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CHEBYSHEV’S BIAS FOR COMPOSITE NUMBERS
WITH RESTRICTED PRIME DIVISORS

PIETER MOREE

Abstract. Let π(x; d, a) denote the number of primes p ≤ x with p ≡
a(mod d). Chebyshev’s bias is the phenomenon for which “more often”

π(x; d, n) > π(x; d, r), than the other way around, where n is a quadratic non-
residue mod d and r is a quadratic residue mod d. If π(x; d, n) ≥ π(x; d, r) for
every x up to some large number, then one expects that N(x; d, n) ≥ N(x; d, r)
for every x. Here N(x; d, a) denotes the number of integers n ≤ x such that
every prime divisor p of n satisfies p ≡ a(mod d). In this paper we develop
some tools to deal with this type of problem and apply them to show that, for
example, N(x; 4, 3) ≥ N(x; 4, 1) for every x.

In the process we express the so-called second order Landau-Ramanujan
constant as an infinite series and show that the same type of formula holds for
a much larger class of constants.

1. Introduction

Especially for small moduli d primes seem to have a preference for nonquadratic
residue classes mod d over quadratic residue classes mod d. This phenomenon is
called Chebysev’s bias [4] (the term used in the older literature in this connection
is the Shanks-Rényi primes race problem). For example, π(x; 3, 1) does not ex-
ceed π(x; 3, 2) for the first time until x = 608981813029, as was shown by Bays
and Hudson [1]. On the other hand Littlewood [21] has shown that the func-
tion π(x; 3, 2) − π(x; 3, 1) has infinitely many sign changes. The comparison of
the behaviour of primes lying in various arithmetic progressions is the subject of
comparative prime number theory, which was systematically developed in a se-
ries of papers by Knapowski and Turán; cf. [17, 40, 41]. Knapowski and Turán
quantified Chebyshev’s vague formulation by conjecturing that if N(x) denotes the
number of integers m ≤ x such that π(m; 4, 1) ≥ π(m; 4, 3), then N(x) = o(x).
After Knapowski and Turán’s work a period of relative silence followed, until Kac-
zorowski revived this topic in a series of papers (for a recent survey see [16]). In
[15] he showed that we cannot have N(x) = o(x) under the Generalized Riemann
Hypothesis (GRH).

Rubinstein and Sarnak [34] were the first to quantify some biases under GRH
and the assumption that the nonnegative imaginary parts of the nontrivial zeros of
all Dirichlet L-functions are linearly independent over the rationals. Define δq,a1,a2
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to be the logarithmic density of the set of real numbers x such that the inequality
π(x; q, a1) > π(x; q, a2) holds, where the logarithmic density of a set S is

lim
x→∞

1
log x

∫
[2,x]∩S

dt

t
,

assuming the limit exists. Under the aforementioned assumptions and assuming
that (Z/qZ)∗ is cyclic, Rubinstein and Sarnak showed that δq,a1,a2 always exists and
is strictly positive and, moreover, that δq,n,r > 0.5 if and only if n is a nonsquare
mod q and r is a square mod q. They calculated, amongst others, that δ4;3,1 =
0.9959 · · · and δ3;2,1 = 0.9990 · · · . Thus Chebyshev’s bias is not only an initial
interval phenomenon. An important ingredient in their approach is a formula for
the Fourier transform of a distribution function, which turns out to be an infinite
product involving Bessel functions. This formula, however, was first derived by
Wintner [43] (a simpler proof was given later by Bochner and Jessen [3]).

Let gd,a(n) = 0 if n has a prime divisor p satisfying p 6≡ a(mod d) and gd,a(n) =
1 otherwise (note that gd,a(1) = 1). We let N(x; d, a) =

∑
n≤x gd,a(n). The

contribution of the small primes to the growth of N(x; d, a) is much bigger than
to π(x; d, a) and hence we might expect that if π(x; d, a) ≥ π(x; d, b) up to some
reasonable x, then actually N(x; d, a) ≥ N(x; d, b) for every x. In general, given
two nonnegative multiplicative functions f and g such that f and g are equal in the
primes on average to a positive constant τ and such that there is a bias towards f
in the sense that

∑
p≤x f(p) ≥

∑
p≤x g(p) for all x up to some rather large number,

is it true that
∑

n≤x f(n) ≥
∑
n≤x g(n) for every x ? The asymptotic behaviour

of the latter type of sums is well understood and so proving that these types of
results are true asymptotically is usually not difficult. We can, for example, invoke
the following classical result due to Wirsing [44].

Theorem 1 (Wirsing [44]). Let f be a multiplicative function satisfying 0 ≤
f(pr) ≤ c1c

r
2, c1 ≥ 1, 1 ≤ c2 < 2, and

∑
p≤x f(p) = (τ + o(1))x/ log x, where

τ, c1 and c2 are constants. Then, as x→∞,∑
n≤x

f(n) ∼ e−γτ

Γ(τ)
x

log x

∏
p≤x

(
1 +

f(p)
p

+
f(p2)
p2

+
f(p3)
p3

+ · · ·
)
,

where γ is Euler’s constant and Γ(τ) denotes the gamma-function.

(Here and in the sequel the letter p is used to indicate primes.) We thus see
that, for i = 1 and i = 2,

(1) N(x; 3, i) ∼ e−γ/2√
π

x

log x

∏
p≤x

p≡i(mod 3)

(
1− 1

p

)−1

,

showing clearly the strong influence of the smaller primes. By [42, Theorem 2] we
deduce from the latter formula that N(x; 3, i) ∼ C3,ix/

√
log x, with

(2) C3,1 =
31/4

π
√

2

∏
p≡1(mod 3)

(
1− 1

p2

)− 1
2

=
√

2
3

5
4

∏
p≡2(mod 3)

(
1− 1

p2

) 1
2

,

where in the derivation of (2) we used Euler’s identity π2/6 =
∏
p(1− p−2)−1 (an-

other, self-contained, derivation of (2) is given in Section 6). Using Mertens’ theo-
rem or [42, Theorem 2] again, we easily infer that C3,2 = 2/(3πC3,1). Restricting to
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the primes p ≤ 29, we compute that C3,1 < 0.302 and C3,2 > 0.703 (for more precise
numerical evaluations see Section 6). We thus infer that N(x; 3, 2) ≥ N(x; 3, 1) for
every sufficiently large x. If we want to make this effective, the extensive literature
(cf. [30]) on multiplicative functions satisfying conditions as in Wirsing’s theorem
appears to offer no help as nobody seems to have been concerned with proving
effective results in this area, which is precisely what the Chebyshev bias problem
for composites challenges us to do. In this paper we develop some tools for this and
apply them to prove:

Theorem 2. The inequalities N(x; 3, 2) ≥ N(x; 3, 1), N(x; 4, 3) ≥ N(x; 3, 1),
N(x; 3, 2) ≥ N(x; 4, 1) and N(x; 4, 3) ≥ N(x; 4, 1) hold for every x.

Not surprisingly the Chebyshev bias problem for composites is rather computa-
tional in nature and this appears to prohibit one from proving more general results.

