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In real application scenarios, the inherent impreciseness of sensor readings, the intentional perturbation of privacy-preserving
transformations, and error-prone mining algorithms cause much uncertainty of time series data. 
e uncertainty brings serious
challenges for the similarity measurement of time series. In this paper, we �rst propose a model of uncertain time series inspired by
Chebyshev inequality. It estimates possible sample value range and central tendency range in terms of sample estimation interval
and central tendency estimation interval, respectively, at each time slot. In comparison with traditional models adopting repeated
measurements and random variable, Chebyshev model reduces overall computational cost and requires no prior knowledge. We
convert Chebyshev uncertain time series into certain time seriesmatrix; therefore noise reduction and dimensionality reduction are
available for uncertain time series. Secondly, we propose a new similarity matching method based on Chebyshev model. It depends
on overlaps between two sample estimation intervals and overlaps between central tendency estimation intervals from di	erent
uncertain time series. At the end of this paper, we conduct an extensive experiment and analyze the results by comparing with prior
works.

1. Introduction

Over the past decade, a large amount of continuous sensor
data was collected in many applications, such as logis-
tics management, tra�c ow management, astronomy, and
remote sensing. Inmost cases, these applications organize the
sequential sensor readings into time series, that is, sequences
of data points ordered by temporal dimension. 
e prob-
lem of processing and mining time series with incomplete,
imprecise, and even error-prone measurements is of major
concern in recent studies [1–6]. Typically, uncertainty occurs
due to the impreciseness of equipment and methods during
physical data collection period. For example, the inaccuracy
of a wireless temperature sensor follows a certain error distri-
bution. In addition, intentional deviation brought by privacy-
preserving transformation also causes much uncertainty. For
example, the real time location information of some VIPmay
be perturbed [7, 8].

Managing and processing uncertain data were studied
in the traditional database area during the 80s [9] and have

been borrowed in the investigation of uncertain time series
in recent years. Two widely adopted methods are introduced
in modeling uncertain time series. First, a probability density
function (pdf) over the uncertain values represented by
a random variable is estimated in accord with a priori
knowledge, among which the hypotheses of Normal distri-
bution are ubiquitous [10–12]; however, the hypotheses of
Normal distribution are quite limited in many applications;
the uncertain time series data with Uniform or Exponential
distribution is frequently found in some other applications,
for example, Monte Carlo simulation of power load and
evaluation of reliability of electronic components [13, 14].
Second, the unknown data distribution is summarized by
repeatedmeasurements (i.e., sample or observations) [15]; the
accurate estimation of data distribution is obtained by large
amount of repeated measurements; however, it causes high
computational cost and more storage space.

In this paper, we propose a new model for uncertain
time series by combining the two methods above and use
descriptive statistics (i.e., central tendency) to resolve the
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uncertainty. On this basis, we present an e	ective matching
method tomeasure the similarity between twouncertain time
series, which is adaptive to distinct error distributions. Our
model estimates the sample value range and the central ten-
dency range derived from Chebyshev inequality, extracting
the sample estimation interval and central tendency estima-
tion interval drawn from repetitive measurements at each
time slot. Unlike traditional similarity matching methods of
uncertain time series based on the measurement of distance,
we adopt the overlap between sample estimation intervals
and that between central tendency estimation intervals to
evaluate similarity. If both estimation intervals from two
uncertain time series at corresponding time slot have a chance
of being equal, the extent of similarity is larger as compared
to the case in which they never be the same.


e rest of this paper is organized as follows. In Section 3
we propose the model of Chebyshev uncertain time series.
Section 4 is on the preprocessing of uncertain time series
based on Chebyshev model. Section 5 describes the process
of similarity match with newmethod. Section 6 addresses the
experiments. At last, Section 7 draws a conclusion.

To sum up, we list our contributions as follows:

(i) We propose a new model of uncertain time series
based on sample estimation interval and central
tendency estimation interval derived fromChebyshev
inequality and convert Chebyshev uncertain time
series into certain time series matrix for dimension-
ality reduction and noise reduction.

(ii) We present an e	ective method to measure the
similarity between two uncertain time series within
distinct error distributions without a priori knowl-
edge.

(iii) We conduct extensive experiments and demonstrate
the e	ectiveness and e�ciency of our new method
in similarity matching between two uncertain time
series.

