) together with
(6.2) also give a recurrence relation for the T,k k 0). In fact, if we put zk = 0
for k < n , then

¿("^V/fiVAH.t-7.0) = (~1)*~ W*+>,        k > 1,
7=0

which we rewrite as

(6.8) nY,(-l)S+J~izs+jTU,...J,o) = (-l)S(n-s+Vzs>       *<«•
7=1

From (6.5) {or (6.6)) one can obtain generating functions for products of
polynomials Tk = T,k 0 0) ; and since we have the symmetry (6.2) one can
also form products involving the polynomials Tk and T,¡ , 0). This applies
in particular to the Tk    = T,k+l ¡     ¡ 0) for which one has the obvious relations

(6.9) T(k+i,i,...,i,0) = T(k,o,...,o)T(i,...,/,o) ~ Tk-i>        k,l>0,
where

f T(k-i,o,...,o) = Tk-i   ifk-l>0,
fk_,= I n+l ifk = I,

{^i-k,...,t-k,o) if*-/<0
(cf. [11, Lemma 3.3], [12, Lemma 3.2]). From these relations Dunn and Lidl
[11, Theorem 3.5], [12, Theorem 3.3] obtain a generating function and then
recurrence relations. Of course one can also obtain the recurrence relations for
the Tx     directly from (6.9). In fact, from (6.9) and (6.7) we obtain for k > 1

Ê(-l)^iV7+/^...,/)0) = (-1)*",fcz*7,(/,..,/,0)-Ê(-1)^/fc_J_/.
7=0 7=0

By symmetry we may assume k > I > 0. Put k - I = s, then it follows from
the definition of Tk_¡ that

E(-1)V*-7W= IB-^V*-;-/) +(-!)'<»+1)*,
7=0 \j=0 J

-1
k-l+j-l T

Zk-l+jl(J,...,j,Q)
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where we use the convention that an empty sum equals zero.  Now use (6.7)
with k replaced by k - I = s . Then we obtain that

(6.10)      Ê(-l)V(*-7+/,/,..,/,0)
7=0

= (-1) "l^z,t:r(/,/,...,/,o) + (-1) ~ (k-l-n- l)zk_i

+ 2>l)*-'+'-'zt_,+J7u.,_„.
7 = 1

If k -1 > n+ 1 then (6.10) reduces to

(6-11) E(-1)^/(H+/,/./,o) = 0.
7=0

and if0<rc-/<« + l then we can use (6.8) to rewrite (6.10) as
k-\

-fcJ(/,...,/,0)^-X)izjT(k-j+i,i,...y,) = {-^~\k-\)zkT(l
7=0

n-fc+1

+   Z^  (_1)       Zk+jT(I+j,...,I+j,0)'
7=1

which shows that (6.11) holds for any k > n + 1. In particular we obtain the
recurrence relations in [11, Theorem 3.6] and [12, Theorem 3.4]. Note that
the initial conditions in [11, Theorem 3.6] are the Newton identities (6.7) and
(6.8).

7. Orthogonal polynomials associated with root systems

First we remark that a good source for results on the Uk and Tx of alge-
braic/combinatorial nature is Macdonald's book [20]. There is of course a great
amount of literature available on characters of SL(n + 1, C) (and, more gen-
erally, on characters of complex semisimple Lie groups), all of which could be
of relevance if one wants to study the special class of Chebyshev polynomials.
That Chebyshev polynomials are indeed a special case of a more general class
of orthogonal polynomials is the subject of this last section.