The counting functions appearing in Theorem 2 can be shown to satisfy more
precise asymptotic estimates than (1). Theorem 3 together with the prime num-
ber theorem for arithmetic progressions, show there exist constants Cd,a, Cd,a(1),
Cd,a(2), . . . such that for each integer m ≥ 0 we have

N(x; d, a) =
Cd,ax

log1−1/ϕ(d) x

1 +
m∑
j=1

Cd,a(j)
logj x

+O

(
1

logm+1 x

) ,

where the implied constant may depend on m, a, d and Cd,a > 0. Thus N(x; d, a)
satisfies an asymptotic expansion in the sense of Poincaré in terms of log x. The
most famous example of such an expression states that for B(x), the counting
function of the integers that can be represented as a sum of two integer squares,
we have

(3) B(x) =
Kx√
log x

1 +
m∑
j=1

Kj+1

logj x
+O

(
1

logm+1 x

) ,

where K is the Landau-Ramanujan constant and K2 the second order Landau-
Ramanujan constant. The Landau-Ramanujan constant is named after Landau
[19], who proved in 1908, using contour integration, that B(x) ∼ Kx/

√
log x and

Ramanujan, who in his first letter to Hardy claimed he could prove that

(4) B(x) = K

∫ x

2

dt√
log t

+O(x1/2+ε);

cf. [25]. Ramanujan’s claim implies K2 = 1/2 by partial integration, which was
shown to be false by Shanks [38]. Indeed, we have

K =
1√
2

∏
p≡3(mod 4)

(
1− 1

p2

)−1/2

= 0.76422365358922066299069873125 · · ·

and

K2 =
1
2
− γ

4
− 1

4
L′

L
(1, χ−4) +

log 2
4

+
1
2

∑
p≡3(mod 4)

log p
p2 − 1

= 0.58194865931729 · · · ,

where for any fundamental discriminant D, χD denotes Kronecker’s extension
(D/n) of the Legendre symbol [10, Chapter 5]. In his “unpublished” manuscript
on the partition and tau-functions Ramanujan [2] made claims similar to (4), for
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various primes p, regarding the functions counting the integers 1 ≤ n ≤ x with
p - τ(n), where τ denotes Ramanujan’s tau-function. Here again the asymptotics
turn out to be correct, but the second order constants are not conforming to reality
[24].

It was a folklore result that B(x) should satisfy (3), which was written down by
Serre [37], who gave some nice applications to Fourier coefficients of modular forms
as well.

Let f be a nonnegative multiplicative function. Suppose there exists a positive
constant τ such that∑

n≤x
f(n) = λ1(f)x logτ−1 x

(
1 + (1 + o(1))

λ2(f)
log x

)
, x→∞.

We then define λ2(f) to be the generalized second order Landau-Ramanujan con-
stant. In Theorem 4 we will identify a subclass of multiplicative functions for which
this constant exists and express it as an infinite series.

The second order generalized Landau-Ramanujan constant λ2(f) is closely re-
lated to the constant Bf appearing in the proof of Lemma 1 (the key lemma in the
proof of Theorem 2). (I suggest reading the next section first before going further.)
Lemma 1 yields an effective estimate for mf (x), provided we can find constants
τ, C− and C+ satisfying (8). For the functions f associated to the quantities in
Theorem 2 we find admissible values of these constants in Section 8, which requires
effective estimates for counting functions of squarefree numbers of a certain type
(Section 7). (At the end of Section 8 we show that under GRH finding C− and C+

is much easier.) In Section 4 we show how to obtain effective estimates for Mf(x)
from effective estimates for mf (x). In Section 9 we show how to prove certain
subcases of Theorem 2 for every x up to some large x0 using existing numerical
work on the associated Chebyshev prime biases. All these ingredients then come
together in Section 10, where a proof of Theorem 2 is given.

In Section 5 we find an infinite series expansion for the constant Bf appearing
in Lemma 2 (we have C− ≤ Bf ≤ C+) and relate it to the generalized second order
Landau-Ramanujan constant. Section 6 contains a numerical study of some of the
constants appearing in this paper.

In [26] the methods developed in this paper are somewhat refined and then are
used to prove Schmutz Schaller’s conjecture (see [35, p. 201] or the introduction of
[8]) that the hexagonal lattice is “better” than the square lattice. More precisely, let
0 < h1 < h2 < · · · be the positive integers, listed in ascending order, which can be
written as hi = x2 + 3y2 for integers x and y. Let 0 < q1 < q2 < · · · be the positive
integers, listed in ascending order, which can be written as qi = x2 + y2 for integers
x and y. Then Schmutz Schaller’s conjecture is that qi ≤ hi for i = 1, 2, 3, . . . .

2. Notation

Let f be a nonnegative real-valued multiplicative function. We define Mf(x) =∑
n≤x f(n), mf (x) =

∑
n≤x f(n)/n and λf (x) =

∑
n≤x f(n) logn. We denote the

formal Dirichlet series
∑∞

n=1 f(n)n−s associated to f by Lf (s). If f(p) equals τ > 0
on average at primes p, it can be shown that lims→1+0(s − 1)τLf (s) exists, under
some mild additional conditions on f . In that case we let

Cf =
1

Γ(τ)
lim

s→1+0
(s− 1)τLf(s).
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We have Cf > 0. We define Λf (n) by

−
L′f(s)
Lf(s)

=
∞∑
n=1

Λf (n)
ns

.

Notice that

(5) f(n) logn =
∑
d|n

f(d)Λf (
n

d
).

The notation suggests that Λf (n) is an analogue of the von Mangoldt function.
Indeed, if f = 1, then Lf (s) = ζ(s) and Λf (n) = Λ(n). From (5) we infer by
Möbius inversion the well-known formula

(6) Λ(n) =
∑
d|n

µ(d) log
n

d
.

In general, on writing Lf(s) as an Euler product, one easily sees that Λf (n) is zero
if n is not a prime power. If f is the characteristic function of a subsemigroup of
the natural integers with (1 <)q1 < q2 < · · · as generators, then it can be shown
that Λf (n) = log qi if n equals a positive power of a generator qi and Λf(n) = 0
otherwise. Thus, for example, if f = gd,a, then Λgd,a(n) = log p if n = pr, r ≥ 1
and p ≡ a(mod d), and Λgd,a(n) = 0 otherwise.

From property (5) of Λf (n), we easily infer that

(7) λf (x) =
∑
n≤x

f(n)ψf (
x

n
),

where ψf (x) =
∑
n≤x Λf (n). For some further properties of Λf (n) the reader is

referred to [25, §2.2]. Our usage of Λf (n) is inspired by the work of Levin and
Fainleib; cf. [20].

The notation x0, α and β is used to indicate inessential local constants; their
values might be different in different contexts.

3. Effective estimates for mf (x)

The following result will play a crucial rôle. It uses some ideas from the proof of
Theorem A in [39].

Lemma 1. Let f be a nonnegative multiplicative arithmetic function. Suppose that
there exist constants τ(> 0), C− and C+ such that

(8) C− ≤
∑
n≤x

Λf (n)
n
− τ log x ≤ C+ for every x ≥ 1.

Then, for x > exp(C+), we have

(9)
Cf
τ

logτ x

(
1− C+

log x

)τ+1

1− C−
log x

≤ mf (x) ≤ Cf
τ

logτ x

(
1− C−

log x

)τ+1

1− C+
log x

,

where

(10) Cf =
1

Γ(τ)
lim

s→1+0
(s− 1)τLf(s).
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Remark. An alternative expression for Cf is given by

Cf =
1

Γ(τ)
lim

s→1+0

∏
p

(
1 +

∞∑
k=1

f(pk)
pks

)(
1− 1

ps

)τ
.

Proof of Lemma 1. Let Bf be an arbitrary constant and write

(11)
∑
n≤x

Λf (n)
n

= τ log x+Bf + Ef (x).

(This is unnecessary for this proof, but it is needed in the proof of Lemma 3, so we
do this now to save some space later.) We have∑

n≤x

f(n) logn
n

=
∑
n≤x

∑
d|n

f(d)
d

Λf (n/d)
n
d

=
∑
d≤x

f(d)
d

∑
k≤ xd

Λf(k)
k

= τ
∑
n≤x

f(n)
n

log(
x

n
) +Bfmf (x) +

∑
n≤x

f(n)
n

Ef (
x

n
).

We write this equality in the form

−
∑
n≤x

f(n)
n

log(
x

n
)+mf (x) log x = τ

∑
n≤x

f(n)
n

log(
x

n
)+Bfmf (x)+

∑
n≤x

f(n)
n

Ef (
x

n
).

This inequality in turn can be written, using that∑
n≤x

f(n)
n

log
x

n
=
∑
n≤x

f(n)
n

∫ x

n

dt

t
=
∫ x

1

mf (t)
t

dt,

as

(12) mf (x) log x− (τ + 1)
∫ x

1

mf (v)
v

dv = Bfmf (x) +
∑
n≤x

f(n)
n

Ef (
x

n
).