2. Related Work


e problem of similarity matching for certain time series
has been extensively studied over the past decade; however
the similar problem arises for uncertain time series. Aßfalg et
al. �rst propose a probabilistic bounded range query (PBRQ)
[15]. Formally, let � be a set of uncertain time series and
let �� be an uncertain time series as query input; let � be
a distance bound and let � be a probability threshold. 
e
PBRQ�,�(��, �) is given by

PBRQ�,� (��, �)
= {��� ∈� | 
� (DIST (��, ���) ≤ �) ≥ �} . (1)

Dallachiesa et al. proposed the method called MUNICH
[16]; the uncertainty is represented by means of repeated
observations at each time slot [15]. An uncertain time series
is a set of certain time series in which each certain time series
is constructed by choosing one sample observation for each
time slot. 
e distance between two uncertain time series

is de�ned as the set of distances between all combinations
from one certain time series set to the other. Notice that
the distance measures adopted by MUNICH are based on��-norm and DTW distances; if � = 2, the ��-norm
is Euclidean distance; the naive computation of the result
set is not practical. Large result space causes exponential
computational cost.

PROUD [12] processes similarity queries over uncertain
time streams. It employs the Euclidean distance and models
the similarity measurement as the sum of the di	erences
of time series random variables. Each random variable
represents the uncertainty of the value of corresponding
time slot. 
e standard deviation of the uncertainty and a
single observation for each time slot are prerequisites for
modeling uncertain time series. Sarangi andMurthy propose
a new distance measurement DUST. It is derived from the
Euclidean distance and under the assumption that all time
series values follow some speci�c distribution [11]. If the
error of the time series values at di	erent time slot follows
Normal distribution, DUST is equivalent to the weighted
Euclidean distance. Compared to the MUNICH, it does
not need multiple observations and thus is more e�cient.
Inspired by the moving average, Dallachiesa et al. propose a
simple similarity measurement that previous studies had not
considered; it adopts Uncertain Moving Average (UMA) and
Uncertain Exponential Moving Average (UEMA) �lters to
solve the uncertainty from time series data [16]. Although the
experimental results show that they outperform the sophis-
ticated techniques that have been proposed above, a priori
knowledge of the error standard deviation is indispensable.

Most of the above techniques are based on the assumption
that the values of time series are independent of one another.
Obviously, this assumption is a simpli�cation. Adjacent
values in time series are correlated to a certain extent. 
e
e	ect of correlations is studied in [16] and the research shows
that there is a great bene�t if the correlations are taken
into account. Likewise, we implicitly embed correlations into
estimation intervals in terms of repetitive observation values,
adopting the degree of overlap to evaluate the similarity of
uncertain time series. Our approach reduces overall com-
putational cost and outperforms the existing methods on
accuracy; newmodel requires no prior knowledge andmakes
dimensionality reduction available for uncertain time series.

3. Chebyshev Uncertain Time Series Modeling

As shown in [15], let � = (�1, �2, . . . , ��) be an uncertain
time series of length �; �	 ∈ � is a random variable rep-
resented by a set �	 = {V	,1, V	,2, . . . , V	,
} of � measurements

(i.e., random sample observations), V	,� ∈ R
�. � is denoted

as sample size of �. Distribution of the points in �	 is
the uncertainty at time slot �. 
e larger sample size � is,
the more accurate data distribution is estimated. However
computational cost is prohibitive. To solve the problem, we
present a newmodel for uncertain time series by considering
Chebyshev’s inequality below.

Lemma 1. Let � (integrable) be a random variable with
�nite expected value �(�) = � and �nite nonzero variance
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�(�) = �2. 	en, for any real number � > 0,


 {����� − ����� ≤ �} ≥ 1− �2�2 . (2)

Formula (2) (Chebyshev’s inequality) [17] is the lower
bound of probability of {|� − �(�)| ≤ �}; on condition that� and �2 are known, the distribution information need not
be considered. Real number � has an important inuence on
the determination of the lower bound. For an appropriate �,
the probability of possible values of random variable falling
in the boundaries satis�es desired threshold. 
e estimation
of possible value range is as follows.

�eorem 2. Given a random variable � with the �nite
expected value �(�) = � and �nite nonzero variance �(�) =�2, if the � in inequality (2) equals 4�, then


 {�∈ [� − 4�, � + 4�]} ≥ 0.9375 (3)

no matter which probability distribution� obeys.

Proof. Consider


 {����� − ����� ≤ �} ≥ 1− �2�2
�⇒ 
 {����� − ����� ≤ 4�} ≥ 1− �2(4�)2
�⇒ 
 {����� − ����� ≤ 4�} ≥ 1− 1

16

= 0.9375
�⇒ 
 {�∈ [� − 4�, � + 4�]}
≥ 0.9375.

(4)


e above proof shows that when � equals 4�, the
probability of � within interval [� − 4�, � + 4�] exceeds
0.9; nearly all possible measurements fall in the interval. We
substitute the random variable � with [� − 4�, � + 4�] to
express the uncertainty.