As we have seen in §§5 and 6, Chevyshev polynomials of the first and second
kind are closely related to root systems of type A. If we put

Uk{zx,...,zn)    if a =2-,ifW-.*„) = {Tk(zx,...,zn)    ifa = 4,
then we can combine (5.5) and (6.3) into

(7.1) L(2a+l)JP<a)(z1,...,z„)^4((A,A) + (A,p(2a+l)))Jpf(z1,...,zJ,

where
p(2a+ 1) = (2a + l){nsx + (n - l)e2 + ■ ■ ■ + e ).
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The Pk are orthogonal on the region R (see §§5.c and 6.c) with respect to
the weight function p{zx, ... , zn)a, where p is given by (5.11). Debiard
[7] (no proofs are given) generalized these results to a general parameter a >
—(n + 1)~ — j . Also, the Px are eigenpolynomials of a family of « alge-
braically independent and commuting differential operators, one of which is
L(2a + 1) ; this family of commuting differential operators was also introduced
by Sekiguchi [24] (also see Macdonald [21] and the references given there). The
first systematic study of the Px for general a was carried out by Koornwinder
[18, HI-IV] for the case n = 2 (so a> -5/6). All of these results on the P(xa)
contain in particular the case a = ±\ and hence the result (7.1). To our knowl-
edge however, the expression (3.2) of L(2a + 1) in the z-coordinates was not
known (for n = 2 see [18, IV, (5.14)], which is also in [24, §2]); it is precisely
this result that enabled us to make the connection with the results on differential
equations in [1, 2, 3, 13, 19].

Orthogonal polynomials can also be introduced for other types of root sys-
tems. In [18, I—II] Koornwinder treated the case BC2 where he introduced
polynomials p(-a'P'y> involving three parameters a, ß and y. Again these
polynomials are eigenfunctions of two algebraically independent and commut-
ing differential operators. Vretare [27] gave the p(a'ß'y) for BCn (n > 1)
and showed [27, Corollary 4.4] that they were eigenfunctions of the generalized
radial part of the Laplace-Beltrami operator L(a, ß, y). Then Debiard [8],
[9] showed that the p(a'"'y> are eigenfunctions of a family of n algebraically
independent and commuting differential operators, one of which is L(a, ß, y).
The most general definition of this class of orthogonal polynomials associated
with arbitrary root systems is in [15, §8].

In the family of commuting differential operators the generalized radial part
of the Laplace-Beltrami operator L(m) (m = (mx, ... , mr) a certain set of
parameters) always plays a decisive role (cf. [15, Proposition 8.1]). Follow-
ing the same method as was used in [4, Appendix 2] to obtain (3.2), it is not
very difficult to calculate L(m) in the z-coordinates for the root system BCn
(n > 1 ). Let us state the result here. In E = R" we have the standard basis
sx, ... , en and inner product (•, •} for which this basis is orthonormal. Put
A = {±e;, ±2ei (1 < i < n), ±et ±Sj (1 < i < j < n)} and take e( - ei+1
(i = I, ... , n — 1), en as basis for A. The corresponding set of positive roots
will be denoted by A+. Put A0 = {a £ A\2a £ A} then A0 is a root sys-
tem of type Cn . Let cox,... , con be the fundamental weights of Cn then
co. = e, H-he    (j = I, ... , n). Define coordinates zx, ... , zn by

zk=   ^2   e2" '        k = 1, ... ,n.
p£W-wk

As usual eß (p £ E) is the function on E which sends v £ E to e . It
is easy to see that 2~ zk (k = 1,...,«) is the kih elementary symmetric
polynomial in the variables xx,..., xn, where x = cosh2e . Let LE denote
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the ordinary Laplacian on E. For m = (m,, m2, m3) e C we define the
operator L(m) by

L(/w) = L£ + Y^ ma cotha ôQ,
a€A+

where d denotes the derivative in the direction of a and mc — m. , ra~ =
m2 (i = 1, ... , n) and me±£ = m3 (1 < i < j < n). Write d¡ = d/9z;.
(/ = 1, ... , n). L(m) has the following expression in the z-coordinates

n   I"   7-1 7

L(m) = 4^8^rzj_r_xzj+r_x - 2£ rz._rzJ+r + jz) + 4(j - 1 - n)z)_x
7=1 L    r=\ r=\

■   7-1 7

4^> - ; + 2r)Zj_r_xzk+r_x - "£(k - j + 2r)zj_Tzk+r

*)

+ 8    E
l<7<fc<" r=\ r=\

+ jzjzk + 4(k- l-n)Zj_xzk_x djdk

+ 2 Yy1)2; + wi(>z7 +2{n-j+\ )Zj_x) + 2m2jzj
7=1

+ m,(j(2n - j - l)z. + 4(/i - ; + 2)(n - j + l)z7_2)]Ö;.