Let σf (x) =
∫ x

1
mf (v)
v dv. By assumption C− ≤ Bf + Ef (x) ≤ C+ for x ≥ 1.

Using (12) we then deduce that mf (x) = (τ + 1)σf (x)/ log x +mf (x)εf (x), where
C− ≤ εf(x) log x ≤ C+. Solving this for mf (x), we find that

(13) mf (x) =
1

1− εf (x)
τ + 1
log x

σf (x), x ≥ x0,

where x0 = exp((1 + δ)C+), and δ > 0 is arbitrary and fixed. In the rest of the
proof we assume that x ≥ x0. Let

Rf (t) = log
(

τ + 1
logτ+1 t

σf (t)
)
.

Note that, for t ≥ x0,

(14) R′f (t) =
τ + 1
t log t

εf (t)
[1− εf (t)]

and hence R′f (t) = O(t−1 log−2 t). Thus
∫∞
x R′f (t)dt converges absolutely, and

therefore
∫∞
x
R′f (t)dt = Af −Rf (x), for some constant Af not depending on x. On

writing Df = exp(Af ), we obtain

(15)
τ + 1

logτ+1 x
σf (x) = exp(Rf (x)) = Df exp

(
−
∫ ∞
x

R′f (t)dt
)
.
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Using (14) and C− ≤ εf (x) log x ≤ C+, we see that∫ ∞
x

C−(τ + 1)
t log t[log t− C−]

dt ≤
∫ ∞
x

R′f (t)dt ≤
∫ ∞
x

C+(τ + 1)
t log t[log t− C+]

dt.

Thus

−(τ + 1) log
(

1− C−
log x

)
≤
∫ ∞
x

R′f (t)dt ≤ −(τ + 1) log
(

1− C+

log x

)
.

On combining (15) with (14), we deduce that

(16) Df

(
1− C+

log x

)τ+1

≤ τ + 1
log1+τ x

σf (x) ≤ Df

(
1− C−

log x

)τ+1

.

We will now show that Df = Cf/τ . The inequalities (16) in combination with (13)
imply in particular that

(17) mf (x) = Df logτ x+O(logτ−1 x).

By partial integration and using the well-known integral expression for the gamma
function, we find that

Lf (s) = (s− 1)
∫ ∞

1

mf (t)
ts

dt = (s− 1)
∫ ∞

1

Df logτ t+O(logτ−1 t)
ts

dt

= Df
Γ(τ + 1)
(s− 1)τ

+O

(
s− 1

(s− 1)τ

)
and thus Df = Cf/τ . The inequalities (16) together with (13) yield (9), on using
that Df = Cf/τ and C− ≤ εf(x) log x ≤ C+. �

The convolutional nature of
∑

n≤xE(x/n)f(n)/n forces us to require that x ≥ 1
in (8) (whereas we would like to replace it with x ≥ x0). Nevertheless we can invoke
the following easy lemma to improve (9).

Lemma 2. Suppose that there exist constants D− and D+ such that for every
x ≥ x0,

(18) D−mf (x) ≤ Bfmf (x) +
∑
n≤x

f(n)
n

Ef (
x

n
) ≤ D+mf (x).

Then we have, for x > max{x0, exp(D+)},

(19)
Cf
τ

logτ x

(
1− D+

log x

)τ+1

1− D−
log x

≤ mf (x) ≤ Cf
τ

logτ x

(
1− D−

log x

)τ+1

1− D+
log x

.

Proof. Follows easily on closer scrutiny of the previous proof. �

We now give an example of how Lemma 2 can be used. By assumption we have
Ef (x) ≤ C+ − Bf for every x ≥ 1. Suppose that Ef (x) ≤ C′+ − Bf for x ≥ n0,
where C′+ < C+. An upper bound for the inner term in (18) is then given by

C+mf (x)− (C+ − C′+)mf (
x

n0
).

Using the explicit bounds in (9), we can then find an x0 and D+ < C+ such that
the conditions of Lemma 2 are satisfied (note that D+ > C′+). By applying (19)
instead of (9), a better value for D+ can then be obtained. Then iterate.
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By making an assumption on Ef (x), we will, not surprisingly, be able to do
better than both Lemma 1 and Lemma 2.

Lemma 3. Let f be a nonnegative multiplicative arithmetic function and suppose
that (11) holds with

(20) |Ef (x)| ≤ c0
max{1, logx}

for every x ≥ 1, where c0 is some explicit constant. Then there exist effectively
computable constants α, β and x0 such that

mf(x) =
Cf
τ

logτ x− CfBf logτ−1 x+ Ef(x),

where α logτ−1/2 x ≤ Ef (x) ≤ β logτ−1/2 x for every x ≥ x0.

Proof. We denote the right-hand side of (20) by h(x) and let s(x) = x/e
√

log x. Let
x0 ≥ e. Using Lemma 1, it is not difficult to see that

βf (x0) = sup
x≥x0

√
log x

{
1− mf (s(x))

mf(x)

(
1− 1√

log x

)}
and that it is finite and can be effectively computed (note that βf (x0) ≥ τ + 1).

Clearly ∣∣∣∑
n≤x

f(n)
n

Ef (
x

n
)
∣∣∣ ≤ ∑

n≤s(x)

f(n)
n

h(
x

n
) +

∑
s(x)<n≤x

f(n)
n

h(
x

n
).

Denote the latter two sums by I1 and I2. We have I1 ≤ c0mf (s(x))/
√

log x and
I2 ≤ c0(mf (x) −mf (s(x))). We thus find that (13) holds with

|εf(x) − Bf
log x

| ≤ c0βf (x0)

log3/2 x
, x ≥ x0.

Proceeding as in the proof of Lemma 1, but with this improved error estimate, the
result then easily follows. �

4. Relating mf (x) to Mf(x)

Given an effective estimate for mf (t), we can derive an effective estimate for
Mf(t) on using that

(21) Mf (x)−Mf (x0) =
∫ x

x0

t dmf (t).

Suppose that
Cf
τ

logτ x
(

1 +
α

log x

)
≤ mf (x) ≤ Cf

τ
logτ x

(
1 +

α+ β

log x

)
,

for some constants α and β and every x ≥ x0 (if the conditions of Lemma 1 are
met, such α, β and x0 can certainly be determined). This leads to an upper bound
for Mf (x) that is asymptotically equal to Cf (1+β/τ)x logτ−1 x and a lower bound
that is asymptotically equal to max{0, Cf(1−β/τ)x logτ−1 x}. These estimates are
too weak for our purposes.

Write mf (x) = Cf logτ x/τ −CfBf logτ−1 x+ Ef(x) (cf. Lemma 3) and suppose
that E−f (x) ≤ Ef (x) ≤ E+

f (x) for every x ≥ x0, where E+
f (x) and E−f (x) are effec-

tively computable. (This supposition is certainly true if the conditions of Lemma
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3 are satisfied.) Let Cf (x0) = Mf (x0) − x0Ef (x0) − Cfx0 logτ x0. Then an easy
computation shows that for every x ≥ x0,

Mf(x) ≤ Cfx logτ−1 x+ (1 − τ)Cf (1 +Bf )
∫ x

x0

logτ−2 t dt+ Cf (x0) +Rf (x),

where
xE−f (x)−

∫ x

x0

E+
f (t) dt ≤ Rf (t) ≤ xE+

f (x) −
∫ x

x0

E−f (t) dt.

There are various problems with this approach, one of the major ones being getting
a good estimate for c0 in Lemma 3.

An alternative approach starts with the observation that, for x ≥ 2,

(22) Mf (x) =
∫ x

2−

dλf (t)
log t

=
λf (x)
log x

+
∫ x

2

λf (t)
t log2 t

dt

and that if we have explicit bounds of the type αx < ψf (x) < βx, then λf (x) can
be related to xmf (x) by (7). Note in particular that if λf (x) ≥ λg(x) for every
x ≥ 2, then Mf (x) ≥Mg(x) for every x (the reverse implication is not always true in
general). The disadvantage of proving something stronger is hopefully compensated
for by the fact that λf (x) can be easily related to mf (x).