According to the probability distribution of �, possible
value range description of uncertainty is insu�cient; a central
or typical value is another feature for a probability distribu-
tion; it indicates a center or location of the distribution, called
central tendency [18]. 
e most common measure of central
tendency is arithmetic mean (mean for short), so the central

tendency of a random sample set ! in form of mean � is
de�ned below.

Given a random sample set ! drawn from � with �
and �2, ! = {��1, ��2, . . . , ���}, each sample satis�es ".".#.
hypothesis; then

� = 1$
�∑
�=1
���. (5)

As a random variable, the expectation �(�) and vari-

ance�(�) are evaluated below:

� (�) = �( 1$
�∑
�=1
���) = 1$ ⋅$� = �, (6)

�(�) = �( 1$
�∑
�=1
���) = 1$2

�( �∑
�=1
���)

= 1$2

�∑
�=1
�(���) = 1$2

⋅ $�2 = �2$ .
(7)

Analogously, for central tendency variable �, in accord
with Lemma 1, the corresponding estimation interval can be
obtained.

�eorem 3. Given a random variable � with � and �2, a
random sample set ! = {��1, ��2, . . . , ���} drawn from the

population of �, for the variable � with � and �2/$, if the �
in inequality (2) equals 4�/√$, then


{� ∈ [�− 4�√$, � + 4�√$]} ≥ 0.9375. (8)

Proof. Consider


 {������ −������ ≤ �} ≥ 1− �2/$�2
�⇒ 
{������ −������ ≤ 4�√$}
≥ 1− �2/$(4�/√$)2
�⇒ 
{������ −������ ≤ 4�√$} ≥ 1− 1

16= 0.9375
�⇒ 
{� ∈ [�− 4�√$, � + 4�√$]}≥ 0.9375.

(9)

In summary, the sample estimation interval [� − 4�, � +
4�] of � is the range of possible measurements and central
tendency estimation interval [� − 4�/√$, � + 4�/√$] is
the range of central tendency of �. 
e uncertainty of � is
represented by a combination of the two intervals at each time
slot. Uncertain time series can be de�ned below.

De�nition 4. For an uncertain time series � = (�1, �2, . . . ,��) of length �, each element�	 is a random variable with �	
and �	2,�� is the central tendency of random sample set !	
from the population corresponding to�	, and an Chebyshev
uncertain time series �Che is de�ned below:

�Che = (([�1 − 4�1, �1 + 4�1] ,
[�1 − 4�1√$, �1 + 4�1√$] , �1) ,
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([�2 − 4�2, �2 + 4�2] , [�2 − 4�2√$, �2 + 4�2√$] ,
�2) , . . . , ([�� − 4��, �� + 4��] ,
[�� − 4��√$, �� + 4��√$] , ��)) ,

(10)

where$ is the cardinality of random sample set !. Consider
the Chebyshev uncertain time series above; �	 and�	 are di�-
cult to be obtained because of the unidenti�ed distribution of
population.We choose two statistics to estimate the �	 and �	;
one is the arithmeticmean of!, mentioned in (5); the other is
the sample standard deviation 6, calculated by the following
equation:

6 = √62 = √ 1$ − 1
�∑
�=1
(��� − �)2, (11)

� (62) = �[ 1$ − 1
�∑
�=1
(��� −�)2]

= �[ 1$ − 1 (
�∑
�=1
�2
�� −$�2)]

= 1$ − 1 [
�∑
�=1
� (�2
��) −$�(�2)]

= 1$ − 1 [
�∑
�=1
(�2 +�2) −$(�2$ +�2)]

= �2.

(12)

Equations (12) and (6) show that� and 6 are unbiased
estimator for� and�.�	 and�	 inDe�nition 4 can be replaced
with�� and 6� ; �Che is rewritten as follows.

De�nition 5. Given a sample set !	 = {�	�1, �	�2, . . . , �	��} at
time slot �, �Che is represented as follows:

(([�1 − 461 , �1 + 461] ,
[�1 − 461√$ ,�1 + 461√$ ] , �1) ,
([�2 − 462 , �2 + 462] ,
[�2 − 462√$ ,�2 + 462√$ ] , �2) , . . . ,
([�� − 46� , �� + 46�] ,
[�� − 46�√$ ,�� + 46�√$ ] , ��)) .

(13)

Time

· · ·

X1

X2 Xn

XC1

XC2

XCn

Figure 1: 
e Chebyshev uncertain time series model.

According to the descriptions above, the expression at
each time slot can be transformed into a vector. It consists of
four elements (except time value), namely,�� − 46� ,�� −(46�/√$), �� + (46�/√$), and �� + 46� , in ascending
order, denoted as k	; consider

k	 = (�� − 46� , �� − 46�√$ ,�� + 46�√$ ,��
+ 46�)� .