Here we use the convention that z, = 0 if j < 0 or j > n and z0 = 1.

Examples.

n = 1 (so m3 = 0):     L(w) = 4(z2 - 4)ö,2 + 2((mx + 2m2 + 2)zx + 2mx)dx ;

put z — 4~ (2 — z,), then one obtains the hypergeometric differential equation
(cf. [22, Chapter II, (2.15)], [8, p. 365], [9, p. 51], [10, (4.11), (7.5)]).

n = 2:    L(m) = 4(z] - 2z2 - 8)dx + 8(z,z2 - 4zx)dxd2 + 8(z2 - 2z\ + 4z2)d\
+ ((2m, + 4m2 + 4m3 + 4)z, + 8mx)dx
+ (4mxzx + 4(mx + 2m2 +■ w3 + 2)z2 + 16w3)ö2;

this is [18, II, (4.1)] if we put zx = 2u, z2 = 4v , mx = 2a-2ß, m2 = 2ß + 1,
m3 = 2y+1 and divide by -4 (also see [22, Chapter II, (2.23)]; take 2kx = m3,
2k2 = m2 , 2A:3 = mx and divide by 4).

Remarks. 1. In [27, p. 816], [8, p. 365], [9, Chapter I, §3], [10, (4.9)], the
operator L(m) is given in the coordinates xx,... , xn for arbitrary n .

2. If m, = 0 we obtain the Cn case. The only miniscule weight for Cn is
tox ([6, Chapter VIII, §7, no. 3] but there is a misprint: types B and C are
interchanged). By the remarks in §2 we obtain that z, should be an eigenfunc-
tion of L((0, m2, m3)), which is indeed the case. If w3 ^ 0 then z¿ (i ^ 1)
is not an eigenfunction of L(m).

Concerning the orthogonality of the P in the BCn case we note that
there is a close connection between the weight function for An and BCn in
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the z-coordinates. Define the weight function p(a (z,, ... , zn) (for real
parameters a, ß ,y satisfying certain conditions; see [18, I, §2] for the case
n = 2 and [27, §4], [9, Chapter I, §§3 and 6] for the general case) by

m(a,ß'y\xx, ... ,xn)dxx--dxn = p{a'ß'y)(zx, ... , zn)dzx---dzn,

where

m(^'rt(x1,...,x„) = n(l-x/(l+x/    n   (*,-■*/*'
1=1 l<i'<7<n

(ifa = j,ß = 0,y = 0 then mra'ß,y) corresponds to the function ô ' given
by (2.16)). As in §5.c we now use (4.6) (and in this case also (2.3)) to rewrite

\delb\y,

p} 'H'" as

P '(z,,...,zj
r=0r=0

where c is a constant and b is the Bezoutian matrix. In contrast to §5.c
however, we do not substitute zn = 1 in b (note that n is shifted by one in
§4). For n = 2 we recover [18,1, (3.12)] (also see [22, Chapter II, (2.25)]). For
arbitrary n we get an expression for the function <p in [9, §6.a].

Another important concept related to orthogonal polynomials associated with
root systems is that of a shift operator. These are differential operators which
link polynomials corresponding to different values of the parameters. They
were first introduced for t3C2 by Koornwinder [18, II, §5]. For A2 the shift
operator was found by Vretare [27, §8] (see [4, §§4 and 5] for some more details
and references and also the A3 case). As an example we will describe the A2
case and apply the results to the Chebyshev polynomials Uk and Tx . So we let
n = 2 in §§4 and 5 and we put P¡a) = pff if k = kkJ = (k + l)ex + le2. The
following results can be found in [27, §8]. Define the differential operator D_
in z,, z2 by