5. The generalized second order Ramanujan-Landau constant

In Theorem 4 we will identify a subclass of multiplicative functions for which the
generalized Landau-Ramanujan constant (defined in Section 1) exists and relate it
to an infinite series involving Λf(n). The following result will play an essential rôle
in this.

Theorem 3. [25, Theorem 6] Let f be a multiplicative function satisfying

(23) 0 ≤ f(pr) ≤ c1cr2, c1 ≥ 1, 1 ≤ c2 < 2,

and
∑
p≤x f(p) = τ Li(x) + O

(
x log−2−ρ x

)
, where τ and ρ are positive real fixed

numbers and Li(x) denotes the logarithmic integral. Then there exists a constant
Bf such that (11) holds with Ef (x) = O(log−ρ x). Moreover, for every ε > 0,

(24)
∑
n≤x

f(n)
n

=
∑

0≤ν<ρ+1

aν logτ−ν x+O(logτ−1−ρ+ε x),

where the implied constant depends at most on f and ε. In case f is completely
multiplicative, condition (23) can be weakened to

∑
p,r≥2, pr>x (f(p)/p)r log p =

O(log−ρ x).

Proof. This result is just Theorem 6 of [25], except for the claim regarding Ef (x),
the truth of which is, however, established in the course of the proof of Theorem 6
of [25]. �

The next result shows that the second order Landau-Ramanujan constant is
closely related to the constant Bf appearing in (11).

Theorem 4. Let f be a multiplicative function satisfying the conditions of Theo-
rem (3) with ρ > 1. Then λ2(f), the generalized second order Landau-Ramanujan
constant, equals

λ2(f) = (1− τ)

(
1 + τγ +

∞∑
n=1

Λf(n)− τ
n

)
,
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or alternatively λ2(f) = (1 − τ)(1 +Bf ), where

Bf = lim
x→∞

∑
n≤x

Λf(n)
n
− τ log x

 .

Proof. Since by assumption ρ > 1, we have by (24)

mf (x) = a0 logτ x+ a1 logτ−1 x+ a2 logτ−2 x+O(logτ−2−δ x),

for some δ > 0. Theorem 3 implies that Bf exists. Using that log x =
∑
n≤x 1/n−

γ + o(1), we see that it suffices to prove that λ2(f) = (1 − τ)(1 + Bf ). Theorem
3 yields that Ef (x) = O(log−1 x), hence the conditions of Lemma 3 are satisfied
and it follows that a0 = τCf and a1 = −CfBf . On using that Mf (x) = xmf (x)−∫ x

1
mf (t)dt, it follows by partial integration that λ1(f) = Cf and λ2(f) =

(1− τ)(1 +Bf ), as required. �
Example. Let b1 be the characteristic function of the set of natural numbers that
can be written as a sum of two integer squares. This is a subsemigroup of the
natural numbers that is generated by the primes p with p ≡ 1(mod 4), p = 2 and
the squares of the remaining prime numbers (this result goes back to Fermat). From
what has been said in Section 2, it then follows that

Λb1(n) =


2 log p if n = p2r, r ≥ 1 and p ≡ 3(mod 4);
log p if n = pr, r ≥ 1 and p ≡ 1(mod 4) or p = 2;
0 otherwise.

Application of Theorem 4 yields the following two formulae for the second order
Landau-Ramanujan constant K2 (cf. Section 1):

K2 =
1
2

(
1 +

γ

2
+
∞∑
n=1

Λb1(n)− 1
2

n

)
=

1
2

lim
x→∞

1 +
∑
n≤x

Λb1(n)
n

− 1
2

log x

 .

6. Numerical evaluation of certain constants

In order to prove Theorem 2 we need to evaluate certain constants with enough
precision. For some of them this has been done before; cf. [13].

We first consider the evaluation of C3,1 and C3,2. We have, for <(s) > 1,
Lg3,1(s) =

∏
p≡1(mod 3)(1− p−s)−1. Note that

(25) Lg3,1(s)2 = ζ(s)L(s, χ−3)(1 − 3−s)
∏

p≡2(mod 3)

(1− p−2s).

From this, (10), lims→1+0(s− 1)ζ(s) = 1 and the fact that Γ(1
2 ) =

√
π, we obtain

C2
3,1 =

2L(1, χ−3)
3π

∏
p≡2(mod 3)

(
1− 1

p2

)
.

If χ is a real primitive character modulo k and χ(−1) = −1, then

L(1, χ) = − π

k3/2

k∑
n=1

nχ(n),

by Dirichlet’s celebrated class number formula (cf. equation (17) of Chapter 6 of
[10]). We infer that L(1, χ−3) = π/

√
27. Using that Cg3,1 > 0 and ζ(2) = π2/6,
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we then deduce (2). Using that Lg3,2(s)Lg3,1(s)(1 − 3−s)−1 = ζ(s), we infer that
C3,2 = 2/(3πC3,1).

In order to compute C3,2 and C3,1 with many decimal places of accuracy, we
proceed as in Shanks [38, p. 78]. We note that, for <(s) > 1/2,

(26)
∏

p≡2(mod 3)

(1 − p−2s)2 =
L(2s, χ−3)

ζ(2s)(1 − 3−2s)

∏
p≡2(mod 3)

(1 − p−4s),

from which we infer by recursion that

C3,1 =
√

2
3

5
4

∞∏
n=1

(
L(2n, χ−3)

(1− 3−2n)ζ(2n)

) 1
2n+1

.

Because of the lacunary character of this expression, it can be calculated quickly
up to high precision, which yields C3,1 = 0.3012165544749342124 · · · and C3,2 =
0.7044984335 · · · . Similarly one can show that C4,3 = 1/(2πC4,1) and

C4,1 =
1

2
√

2

∏
p≡3(mod 4)

(
1− 1

p2

)1/2

=
1
π

∏
p≡1(mod 4)

(
1− 1

p2

)−1/2

.

Using Shanks’ trick, we then infer that C4,1 = 0.3271293669410263824002328 · · ·
and C4,3 = 0.4865198883 · · · .

On noting that, for <(s) ≥ 1,
∞∑
n=1

Λ(n)− 1
ns

= −ζ
′(s)
ζ(s)

− ζ(s)

and using that ζ(s) = 1/(s− 1) + γ +O(s− 1) is the Taylor series for ζ(s) around
s = 1 (see, e.g., [28, pp. 162-164]), one infers that

(27)
∑
n≤x

Λ(n)
n

=
∑
n≤x

1
n
− 2γ + o(1) = log x− γ + o(1).

Taking the logarithmic derivative of (25), one obtains that

−2
L′g3,1

Lg3,1

(s) = −ζ
′

ζ
(s)− L′

L
(s, χ−3)− log 3

3s − 1
− 2

∑
p≡2(mod3)

log p
p2s − 1

,

from which one easily infers that

2
∑
n≤x

Λg3,1(n)
n

=
∑
n≤x

Λ(n)
n
− L′

L
(1, χ−3)− log 3

2
− 2

∑
p≡2(mod 3)

log p
p2 − 1

+ o(1),

which yields, on invoking (27),

2Bg3,1 = −γ − L′

L
(1, χ−3)− log 3

2
− 2

∑
p≡2(mod 3)

log p
p2 − 1

.

Similarly we deduce that

2Bg4,1 = −γ − L′

L
(1, χ−4)− log 2− 2

∑
p≡3(mod 4)

log p
p2 − 1

.
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As to the numerical evaluation of Bg3,1 and Bg4,1 , we note that

2
∑

p≡2(mod 3)

log p
p2 − 1

= − d

ds
log

∏
p≡2(mod 3)

(
1

1− p−2s

) ∣∣∣
s=1

.