(14)

De�nition 6. An uncertain time series�Che of length � can be
rewritten in terms of matrix with the following formula:

VChe = [k1, k2, . . . , k�] . (15)

Additionally, it can be expanded as follows:

[[[[[

�6�,��6�,��6�,��6�,�
]]]]]

=
[[[[[[[[[[[

(�1 − 461 , �2 − 462 , . . . , �� − 46�)
(�1 − 461√$ ,�2 − 462√$ , . . . , �� − 46�√$ )
(�1 + 461√$ ,�2 + 462√$ , . . . , �� + 46�√$ )(�1 + 461 , �2 + 462 , . . . , �� + 46�)

]]]]]]]]]]]
,
(16)

where �6�,� is the lower bound sequence of random variable�	 composed of �� − 46� , �6�,� is referred to as lower

bound sequence of variable �	, �6�,� is named �	 upper
bound sequence, and the upper bound sequence of �	 is
denoted as �6�,�, illustrated in Figure 1. Four certain time
series constitute an uncertain time series based onChebyshev
model.

4. Uncertain Time Series Preprocessing

4.1. Outlier Elimination from Sample Set. In the process of
the sample collection, the occurrence of outliers is inevitable.
As an abnormal observation value, it is distant from others
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[19]. 
is may be ascribed to undesirable variability in the
measurement or experimental errors. Outliers can occur in
any distribution; naive interpretation of statistics such as
sample mean and sample variance derived from sample set
that include outliers may be misleading. Excluding outliers
from sample set enhances the e	ectiveness of statistics. 
e
de�nition of an outlier I can be formalized below.

De�nition 7. Given a sample set !	 = {�	�1, �	�2, . . . , �	��}
at time slot �, !	 is sorted in ascending order. 
e
sorted elements constitute a sample sequence, denoted as(J1, J2, . . . , J�).K1 andK3 are the lower and upper quartiles,
respectively; then we could de�ne an outlier to be any sample
outside the range:

[K1 − L (K3 −K1) , K1 + L (K3 −K1)] (17)

for a nonnegative constant L, which adjusts the granularity of
excluding outliers.

4.2. Exponential Smoothing forNoise Reduction. In the area of
signal processing, noise is a general term of unwanted (and,
in general, unknown) modi�cations during signal capture,
storage, transmission, processing, or conversion. To recover
the original data from the noise-corrupted signal, the �lters
applied to noise reduction are ubiquitous in the design of
signal processing systems. An Exponential smoothing �lter
assigns exponentially decreasing weights to the sample in
time order and is e	ective [20–22]. In this subsection, we
use exponential smoothing to process the noise in time series
data. Given an certain time seriesM,M(�−1) is the observation
at time slot � − 1, ES is a smoothed sequence associated withM, and ES(�) is the smoothed value at time slot �. If the �rst
sample is chosen in raw time series as initial value and an
appropriate smoothing factor is picked, all values composed
of smoothed sequence ES are available iteratively. 
e single
form of exponential smoothing is given in formula

ES (0) = M (0) ,
ES (�) = NM (� − 1) + (1−N) 6 (� − 1) . (18)


e raw time series begins at time � = 0; smoothing factorN falls in interval [0, 1]. On the basis of the equation, the
exponential smoothing of an uncertain time series modeled
in Chebyshev matrix (De�nition 6) is de�ned as follows:

ESChe (0) = [[[[[[

�6�,� (0)�6�,� (0)�6�,� (0)�6�,� (0)
]]]]]]
, (19)

ESChe (�) = N[[[[[[

�6�,� (� − 1)�6�,� (� − 1)�6�,� (� − 1)�6�,� (� − 1)
]]]]]]

+ (1−N)ESChe (� − 1) .
(20)
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Figure 2: Illustration of Chebyshev uncertain time series before
smoothing.
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Figure 3: Illustration of Chebyshev uncertain time series smoothed.

For example, a raw time series is chosen from the ECG200
dataset in UCR time series collection [23]; a�er the distur-
bance by standard deviation 0.2, it is modeled as Chebyshev
uncertain time series illustrated in Figure 2; tiny uctuations
around four lower and upper bound sequences reect the
existence of noise. We perform the exponential smoothing
against the uncertain time series, choosing the �rst sample
of each bound sequence as initial value and setting the
smoothing factor N to 0.3. Note that higher value of N actually
reduces the level of smoothing; in the limiting case withN = 1 the output series is just the same as the original series.
A�er triple exponential smoothing, the uncertain time series
become clearer, because triple exponential smoothing takes
into account seasonal changes as well as trends, illustrated in
Figure 3.