D{°] = dx + d\ + zxdxd2 + z2dxd\ + (a + 5/2)dxd2 .
Then

Di:)P^l = c(k,l;a)Pt+l%,
where c(k, /; a) is a constant depending on k, I and a (note that kk_x ¡_x =
kk ¡ - (2ex + e2) = kk ! - p). In particular

F>_      T(k+ll0)(zx, z2) = c(k, I; -2)U(k+i-2,i-\,o)(z\ > z2)-

Here we have
2,2,

c(k,l;-¡) = (U[k+¡_2t¡_Xt0)(3,i)/T{k+¡_2íl_XtQ)(3,3))kT(k + ir/l2.
A systematic treatment of shift operators can be found in [22]; in particular

it is shown [22, Chapter III, §3] that shift operators exist for all root systems.
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For explicit expressions for the BCn case we refer to [27, 9] and the references
given there.
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Notes added in proof.
1. In §4 we showed that the coefficients of t ~ s ~ in (4.1), i.e. F(t, s),

are precisely the coefficients of dkd¡ in (3.2). Our proof explicitly determined
these coefficients. A direct proof is given in Proposition 2.4.2 of the following
paper: K. Saito, T. Yano and J. Sekiguchi, On a certain generator system of the
ring of invariants of a finite reflection group, Comm. Algebra 8 (1980), 373-408.
They do not determine the coefficients explicitly. A similar result is stated for
B,.

2. In §4 we also showed indirectly (in the proposition) that the coefficients
of t ~ s ~' in F(t, s) are precisely the polynomials bn_k ¡ in (4.4). We
remarked that we could not find a simple direct proof of this result. We thank
the referee for providing us with a direct proof. Let us give a brief outline.
From (4.1) and

n+1

E'(s)/E(s) = J2xi/(l+sxi)
i=i

we have
F(t,s)/E(t)E(s)

X2 ^ XjXj

1        ;^(l+sx,)(l + /x..)     f^+ SX;){1 + tX¡)       *-".  (1 + 5X(.)(1 + tXj)

in which the coefficient of sat   is

,    .-.a+b I /     ,   ,,r<    a+b+Z     v~*    "+l   b-
Sab = (-1)        \(n+l)J2Xi "E*,      XJ

{ i i.j
Hence the coefficient of sptq in F(t, s) is

P      Q
fp« = EE^iV/,-i = (»+1) E (-va+t>eP-aeq-bxtxa+è a+b+2

a=0 i)=0 i,a,b
^a+b a+\   b+\

ep-aeo-bXi     Xj
i,j,a,b

E (_i)a"

From the definition of f   ,  one obtainsP+i
p

Y.^)aep-axr = ^)PfP+M^ep+x
a=0
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and so

/„ = (-d'+? I (» + i>E4«(*i>/f+i<*i) - E-W^-W*;)
= (-l)p+9{(n + l)S[fp+xfq+x] - S[fp+x]S[fq+x]}

=(«+i)(-irvP-., „-,-!■
The last two equalities follow from the definitions of S[-] and the b¡,. This
proof can replace the proposition in §4. Note that one does not obtain the
coefficients explicitly.

3. Chebyshev polynomials of the first kind associated with root systems
have also been treated recently in the paper [HW1]: M. E. Hoffman and
W. D. Withers, Generalized Chebyshev polynomials associated with affine Weyl
groups, Trans. Amer. Math. Soc. 308 (1988), 91-104. The "generalized co-
sine" in this paper coincides with the "z-coordinates" as used in §3 for An ,
in §7 for BCn and in [15 and 22] for a general root system. Let <j> be the
JF-orbit of A (W a Weyl group) and j^ as defined in [HW1, §5]. For the
root system An the j, are exactly the Tx from §6a. Note that in [HW1] the
term "Chebyshev polynomial" is restricted to the cases A = kcoi (i = I, ... , n)
with o>( the fundamental weights. For the case An Theorems 5.1, 5.3 and 6.1
in [HW1] correspond to results as described in §6c. As we have indicated in §7
these results are also known for arbitrary root systems. Theorem 6.2 in [HW1]
are the well-known Newton identities (2.7).