Then, applying (26) m times, we obtain∑
p≡2(mod 3)

log p
p2 − 1

=
∑

p≡2(mod 3)

log p
p2m+1 − 1

+
1
2

m∑
n=1

{
L′

L
(2m, χ−3)− ζ′

ζ
(2m)− log 3

32m − 1

}
.

Now L-functions and their derivatives can be computed with high accuracy using,
for example, PARI (cf. [5, Section 10.3]). On doing so, we find that the prime sum
in the left-hand side of the latter formula equals 0.3516478132638087560157790 · · · .
Similarly we have∑

p≡3(mod 4)

log p
p2 − 1

=
∑

p≡3(mod 4)

log p
p2m+1 − 1

+
1
2

m∑
n=1

{
L′

L
(2m, χ−4)− ζ′

ζ
(2m)− log 2

22m − 1

}
.

We thus find that the sum on the left-hand side equals 0.2287363531940324576 · · · .
For more on evaluating infinite sums or products involving primes, we refer to [6]
and [23].

For the logarithmic derivative (L′/L)(1, χD) we find, for D = −3 and D = −4,

L′

L
(1, χ−3) = 0.36828161597014784263323790407578664254876430999 · · · ,

L′

L
(1, χ−4) = 0.2456095847773141723888166261790625184335337829549 · · · .

An alternative way of evaluating the latter two logarithmic derivatives is by relating
them to the gamma function or the arithmetic-geometric-mean (AGM). We have
(Berger (1883), Lerch (1897), de Séguier (1899) and Landau [18]),

L′

L
(1, χ−4) = log

(
M(1,

√
2)2 e

γ

2

)
,

where M(1,
√

2) denotes the limiting value of Lagrange’s AGM algorithm an+1 =
(an + bn)/2, bn+1 =

√
anbn with starting values a0 = 1 and b0 =

√
2. It can be

shown that M(1,
√

2) =
√

2
πΓ(3

4 )2. Gauss showed (in his diary) (cf. [9]) that

1
M(1,

√
2)

=
2
π

∫ 1

0

dx√
1− x4

.

The total arclength of the lemniscate r2 = cos(2θ) is given by 2L, where L =
π/M(1,

√
2) is the so-called lemniscate constant. If χ = χ−3, we have similarly,

with z = sin( π12 ) = (
√

3−1)√
8

,

L′

L
(1, χ−3) = log

(
2

4
3M(1 + z, 1− z)2eγ

3

)
, M(1 + z, 1− z) =

2
4
3 π2

3
1
4 Γ(1

3 )3
,
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and
1

M(1 + z, 1− z)
=

3
1
4

π

∫ 1

0

dx√
x(1 − x3)

.

The values of L′(1, χ−4) and L′(1, χ−3) can also be determined using generalized
Euler constants for arithmetical progressions; see Examples 1 and 2 of [11]. For
general nontrivial real χ the quotients (L′/L)(1, χ) “feel” the zeroes of L(s, χ) close
to 1 (see [10, pp. 80-83] for a quantitative version) and a study of their average
behaviour might throw some light on the (non)-existence of the Landau-Siegel zeros;
cf. [22].

Putting our subcomputations together, we find that

Bg3,1 = −1.09904952586667653048446536830561 · · · .

On noting that for 3 - n we have Λ(n) = Λg3,1(n) + Λg3,2(n), it is easily deduced
that Bg3,1 = −γ − log 3

2 −Bg3,2 , and using this we compute

Bg3,2 = −.02747228336891117581966934023805 · · · .

Similarly, we find Bg4,1 = −0.9867225683134286288516284 · · · and

Bg4,3 = − log 2− γ −Bg4,1 = −0.2836402771480495411721157 · · · .

The constant Bgd,a can be alternatively calculated by invoking the formula

ϕ(d)
∑
n≤x

n≡a(mod d)

Λ(n)
n

= log x− γ −
∑
p|d

log p
p− 1

−
∑
χ6=χ0

χ(ā)
L′

L
(1, χ) + o(1),

where a and d are coprime integers, the last sum is over the characters mod d
different from the principal character and ā is any integer such that aā ≡ 1(mod d).
The latter formula is derived by elementary means in [29].

Using Theorem 4, we are now in the position to compute some second order
Landau-Ramanujan constants. They are simply given by λ2(f) = (1 + Bf )/2 for
f ∈ {g3,1, g3,2, g4,1, g4,3}.

7. Effective estimates for squarefree integers

In the sequel we will establish some effective estimates for certain number theo-
retic functions of a real variable. The general procedure is to establish the estimates
for every x ≥ x0 for some x0. The following lemma can then often be used to show
that there exists a number x1 < x0 such that the estimates in fact hold for every
x ≥ x1. It reduces a seemingly continuous problem to a discrete one.

Lemma 4. Let y1 > y0 be arbitrary real numbers. Let F and r be nondecreasing
real-valued functions such that, moreover, F changes its value only at integers. Let
x1, x2, . . . , xn be the integers in (y0, y1) where F changes its value. Let x0 = y0 and
xn+1 = y1. Then

sup
y0≤x≤y1

{F (x)− r(x)} = max
0≤i≤n

{F (xi)− r(xi)}

and
inf

y0≤x≤y1
{F (x)− r(x)} = min

0≤i≤n
{F (xi)− r(xi+1)}.
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In our proof of Theorem 2 we need effective estimates for Qχ−3(x) and Qχ−4(x),
where Qχ(x) denotes the number of integers n ≤ x such that µ(n)χ(n) 6= 0. Note
that Qχ−4 merely counts the odd squarefree numbers and hence we will use the
more suggestive notation Qodd for it. There are two obvious approaches in esti-
mating these functions: relating them to Q(x), where Q(x) denotes the number of
squarefree integers not exceeding x, and an ab initio approach. We demonstrate
both.

Let R(x) = Q(x) − 6x/π2. It was shown by Moser and MacLeod [27] that
|R(x)| <

√
x for all x and that |R(x)| <

√
x/2 for x ≥ 8. Cohen and Dress [7]

showed that |R(x)| < 0.1333
√
x for x ≥ 1664.

Lemma 5. For x ≥ 0 we have∣∣∣∣Qχ−3(x)− 9
2π2

x

∣∣∣∣ ≤ 0.3154
√
x+ 17.2

and

(28)
∣∣∣∣Qχ−3(x)− 9

2π2
x

∣∣∣∣ ≤ 1
2
√
x+ 1.

Proof. We clearly have Q(x) = Qχ−3(x) +Qχ−3(x/3), from which we infer that

(29) Qχ−3(x) =
∞∑
i=0

(−1)iQ(
x

3i
).

Let x0 = 1664. On applying Lemma 4 with y0 = x0/3 and y1 = x0, we find that
|R(x)| ≤ 0.15

√
x in the interval (x0/3, x0]. Similarly we compute that |R(x)| ≤

0.29
√
x in the interval (x0/27, x0/3]. These estimates yield when combined with

identity (29) and the quoted bounds for |R(x)|:∣∣∣∣Qχ−3(x)− 9
2π2

x

∣∣∣∣ ≤ α √3x√
3− 1

+ (0.15− α)
√
x0 + (0.29− α)

(√
x0

3
+
√
x0

9

)
+(0.5− α)

(√
x0

27
+
√
x0

81

)
+ (1 − α)(

√
9 +
√

3 + 1 +
1√
3

+
1
3

+ · · · ),

where α = 0.1333. The latter bound does not exceed 0.3154
√
x + 17.2. From this

bound we then infer that (28) holds for every x ≥ 10000. We now apply Lemma
4 with y0 = 0 and y1 = 10000 to establish the validity of (28) in the remaining
range. �

Using that |R(x)| ≤ 0.15
√
x in the interval (x0/2, x0] and |R(x)| ≤ 0.29

√
x in

the interval (x0/32, x0/2], we deduce, proceeding as in the proof of Lemma 5, that
|Qodd(x)−4x/π2| ≤ 0.4552

√
x+26.5. Although the latter bound is sharp enough for

our purposes, we present a self-contained proof of a slightly sharper bound (which
uses ideas from [27]).