4.3. Dimensionality Reduction Using Wavelets. In the process
of analysis and organization of high-dimensional data, the
di�culty is the problem of “curse of dimensionality” coined
by Bellman and Dreyfus [24]. When the dimensions of the
data space increase, data size soars, and thus the available
data becomes sparse. Extracting these valid sparse data as
feature vectors in lower dimension feature space is the essence
of dimensionality reduction. Time series, as the special
high-dimensional data, is under the inuence of curse of
dimensionality as well. We adopt wavelets frequently used in
dimension reduction to dealwith the time series data [25–27].
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Input
x[n]

High-pass

g[n]

h[n]

QMF

Low-pass

Ca[n]

Cd[n] High-frequency
output

output
Low-frequency↓ 2

↓ 2

Figure 4: QMF wavelet transform for dimensionality reduction.

Daubechies [28] �nds that wavelet transforms can be
implemented using a pair of Finite Impulse Response (FIR)
�lters, called a Quadrature Mirror Filter (QMF) pair. 
ese
�lters are o�en used in the area of signal processing as they
lend themselves to e�cient implementation. Each �lter is
represented as a sequence of numbers.
e �lter lends this the
length of this sequence. 
e output of a QMF pair consists of
two separate components: a high-pass and a low-pass �lter,
which correspond to high-frequency and low-frequency
output, respectively. Wavelet transforms are considered to be
hierarchical since they operate stepwise. 
e input on each
step is passed through theQMFpair. Both high-pass and low-
pass component of the QMF output are in half of the length
of the input.
e high-pass component is naturally associated
with details while the low-pass component concentratesmost
of the energy or information of the data. 
e low-pass
component is used as further input; hence the length of the
input is reduced by a factor of 2 at each step. 
e single step
is illustrated in Figure 4, where � refers to the length of signal
sequence in general, not some concrete value.

For example, as shown in Figure 3, we choose Haar
wavelet to build QMF pair; the low-pass output is a dimen-
sion-reduced uncertain time series whose length shortens
from 270 to 135, illustrated in Figure 5; the sequence of QMF
pair based on Haar wavelet is de�ned as follows:

O [�] = [−√2
2
, √2
2
] ,

ℎ [�] = [√2
2
, √2
2
] .

(21)

Note that the low-pass output is obtained through the
convolution of ℎ[�] and the uncertain time series to be
reduced in dimension; in the same manner, the convolution
of O[�] and the uncertain time series is the high-pass output.

5. Similarity Match Processing

We present a new matching method based on Chebyshev
uncertain time series. As shown in De�nition 5, without loss
of generality, we utilize two variables S�, T� from di	erent
uncertain time series S and T at time slot " to specify the
matching procedure. Let [��� ,�, ��� ,�] and [��� ,�, ��� ,�] be
the sample estimation interval fromS and T at time slot "
in Figure 6(a). If the two intervals overlapped as shown in
Figure 6(b), S� and T� have possibility of taking identical
value from the overlap intersection set; with the increasing
of overlap in Figures 6(c) and 6(d) (expressed by the double
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Figure 5: Illustration of smoothed Chebyshev uncertain time series
a�er wavelet dimensionality reduction.
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(d)

Figure 6: 
e illustration of similarity degrees.

arrow solid lines), the possibility increases gradually. 
us,S� andT� becomemore similar in terms of the range of sam-
ples.
e above analysis outlines the similarity measure based
on the overlap of sample estimation intervals qualitatively;
then we analyze the process quantitatively.
e lengths of two
sample estimation intervals at identical time slot are di	erent.
As shown in Figure 6, let ��� and ��� be the length of sample
estimation intervals ofS� andT�, respectively:

���� = ��� ,� −��� ,�, (22)

���� = ��� ,� −��� ,�. (23)

��opi denote the length of overlap between S� and T�
illustrated in Figures 6(b) and 6(c):

��opi = �������� ,� −��� ,������ . (24)
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In Figure 6(d), ��opi equals
��opi = �������� ,� −��� ,������ . (25)

If the two observations intervals are not overlapped in
Figure 6(a), the problem arises. In fact, it should be marked;
we put a negative symbol into formula like this

��opi = − �������� ,� −��� ,������ . (26)

If ��opi ≤ 0, the two observation intervals have no overlap,

and the lower ��opi is, the farther two intervals become. Let

Overlap Ratio be the ratio of the length of overlap to length
of observation intervals to quantify the degree of overlap,
denoted as rop; thus,

rop��� = �
�
opi���� ,

rop��� = �
�
opi���� ,

(27)

where each of them falls in (−∞, 1] (only when the length

of overlap equals the length of observations interval, rop�

equals 1 in Figure 6(d), rop��� = ��opi/���� = 1).