In a second paper ([HW2]: Linear characters of Weyl groups and associated
multivariable orthogonal polynomials, preprint) the same authors treat Cheby-
shev polynomials of the second kind associated with any linear character x of
W. In fact these characters are only used to split the given root system A with
Weyl group W into subsets A(/) that contain one or more W-orbits. For the
sign character e.g. one obtains all of A. Let us indicate the relation with the
material treated in our paper. For any root system A in a Euclidean space E
we define a differential operator L(m) by

L(m) = LE + Y2 wac°thadQ
a€A+

(cf. (3.1) for A = An, §7 for A = t3C„ and [15, 22] for the general case). Here
m are complex numbers such that m = m,„ for all w e W. We call m
the multiplicity of a £ A. As in the case An this operator is the radial part of
the Laplace-Beltrami operator on certain symmetric spaces of the noncompact
type for specific integer values of the ma. The case ma = 2 for all a £ A
corresponds to the complex semisimple Lie group with root system A. Exactly
as in the case of An one defines Chebyshev polynomials of the second kind
as the characters of the finite dimensional irreducible representations of these
complex groups. In [HW2] these are obtained by using the sign character of W .
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They are indexed by the dominant weights A and are eigenfunctions of L(2)
(i.e. L(m) with all ma — 2). Let us also note here that Chebyshev polynomials
of the first kind are obtained by considering sums over W of elw (cf. §6a where
W is the permutation group) and that these are obtained in [HW2] by use of
the identity character of W. They are eigenfunctions of L(0), i.e. ma = 0
for all a . Now when A is irreducible and has only one root length then these
are the only two W^-orbits in A (0 is considered a H^-orbit here). When A
is irreducible and has two root lengths then there are two intermediate cases:
ma = 0 for one W-orbit and ma = 2 for the other PF-orbit; in [HW2] this
splitting is achieved using characters of W. This results in two more classes
of Chebyshev polynomials of the second kind. These two classes correspond to
the Jacobi polynomials as defined in [15, 22] when the parameters are chosen
appropriately (e.g. 2ka in [15, 22] equals ma). In fact this follows immediately
from [ 15, §8] and the fact that these Chebyshev polynomials are orthogonal with
respect to the appropriate weight function. Furthermore they are eigenfunctions
of L(m) with m = 0 for one W-orbit and m = 2 for the other W-orbit.
The eigenvalues follow from [15, §8]. As an example one can find from [22,
(2.27)] the operator L(m) for G2 which has the Chebyshev polynomials as
eigenfunctions in the four cases mentioned above.

4. Chebyshev polynomials associated with An are closely related to the so-
called zonal polynomials that are used in multivariate statistics (cf. [21] and
the references given there). More generally (cf. §7) the Jacobi polynomials
associated with An are closely related to the Jack polynomials in [21]. In
fact, the relation can easily be described if one expresses both as polynomi-
als in z,, z2, ... , zn+x (z; as usual). Jacobi polynomials can be obtained
from Jack polynomials by the substitution zn+x = 1. When a Jacobi polyno-
mial in the variables zx, ... , zn is made into a homogeneous polynomial in
zx, ... , zn, zn+x one obtains Jack polynomials. The normalizing constant can
be obtained from results stated in [21] (we also note that 2/a in [21] equals m).
The zonal polynomials mentioned above are special cases of Jack polynomials.
They are eigenfunctions of the radial part Lx(m) of the Laplace-Beltrami oper-
ator for GL(n + 1, F)/U(n + 1, F) where F = R, C or H and m = 1, 2 or 4
correspondingly. Jack polynomials are eigenfunctions of Lx(m) for general m
(cf. [21, §2]). One can obtain Lx(m) explicitly in the z-coordinates. The result
is of course closely related to the case An. We finally mention that recently
^-analogues of orthogonal polynomials associated with arbitrary root systems
have been introduced by Macdonald (Orthogonal polynomials associated with
root systems, preprint, 1988).
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