Lemma 6. For x ≥ 0 we have∣∣∣∣Qodd(x) − 4
π2
x

∣∣∣∣ ≤ 1
2
√
x+ 1 and

∣∣∣∣Qodd(x)− 4
π2
x

∣∣∣∣ ≤ (
2
π2

+
1
4

)
√
x+

1
4
x

1
4 + 2.

Proof. We have

Qodd(x) =
∑
n≤x
n odd

|µ(n)| =
∑
n≤x
n odd

∑
d2|n

µ(d) =
∑
d≤x
d odd

µ(d)
[
x

2d2
+

1
2

]
.
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Let Rodd(x) = Qodd(x) − 4x/π2. On noting that
∑

d odd µ(d)/d2 = 8/π2, we find
that

|Rodd(x)| ≤

∣∣∣∣∣∣∣∣
∑
d2≤x
d odd

µ(d)
(

x

2d2
−
[
x

2d2
+

1
2

])∣∣∣∣∣∣∣∣+ x

∣∣∣∣∣∣∣
∑
d2>x
d odd

µ(d)
2d2

∣∣∣∣∣∣∣ .
Since |x− [x+ 1/2]| ≤ 1/2 for every x, we deduce that

(30) |Rodd(x)| ≤ Qodd(
√
x)

2
+ x

∣∣∣∣∣∣∣
∑
d2>x
d odd

µ(d)
2d2

∣∣∣∣∣∣∣ .
Suppose that x > 4, then∑
d2>x
d odd

1
d2
≤

∑
m>

√
x−1
2

1
(2m+ 1)(2m− 1)

=
∑

m>
√
x−1
2

[
1

4m− 2
− 1

4m+ 2

]
≤ 1

2
√
x− 4

.

On using this and the trivial estimate Qodd(x) ≤ (x + 1)/2, we deduce that
|Rodd(x)| ≤ 1

2

√
x + 1 on applying Lemma 4 with y0 = 0 and y1 = 36. Using

the latter bound for Qodd(x) in (30), one then easily obtains the second stated
bound in the formulation of the lemma on applying Lemma 4 with y0 = 0 and
y1 = 9. �

8. On the difference

∑
n≤x

Λf (n)
n − τ log x

In order to use Lemma 1, we need to find finite constants C+ and C− such that

C− ≤
∑
n≤x

Λf (n)
n
− τ log x ≤ C+

for every x ≥ 1. Recall that ψf (x) =
∑

n≤x Λf (n). Suppose that ψf (x) = τx +
Ef(x), where |Ef (x)| ≤ cε log−1−ε x for x ≥ x0. Then∑

n≤x

Λf (n)
n

= τ log x+Bf +
Ef (x)
x
−
∫ ∞
x

Ef (t)
t2

dt,

and thus, for x ≥ x0,

(31)

∣∣∣∣∣∣
∑
n≤x

Λf(n)
n
− τ log x−Bf

∣∣∣∣∣∣ ≤ cε
logε x

(
1
ε

+
1

log x

)
.

Let f = 1, ψ(x) = ψ1(x) and θ(x) =
∑

p≤x log p. It is known that |θ(x) − x| ≤
3.965x/ log2 x for x > 1 [12, p.14]. Using this with the bound ψ(x)−θ(x) < 1.43

√
x

[33, Theorem 13], we can compute C+ and C− in case f = 1. Instead of carrying
this out along these lines, we proceed slightly differently as this will result in a
sharper bound for the difference in (31).

Lemma 7. For x ≥ 97 we have

− 1
2 logx

+
1

2
√
x
≤
∑
n≤x

Λ(n)
n
− log x+ γ ≤ 2√

x
+

1
2 logx

.

The upper bound holds even for every x > 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



440 PIETER MOREE

Proof. By [33, Theorem 6] we have, for x ≥ 319,∣∣∣∣∣∣
∑
p≤x

log p
p
− log x− E

∣∣∣∣∣∣ < 1
2 logx

,

where E = −γ −
∑

p log p
∑
k≥2 p

−k. Notice that∑
n≤x

Λ(n)
n

=
∑
p≤x

log p
p

+
∑
k≥2

∑
p

log p
pk
−
∑
pk>x
k≥2

log p
pk

.

By partial integration we find that

(32)
∑
pk>x
k≥2

log p
pk

=
θ(x) − ψ(x)

x
+
∫ ∞
x

ψ(t)− θ(t)
t2

dt.

Suppose that α
√
t ≤ ψ(t) − θ(t) ≤ β

√
t for t ≥ x0. Then, for x ≥ x0 the sum in

(32) is in the interval (2α−β√
x
, 2β−α√

x
). By Theorems 13 and 14 of [33] we can take

α = 0.98 and β = 1.4262 when x0 = 319. On combining the various estimates, the
result follows after some numerical analysis in the interval (1, 319). �

From Lemma 7 and Lemma 4 with y0 = 1 and y1 = 215 it is easily deduced that

sup
x≥1

∑
n≤x

Λ(n)
n
− log x

 = − log 2
2

= −0.34657359 · · ·

and

inf
x≥1

∑
n≤x

Λ(n)
n
− log x

 =
log 2

2
− log 3 = −0.75203869 · · · .

Other than for f = 1, the author is unaware of cases where an unconditional
effective upper bound for Ef(x) of order log−1−ε x is known. Thus in order to
obtain admissible values for C+ and C− in the case f ∈ {g3,1, g3,2, g4,1, g4,3}, we
have to follow another approach. To this end notice that

(33) 2
∑
n≤x

Λg3,1(n)
n

=
∑
n≤x

(1 + χ−3(n))Λ(n)
n

− 2
∑

pr≤
√
x

p≡2(mod 3)

log p
p2r
−

∑
1<3r≤x

log 3
3r

.

The latter two sums are easily explicitly estimated and we already explicitly es-
timated

∑
n≤x Λ(n)/n. If we can explicitly estimate

∑
n≤x χ−3(n)Λ(n)/n, we are

done. In order to do so, we need a few lemmas.

Lemma 8. Let h be a completely multiplicative function with h(1) = 1. Then if
g(x) =

∑
n≤x h(n)f( xn ) for every x, it follows that f(x) =

∑
n≤x h(n)µ(n)g( xn ).

Proof. Substitute the expression
∑

mn≤x h(m)f(x/mn) for g(x/n) in the sum∑
n≤x h(n)µ(n)g(x/n). The resulting expression simplifies to f(x). �
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Lemma 9. Let χ be a nonprincipal character and m0 > 1 be the smallest integer
> 1 such that χ(m0) 6= 0. Then

∑
n≤x

χ(n)Λ(n)
n

+
L′

L
(1, χ) = O

(
L′

L
(1, χ)

m0

x
Qχ(

x

m0
)
)

+O

 1
x

∑
d≤x/m0

µ(d)χ(d) 6=0

log
x

d

 .

Proof. On using (6) and writing n = dd1, we obtain, for an arbitrary character χ,

(34)
∑
n≤x

χ(n)Λ(n)
n

=
∑

d≤x/m0

χ(d)µ(d)
d

∑
d1≤x/d

χ(d1) log d1

d1
.

On inserting ∑
d1≤x/d

χ(d1) log d1

d1
= −L′(1, χ) + O

(
log(x/d)
x/d

)
in this, we obtain

(35)
∑
n≤x

χ(n)Λ(n)
n

= −L′(1, χ)
∑

d≤x/m0

χ(d)µ(d)
d

+O

1
x

∑
d≤x/m0

µ(d)χ(d) 6=0

log
x

d

 .

We apply Lemma 8 with h(n) = χ(n)
n and f(n) = 1 together with

∑
n≤x χ(n)/n =

L(1, χ) + O(1/x) and obtain

1 =
∑

n≤x/m0

χ(n)µ(n)
n

(
L(1, χ) +O(

nm0

x
)
)

= L(1, χ)
∑

n≤x/m0

χ(n)µ(n)
n

+O

(
m0

x
Qχ(

x

m0
)
)
.