We combine rop��� and rop��� and construct a single

quantity called Overlap Degree of sample estimation interval,

denoted as dop�, so that it measures the overlaps linearly.
Here is the de�nition

dop��� ,�� = 2rop��� ⋅ rop���
rop��� + rop��� , (28)

where dop��� ,�� also belongs to (−∞, 1]. 
e sum of dop��� ,��
denotes the degree of overlap between the two uncertain time
seriesS andT such that

DOP��,� = �∑
�=1
dop��� ,�� . (29)

We will further discuss the similarity between S� andT�. As illustrated in Figure 7, even if two sample estimation
intervals at time " are entirely overlapped, it is di�cult to
determine whether the two variables have similarity or not to
a certain degree, because of a variety of overlapping between
central tendency estimation intervals V�,�� and V�,�� . In
other words, the degree of overlap between V�,�� and V�,��
determines the degree of similarity between S� and T� on
condition of identical sample estimation intervals. As shown
in Figure 7(c), the two variables, compared to the case in
Figures 7(a) and 7(b), are more similar obviously; the larger
overlapping is, the more similar two variables are. If central
tendency estimation intervals have no overlap or a little
and sample estimation intervals overlap to some extent, the
estimation of similarity cannot be obtained. With regard to

the above cases, only DOP��,� is not su�cient to measure the
similarity; we need further to measure the similarity between
two variables with central tendency estimation intervals.
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Figure 7: 
e situations of entire overlapping.
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Figure 8: 
e illustration of overlap between� intervals.

As illustrated in Figure 8, there are three cases of overlap-

ping. Let ��opi be the overlap between two central tendency

estimation intervals. In Figure 8(a), for the estimation inter-

vals [��� ,�, ��� ,�] and [��� ,�, ��� ,�], the lengths of estimation

interval ���� and ���� are represented as

���� = ��� ,� −��� ,�,
���� = ��� ,� −��� ,�.

(30)

With no overlapping between them, the ��opi is denoted as

��opi = − �������� ,� −��� ,������ . (31)
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In Figure 8(b), [��� ,�, ��� ,�] and [��� ,�, ��� ,�] have overlap
as described below:

��opi = �������� ,� −��� ,������ . (32)

In Figure 8(c), [��� ,�, ��� ,�] contains [��� ,�, ��� ,�]; the over-
lap is represented as follows:

��opi = �������� ,� −��� ,������ . (33)

Analogous to rop�, the Overlap Ratio of � estimation
interval betweenS� andT� is de�ned:

rop��� = �
�
opi���� ,

rop��� = �
�
opi���� .

(34)


e Overlap Degree of �, namely, dop� betweenS� and T�,
is depicted below:

dop��� ,�� = 2rop��� ⋅ rop���
rop��� + rop��� . (35)

We sum up rop�� ,�� of the two uncertain time seriesS and T in length of �; the sum indicated by DOP��,� is
represented as

DOP��,� = �∑
�=1
rop��� ,�� . (36)

In conclusion, we combine the DOP� and DOP� to
evaluate the degree of similarity between two uncertain time
series, which is signi�ed by DOS and expressed as follows:

DOS�,� = NDOP��,� + (1−N)DOP��,�. (37)

N is the factor in the range of [0, 1]; in di	erent applications,

DOP� and DOP� refer to di	erent weights; here set N = 1/2.
Consider DOS�,� ∈ (−∞, �] (� is length of uncertain time
series).

6. Experimental Validation

In this section, we examine the e	ectiveness and e�ciency of
the new method proposed in this paper. Firstly, we introduce
the uncertain time series value generation and experimental
datasets; then we analyse the results of the experiments. All
the methods are implemented inMATLAB and C++, and the
experiments are run on a PC with 3.1 GHz CPU and 4GB of
RAM.

6.1. Uncertainty Model and Assumption. As described in
De�nition 5, an uncertain time series � is a time series
including sample estimation interval and central tendency
estimation interval derived from a set of observations at each

Table 1: Details of time series sets.

Dataset Quantity Length50YZ\#� 450 270^#"_` 390 176abbc 470 30!ad 500 128!Zccbb 500 28�!e200 199 96�"Oℎ�"�O2 121 6376g�`!�\h 120 300i_cb\ 6164 152d_`bdZj\ 112 350d_`b^hh 560 131d"�ℎ 349 463�"Oℎ�"�O7 318 73ej�
Z"�� 199 150Ih"VbI"h 570 30I6l�b_c 441 4276Yb#�b_c 1125 128�\_`b 200 270MZO_ 300 427

time slot. Given a time slot ", the value of uncertain time series
modeled as

�� = #� + b�, (38)

where #� is the true value and b� is the error. In general, the
error b� could be drawn fromdistinct probability distribution;
this is why we treat �� as a random variable at the time ".
6.2. Experimental Setup. Inspired by [11, 12, 15], we use
real time series datasets of exact values and subsequently
introduce uncertainty with uncertainty model through per-
turbation. In our experiments we consider Uniform, Normal,
and Exponential error distributions with zero mean and vary
standard deviation within interval [0.2, 2.0].

We selected 19 real datasets from the UCR classi�ca-
tion dataset collection [23]; they represent a wide range of
application areas: 50words,Adiac, Beef, CBF, Co�ee, ECG200,
Lighting2, SyncCtrl,Wafer, FaceFour, FaceAll, Fish, Lighting7,
GunPoint,OliveOil,OSULeaf, SwedLeaf, Trace, and Yoga. 
e
training and testing sets are recon�gured, and we acquired
the time series sets as Table 1.

6.3. Accuracy. On the purpose of evaluating the quality of
the results, we use the two standard measures of recall and
precision. Recall is de�ned as the percentage of the truly
similar uncertain time series that are found by the algorithm.
Precision is the percentage of similar uncertain time series
identi�ed by the algorithm, which are truly similar. Accuracy
is measured in terms of the harmonic mean of recall and
precision to facilitate the comparison.
e accuracy is de�ned
as follows:

Accuracy = 2recall ∗ precision
recall + precision . (39)
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Figure 9: Accuracy with three error distributions averaged over all
datasets.
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Figure 10: Accuracy of 19 datasets on three error distributions with
accuracy of 0.4 and 1.0 mixed deviation.

As mentioned in [11], an e	ective similarity measure on
uncertain data allows us to reason about the original data
without uncertainty. For the sake of validating new method,
we conduct experiments from di	erent aspects.

In the �rst experiment, we examine the e	ectiveness of
our approach for di	erent error standard deviations and error
distributions. In Figure 9, the results from di	erent error
distributions are averaged over all datasets and shown at
various error standard deviations. 
e accuracy decreases
linearly with increasing error standard deviation from0.2 to 2
and the performancewithUniform distribution is better than
the other two distribution performances. Bigger standard
deviations produce more uncertainty to time series data.

Next, we verify the e	ectiveness for di	erent datasets. In
Figure 10, each time series fromeach dataset is perturbedwith
di	erent error, that is, Normal, Uniform, and Exponential;
combining 20% accuracy of the match in standard deviation
1 with 80% accuracy of the match in standard deviation
0.4 as the accuracy of relative small standard deviations
on each dataset, most of datasets perform well (accuracy

0
5
0

w
o

rd
s

A
d

ia
c

B
ee

f

C
B

F

C
o

�
ee

E
C

G
20
0

F
ac

eA
ll

F
ac

eF
o

u
r

F
is

h

G
u

n
P

o
in

t

L
ig

h
ti

n
g7

O
li

ve
O

il

O
SU

L
ea

f

L
ig

h
ti

n
g2

Sw
ed

L
ea

f

Sy
n

cC
tr

l

T
ra

ce

W
af

er

Y
o

ga

Dataset

A
cc

u
ra

cy

1
0.8
0.6
0.4
0.2
0

Uniform

Normal

Exponential

Figure 11: Accuracy of 19 datasets on three error distributions with
accuracy of 1.4 and 2.0 mixed deviation.

A
A

V

20

15

10

5

0

5
0

w
o

rd
s

A
d

ia
c

B
ee

f

C
B

F

C
o

�
ee

E
C

G
20
0

F
ac

eA
ll

F
ac

eF
o

u
r

F
is

h

G
u

n
P

o
in

t

L
ig

h
ti

n
g7

O
li

ve
O

il

O
SU

L
ea

f

L
ig

h
ti

n
g2

Sw
ed

L
ea

f

Sy
n

cC
tr

l

T
ra

ce

W
af

er

Y
o

ga

Dataset

Figure 12: Average absolute value (AAV) of each dataset disturbed
data.

reaches 80% or so, some come to 90%), with SyncCtrl being
the best performer (accuracy = 96%), except Beef, OliveOil,
and SwedLeaf, which will be explained below. Similarly, the
trend is veri�ed also with Uniform and Exponential error
distributions.

Figure 11 summarizes the performance of each dataset
in relative big standard deviations of error, integrating the
20% accuracy of match in standard deviation 2 with 80%
accuracy in standard deviation 1.4. As with the increasing
of standard deviation, the accuracy of all datasets decreases.
With Normal error, the accuracy of Adiac drops the most
fast, nearly 50% (from 81% to 33%), and the tendency is also
held with Exponential error distribution. Co�ee, FaceFour,
SyncCtrl, and yoga are exceptions; the increasing standard
deviations have no signi�cant impact on their accuracy.With
Uniform error, the accuracy of d"�ℎ drops the most fast, up
to 30.4%, the accuracy of Adiac drops 25.8%, and ECG200
decreases 14.4%; the accuracy of other datasets falls lightly.
With Exponential error, most datasets drop fast and the most
fast dataset is Adiac, up to 41%. In conclusion, the Uniform
error impacts all datasets lightly with the increasing standard
deviation, compared to the Normal and Exponential error.