Combining the latter equation with (35) and using that L(1, χ) 6= 0 (a well-known
fact), the result then follows. �

Remark. By using more refined elementary methods [29] one can show that actually,
as x tends to infinity, ∑

n≤x

χ(n)Λ(n)
n

+
L′

L
(1, χ) = o(1).

Let us consider the case where χ = χ−3 or χ = χ−4. Then, for x > 0,

(36)

∣∣∣∣∣∣
∑
n≤x

χ(n)
n
− L(1, χ)

∣∣∣∣∣∣ ≤ 1
x
,

where we use the fact that the nonzero terms in the sum are alternating in sign and
monotonically decreasing. The function logx/x is only decreasing for x > e and a
similar argument then shows that, for x > e,

(37)

∣∣∣∣∣∣
∑
n≤x

χ(n) log n
n

+ L′(1, χ)

∣∣∣∣∣∣ ≤ log x
x

.
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A numerical analysis shows, however, that (37) is still valid for every x ≥ 2. The
implication of these estimates is that for these characters and x ≥ 1 all the implied
constants in the latter lemma and its proof are ≤ 1. Note that for x ≥ 1∑

d≤x
χ(d)µ(d) 6=0

log
x

d
=

∑
d≤x

χ(d)µ(d) 6=0

∫ x

d

dt

t
=
∫ x

1

Qχ(t)
t

dt

and thus, for x ≥ m0,∑
d≤x/m0

χ(d)µ(d) 6=0

log
x

d
=
∫ x

m0

1

Qχ(t)
t

dt+Qχ(
x

m0
) logm0.

We thus find that, for x ≥ m0,

x

∣∣∣∣∣∣
∑
n≤x

χ(n)Λ(n)
n

+
L′

L
(1, χ)

∣∣∣∣∣∣ ≤
(
L′

L
(1, χ)m0 + logm0

)
Qχ(

x

m0
) +

∫ x
m0

1

Qχ(t)
t

dt.

For χ = χ−3 we see, using (28), that the right-hand side is bounded by(
L′

L
(1, χ−3) +

log 2
2

+
1
2

)
9

2π2
+

1√
2x

(
L′

L
(1, χ−3) +

log 2
2

+ 1
)

+
log(x/2)

x
+

1
x

(
2
L′

L
(1, χ−3) + log 2

)
.

For χ = χ−4 we see, using that Qχ−4(t) ≤ 4t/π2 +
√
t/2 + 1 (Lemma 6), that the

right-hand side is bounded by(
L′

L
(1, χ−4) +

log 3
3

+
1
3

)
4
π2

+
1√
3x

(
3
2
L′

L
(1, χ−4) +

log 3
2

+ 1
)

+
log(x/3)

x
+

1
x

(
3
L′

L
(1, χ−4) + log 3

)
.

In the case where χ = χ−3, it remains to explicitly estimate the latter two sums in
(33). We have ∑

pr>
√
x

p≡a(mod d)

log p
p2r

≤
∑

pr>
√
x

log p
p2r

= −ψ(
√
x)

x
+ 2

∫ ∞
√
x

ψ(t)
t3

dt.

Using that 0.8t ≤ ψ(t) ≤ 1.04t for t ≥ 17 (this easily follows from Theorem 10 and
Theorem 12 from [33]), we find that

(38)
∑

pr>
√
x

p≡a(mod d)

log p
p2r

≤ 1.3√
x

for x ≥ 289.

Furthermore, for every fixed v > 1 and every x > 0,

log v
v − 1

(1− v

x
) ≤

∑
1<vr≤x

log v
vr
≤ log v
v − 1

,

where the sum is over the integral powers of v not exceeding x. (These two estimates
can also be used in the case where χ = χ−4.)
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Let us define

C+(f) = sup
x≥1

∑
n≤x

Λf(n)
n
− τ log x

 = Bf + sup
x≥1

Ef (x),

and let C−(f) be similarly defined, with sup replaced by inf. Let ε > 0 be fixed.
Note that the sharpest result the method we followed here allows us to prove, with
enough numerical computation, is

lim
x→∞

|Ef (x)| ≤
(
L′

L
(1, χ−3) +

log 2
2

+
1
2

)
9

4π2
+ ε = 0.2769537767 · · ·+ ε

and

lim
x→∞

|Eg(x)| ≤
(
L′

L
(1, χ−4) +

log 3
3

+
1
3

)
2
π2

+ ε = 0.1915268284 · · ·+ ε,(39)

where f ∈ {g3,1, g3,2} and g ∈ {g4,1, g4,3}.
On putting the various effective bounds together, we arrive at the following

result, after numerical calculations not going beyond the interval [1, 105].

Theorem 5. We have
(a) C−(g4,1) > −1.202 and C+(g4,1) = 0.
(b) C−(g4,3) = log 3

3 − log 7
2 = −0.606750 · · · and C+(g4,3) = 0.

(c) C−(g3,1) > −1.4 and C+(g3,1) = 0.
(d) C−(g3,2) = − log 2

2 = −0.34657 · · · and C+(g3,2) < 0.2764.

On GRH it is much easier to find the C+ and C− satisfying (8), which is what
will be demonstrated now. By RH(d) we indicate the hypothesis that for every
character χ mod d every nontrivial zero of L(s, χ) is on the critical line. Let

H(x; d, a) =
∑

1<pr≤x
p≡a(mod d)

log p
pr

and ψ(x; d, a) =
∑
n≤x

n≡a(mod d)

Λ(n).

Lemma 10. For d ≤ 432 and (a, d) = 1, there exists a constant cd,a such that for
x ≥ 224 we have, on RH(d), that

(40)

∣∣∣∣∣∣∣∣
∑
n≤x

n≡a(mod d)

Λ(n)
n
− log x
ϕ(d)

− cd,a

∣∣∣∣∣∣∣∣ ≤
11

32π
√
x
{3 log2 x+ 8 logx+ 16}.

Proof. In [12] it is proved that for d ≤ 432 and x ≥ 224 we have, on RH(d), that

(41) |ψ(x; d, a)− x

ϕ(d)
| ≤ 11

32π
√
x log2 x.

Using the latter estimate and partial integration, the lemma follows. �
Using the latter lemma, the exact values of C−(g4,1), C+(g3,1) and C+(g3,2) can

be computed under GRH.

Theorem 6. We have
(a) C−(g4,1) = H(197; 4, 1)− log(229)

2 = −0.99076124051235 · · · , on RH(4).
(b) C−(g3,1) = H(3121; 3, 1)− log(3163)

2 = −1.100304022673 · · · , on RH(3).
(c) C+(g3,2) = H(5; 3, 2)− log 5

2 = 3
4 log 2− 3

10 log 5 = 0.03702 · · · , on RH(3).
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Figure 1. H(x; 3, 2)− log x
2 (topline) versus H(x; 3, 1)− log x

2 . The
line is at −1.10031; the x-range is [1, 100].

Proof. (a) Note that c4,1 = Bg4,1 . On applying Lemma 10 with d = 4 and a = 1,
Lemma 4, (38) and using the numerical value for Bg4,1 given in Section 6, we deduce
that C−(g4,1) = minqi≤1.79×109(H(vi; 4, 1)− log(vi+1)/2), where 5 = v1 < v2 < · · ·
are the consecutive prime powers pr with p ≡ 1(mod 4).

(b) In this case we have C−(g3,1) = minqi≤2.935×1010(H(qi; 3, 1) − log(qi+1)/2),
where 7 = q1 < q2 < · · · are the consecutive prime powers pr with p ≡ 1(mod 3).

(c) Now C+(g3,2) = maxwi≤1582079(H(wi; 3, 2) − log(wi)/2), where 2 = w1 <
w2 < · · · are the consecutive prime powers pr with p ≡ 2(mod 3). �

9. Connections with Chebyshev’s bias for primes

In this section we make some observations that allow us to prove, for exam-
ple, that N(x; 3, 2) ≥ N(x; 3, 1) for every x ≤ x0 for some large x0, using known
numerical observations regarding π(x; 3, 2) and π(x; 3, 1).