As mentioned above, the datasets Beef, OliveOil, and
SwedLeaf have poor performance, but Co�ee, FaceFour,
syncCtrl, and yoga perform well in Figures 10 and 11. We �nd
that all of these are partially related to the average absolute
value of respective datasets which are disturbed. As shown
in Figure 12, we compute the average absolute values of all
disturbed datasets; the AAVs (average absolute values) ofBeef
and OliveOil are 0.0956 and 0.3337, respectively, smaller than
others. 
e AAV of disturbed Co�ee is 18.0541, which is the
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Figure 13: Comparison of accuracy with di	erent sample size.

biggest among all datasets; the other three datasets are also
big ones. In other words, for large AVVs it is di�cult to
be impacted with small uncertainty even though standard
deviation of error comes to 2. On the contrary, Beef and
OliveOil are easier to be impacted even if standard deviation
of error is 0.2. However, SwedLeaf is di	erent; it may be
ascribed to the wave form, which we will explore in future
research. Considering the impact of the size of observation
samples, it is important for two kinds of estimation intervals
which stem from observation samples. As described above,
all experiments results are based on $ = 16 observation
samples. We describe how the results come to be if the size
of observation sample gets large. In Figure 13(a), with the
Normal error, the accuracy of three sizes of observation

sample is shown at various standard deviations. 
e result
of 64 samples is the best; 32 samples result is better than 16
samples. At relative small standard deviations (0.2–0.8), the
results of three sizes are of little di	erence; with the deviation
growing, the di	erences gradually become more observable.

e results of Uniform and Exponential distributions are
similar to Normal and are reported in Figures 13(b) and 13(c).

e di	erences with Uniform error among three sizes are
smaller than the other two distributions.

In Figure 14(a) we compare our approachwith other tech-
niques under Normal error distribution, namely, PROUD,
DUST, Euclidean distance,UMA, andUEMA, referring to the
methodology proposed in [16]. 
e results demonstrate that
our approach is more e	ective than other techniques with
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Figure 14: Comparison of accuracy with existing methods.

three distribution errors. With 0.2 error deviations, UEMA
and UMA outperform others; PROUD performs slightly
better than DUST and Euclidean, but with larger error stan-
dard deviation its accuracy drops slightly below DUST and
Euclidean. 
is trend is also kept with Uniform and Expo-
nential distribution, illustrated in Figures 14(b) and 14(c).

We also compare the performance of execution time
for our approach with other techniques mentioned above.
Because the results of three distributions are analogous, the
Normal distribution is drawn as an example to show the trend
of the results. Figure 15 shows the CPU time per query for
Normal error distribution with varying error standard devia-
tion from 0.2 to 2. It shows that the varying standard devi-
ations for error do not impact the performance of these
techniques basically. 
e performance of our approach is
slightly better than DUST, UMA, and UEMA. 
e best time

performer is Euclidean. Note that we do not apply PROUD
to wavelet synopses; this may be the reason why it does not
perform well.

In Figure 16, we describe the CPU time per query for
Normal error distribution with varying time series length
between 50 and 1000. 
e time series of di	erent length are
obtained by reconstitution of raw datasets. 
e �gure shows
that the execution time increases linearly to the time series
length.
e results of our approach are better than DUST and
PROUD; Euclidean gets the best performance.

7. Conclusion

In this paper, we propose a new model of uncertain
time series and a new approach that measures the sim-
ilarity between uncertain time series. It outperforms the
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state-of-the-art techniques, most of which employ the dis-
tance measure to evaluate the similarity.

We validate the new approach with three kinds of error
distributions and the standard deviations of error span
the range from 0.2 to 2; meanwhile, we compare the new
approach with the techniques previously proposed in the lit-
erature. Our experiments were based on 19 authentic datasets.

e results demonstrate that overlap measuring, based on
observations interval and central tendency, outperforms the
other complex alternatives. If the expected value of the error
in the experiments is considered to be zero, the average of
these samples may be a good estimate for unknown values at
each time slot; it characterizes the center of data distribution.

In the future, we will make a deeper exploration of the
modeling of uncertain time series data when the expected
value of the error is zero. We will extend our work to index

technique about uncertain time series. We will explore the
inuence of wave characteristics of time series data and the
management of volume uncertain time series.
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