Let Q1 = {q1, q2, q3, . . . } and Q2 = {v1, v2, v3, . . . } be sets of pairwise coprime
prime powers that satisfy q1 < q2 < q3 < · · · and v1 < v2 < v3 < · · · . Let S1 denote
the set of integers of the form qe11 · · · qess with qi ∈ Q1 and ei ∈ Z≥0 for 1 ≤ i ≤ s.
Let S2 be similarly defined, but with Q1 replaced by Q2. Let π1(x), π2(x) count
the number of elements in Q1, respectively Q2, up to x. If n = qe11 · · · qess ∈ S1, then
m = ve11 · · · vess is said to be its associate in S1. Let h : N→ R≥0 be a nonincreasing
function. Let V1(x) =

∑
n∈S1

h(n) and V2(x) =
∑

n∈S2
h(n). In the rest of this

section x0 denotes some arbitrary number.

Lemma 11. We have
(a) If π1(x) ≥ π2(x) for x ≥ 0, then V1(x) ≥ V2(x) for x ≥ 0.
(b) If π1(x) ≥ π2(x) for x ≤ x0, then V1(x) ≥ V2(x) for x ≤ x0.
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Proof. (a) The assumption implies that if m ∈ S2, then its associate n ∈ S1 satisfies
n ≤ m and h(n) ≥ h(m). Thus clearly V1(x) ≥ V2(x). The proof of part (b) will
be obvious to the reader now. �

Corollary 1. If π(x; d, a) ≥ π(x; d, b) for x ≤ x0, then for x ≤ x0 we have both
N(x; d, a) ≥ N(x; d, b) and mgd,a(x) ≥ mgd,b(x).

The hypothesis in the corollary is in general not strong enough to infer that
λgd,a(x) ≥ λgd,b(x) if x ≤ x0. However, we have the following easy result.

Lemma 12. If Mf (x) ≥Mg(x) and ψf (x) ≥ ψg(x) for every x ≤ x0, then λf (x) ≥
λg(x) for x ≤ x0.

Proof. Use (7). �

Corollary 2. If

π(x; d, a) ≥ π(x; d, b) and
∑

1<pr≤x
p≡a(mod d)

log p ≥
∑

1<pr≤x
p≡b(mod d)

log p

for every x ≤ x0, then λgd,a(x) ≥ λgd,b(x) for x ≤ x0.

In the proof of Theorem 7 we will use Corollary 2 a few times.

10. The proof of Theorem 2

The proof of Theorem 2 will easily follow from the following theorem.

Theorem 7. For every x we have λg3,2(x) ≥ λg3,1 (x), λg3,2(x) ≥ λg4,1 (x) and
λg4,3(x) ≥ λg3,1 (x). For x ≥ 7 we have λg4,3(x) ≥ λg4,1 (x).

Note that

eλgd,a (x) =
∏
n≤x

p|n⇒p≡a(mod d)

n.

In the proof of Theorem 7 we will make use of the following lemma.

Lemma 13. We have ψg3,1(x) ≤ 0.50456x for x ≥ 0, ψg3,2(x) ≥ 0.335x for x ≥ 5,
ψg4,1(x) ≤ 0.50456x for x ≥ 0 and ψg4,3(x) ≥ 0.48508x for x ≥ 127.

Proof. Let d ≤ 13 and (a, d) = 1. Then |ψ(x; d, a) − x/ϕ(d)| ≤
√
x for 224 ≤ x ≤

1010 by [32, Theorem 1] and |ψ(x; d, a)− x
ϕ(d) | < 0.004560 x

ϕ(d) for x ≥ 1010 by [32,
Theorem 5.2.1]. From these inequalities the lemma follows after some computation.

�

In our proof we consider inequalities of the form

(42) logτ (
x

r
)

(
1− C+

log(x/r)

)τ+1

(
1− C−

log(x/r)

) ≥ c1 logτ (
x

s
)

(
1− C′−

log(x/s)

)τ+1

(
1− C′+

log(x/s)

) ,

where all variables and constants are real numbers with τ, r, s and c1 positive,
C− ≤ C+, C′− ≤ C′+ and x ≥ x0 = max{exp(C′+)s, exp(C+)r}. This inequality can
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be rewritten as

(43) 1 +
C′− − C+ + log(s/r)

log(x/s)− C′−
≥

c1
(

1 + C′+−C
′
−

log(x/s)−C′+

)
1 + C− − C+log(x/r) − C−


1
τ

.

Note that for x > x0 the right-hand side is a nonincreasing function of x. If
C′− + log s ≤ C+ + log r, the left-hand side is nondecreasing, whereas if the latter
inequality is not satisfied, the left-hand side asymptotically decreases to 1. We thus
arrive at the following conclusion.

Lemma 14. If log s+C′− ≤ C+ +log r and (42) is satisfied for some x1 > x0, then
(42) is satisfied for every x ≥ x1. If log s + C′− > C+ + log r, and the right-hand
side of (43) does not exceed 1 for some x1 > x0, then (42) is satisfied for every
x ≥ x1.

Proof of Theorem 7. λg3,2 (x) versus λg3,1(x). Using Lemma 13, we infer that

λg3,2 (x) ≥
∑
n≤ x5

g3,2(n)ψg3,2

(x
n

)
≥ 0.335mg3,2

(x
5

)
,

and that

λg3,1 (x) =
∑
n≤x

g3,1(n)ψg3,1

(x
n

)
=
∑
n≤ x7

g3,1(n)ψg3,1

(x
n

)
≤ 0.50456mg3,1

(x
7

)
.

With d = 3, a = 2 and b = 1 the conditions of Corollary 2 are satisfied for every
x < 196699 (but not for x = 196699 as ψg3,1(196699) > ψg3,2 (196699)). Thus
we certainly may assume that x > 1900. Using the estimates C3,1 < 0.302 and
C3,2 > 0.703, we then deduce from Lemma 1, Theorem 5 and Lemma 14 that
0.335mg3,2(x/7) > 0.50456mg3,1(x/7).
λg3,2 (x) versus λg4,1(x). The conditions of Corollary 2 are now satisfied for

every x ≤ 107 (the smallest x for which the conditions are not satisfied is not
known, but must be less than 1082 by [14]). Thus we certainly may assume that
x > 4600. Then reasoning as before, we infer that λg3,2(x) ≥ 0.335mg3,2(x/5) ≥
0.50456mg4,1(x/5) ≥ λg4,1(x).
λg3,2 (x) versus λg4,1 (x). The conditions of Corollary 2 are now satisfied for every

x ≤ 107 (the smallest x for which the conditions are not satisfied is not known, but
must be less than 1082 by [14]). Thus we may assume that x > 199000. Then it is
seen that λg4,3(x) ≥ 0.4594mg4,3(x/59) ≥ 0.50456mg3,1(x/5) ≥ λg3,1 (x).
λg4,3 (x) versus λg4,1 (x). For 7 ≤ x ≤ 1.1 × 106 one directly verifies the in-

equality (note, however, that Corollary 2 cannot be used this time). For x >
1.1×106 one deduces, proceeding as before, that λg4,3 (x) ≥ 0.48508mg4,3(x/127) ≥
0.50456mg4,1(x/5) ≥ λg4,1(x). �

It remains to establish Theorem 2.

Proof of Theorem 2. We only deal with N(x; 4, 3) versus N(x; 4, 1), the other cases
following at once from Theorem 7 and (22). Let δ(x) = λg4,3 (x) − λg4,1(x). By
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Theorem 7 we have δ(x) ≥ 0 for x ≥ 7. Using this and (22) we infer that

N(x; 4, 3)−N(x; 4, 1) =
δ(x)
log x

+
∫ 7

2

δ(t)dt
t log2 t

+
∫ x

7

δ(t)dt
t log2 t

≥
∫ 7

2

δ(t)dt
t log2 t

=
log 5− log 3

log 7
> 0,

for x ≥ 7. For x < 7 the result is clearly true. �
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