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Checkerboard patterns in layout optimization 
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A b s t r a c t  Effective properties of arrangements of strong and 
weak materiais in a checkerboard fashion are computed. Kine- 
matic constraints are imposed so that the displacements are con- 
sistent with typical finite element approximations. It is shown 
that when four-node quatrilaterai elements are involved, these 
constraints result in a numerically induced, artificially high stiff- 
ness. This can account for the formation of checkerboard patterns 
in continuous layout optimization problems of compliance mini- 
mization. 

1 I n t r o d u c t i o n  

The popularity of layout optimization methods in structural 
design has increased rapidly since the publication of the pa- 
per by Bendsee and Kikuchi (1988) triggered a renewed inter- 
est in the topic. Since then several different versions of the 
problem have been developed and a fair amount of debate 
has taken place in the literature and at specialized meetings 
regarding the advantages and disadvantages of the different 
approaches. However, while there are indeed fundamental 
differences that  distinguish the more popular methods in use 
today, experiments have shown that  most methods have in 
common one undesirable feature: they may result in solu- 
tions where material is distributed in a checkerboard pattern. 
In layout problems where the amount of material present at a 
location x is measured by the scalar density function p(x), a 
checkerboard pat tern is defined as a periodic pattern of high 
and low values of p(z) arranged in the fashion of a checker- 
board, as illustrated in Fig. 1. This behaviour is undesirable 
as it is the result of a numerical instability and does not cor- 
respond to an optimal distribution of material. In this paper 
we discuss the reasons for the formation of such patterns. 

Four element checkerboard 
patch with average density 
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Fig. 1. Solution displaying checkerboard patterns 

The literature offers only little discussion on the formation 
of checkerboards in layout optimization problems (Belldsee et 

al. 1992; Jog et al. 1992; Bends~e 1994; Jog and Haber 1994), 
although similar patterns affecting the finite element solution 
of mixed variational problems have been studied extensively 
(see e.g. Brezzi and Fortin 1991). In such problems the fo> 
mation of checkerboards is related to the violation of the 
so-called Babuska-Brezzi or LBB condition. This similarity 
was used by Jog et al. (1992) and :log and Haber (1994) to 
attribute the patterns in the layout problem to an LBB type 
instability. In order to pursue this argument, the authors 
interpret the layout optimization problem as a mixed varia- 
tional problem in the density variable p and the displacement 
field u. To avoid the formation of checkerboard patterns, the 
authors suggest that  different functions be used to interpolate 
p and u, in a fashion similar to that  suggested by the LBB 
condition in other mixed problems. Unfortunately, the con- 
ditions under which the standard Babuska-Brezzi arguments 
are applied to mixed variational problems are not met by 
the layout optimization problem (Bends,ae 1994). If indeed 
a Babuska-Brezzi type, that  is, a global kind of instability, 
were at work here a more complete analysis would be needed 
to formulate stability conditions appropriate for the layout 
optimization problem. Such an analysis is presented by Jog 
and ttaber (1994). 

In this paper, we suggest that  checkerboard patterns in 
layout optimization can be explained on the basis of local 
behaviour. We will show that  numerical approximations 
introduced by the finite element method may cause mate- 
rial arranged in a checkerboard fashion to appear artificially 
strong. When this happens checkerboard arrangements ap- 
pear to be locally stronger than any other arrangement of two 
constituent materials, including a layered arrangement, and 
are a stable extremum of the strain energy density. Under 
such conditions checkerboard patterns are preferred in layout 
optimization problems seeking the stiffest structure. 

2 T h e  l a y o u t  o p t i m i z a t i o n  p r o b l e m  

We will focus the discussion on two-dimensional elasticity 
problems, although some of the results presented here can be 
applied to plate and some three-dimensional elasticity prob- 
lems as well. The optimization problem is standard: the goal 
is to minimize the mean compliance of the structure subject 
to a single constraint on the amount of available material. A 
distinguishing feature of current methods is the way the de- 
sign variable at a point is related to the material properties. 
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Two strategies are common: one based on homogenization 
and another based on a variable thickness formulation. The 
homogenization based problem will be addressed first. Re- 
sults specific to the variable thickness formulation will be 
summarized in the last section. 

2.1 Layout optimization using homogenization 

In this approach, shape is represented as a property of 
the "porous" material that results from the mixture of two 
(isotropic) constituents: a weak material, with the elasticity 
tensor E -  used to model a void, and a strong material with 
elasticity tensor E + >> E - .  The proportion of strong mate- 
rial is measured by the scalar function p : f2 ---* [0, 1] where 
X? C R 2 is the domain where the structure is to be laid. The 
effective elastic properties of the mixture are obtained via 
homogenization assuming that the mixture occurs periodi- 
cally and at a scale much smaller than the dimensions of/2. 
Typically, the small scale mixture is characterized by a unit 
cell which in essentially all layout optimization applications is 
either a square cell with a rectangular hole (Fig. 2a), as intro- 
duced by Bends0e and Kikuchi (1988), or a layered material 
(Fig. 2b), e.g. as discussed by Milton and Kohn (1988) and 
Milton (1990). In both cases, the amount of strong material 
is measured by the density function 

p = a  l + a 2 - a  l * a  2. 
The effective property tensor E is expressed as a function of 
the parameters: al,  a2, E - ,  E +. 
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Fig. 2. Typical cell arrangements used in layout optimization 

Design variables in the optimization problem are the spa- 
tial distribution of p and cell parameters {al, a2}. As it is 
well-known that the optimum orientation of the material ten- 
sor can be obtained from the directions of principal strain (or 
stress) (Pedersen 1989), the orientation angle is not listed ex- 
plicitly as an additional design variable. The goal is to mini- 
mize the mean compliance of the structure while keeping the 
amount of strong material bounded, i.e. to solve the problem 

min min f (u*) ,  
pEX R aEXp 
where 

[ 

xR = {p ~ L~(s~) : 

and 

Xp = 

O<_p<l, / pdx<_R}  
12 

(1) 

(2a) 

{a C R 2 : al+a2-al*a2 = p, 0 ~ a I ~ 1, 0 _< a 2 _~ 1 } . ( 2 b )  

In (1), f (u*) is the mean compliance at the equilibrium solu- 
tion u* and R is a prescribed upper bound on the amount of 

available material. Problem (1) can be written in the equiv- 
alent form 

} pEXR uEK aCXp 

where 

K :  {u h e Hl(f2) : u h = O on frO} 

represents the set of all kinematically admissible displace- 
ment fields u and 

w = 2E(a)c (u) :  s(u) (4) 

is the strain energy density associated with a given:strain 
field e(u). Details of this derivation are well-known and may 
be found, for example, in the work of Lipton (1994) and Jog 
et al. (1992). 

Statement (3) emphasizes the following well-known result: 
for fixed density p and strain fields c(u), the optimum local 
orthotropy is such that the strain energy density is maximized. 
This result is important in the determination of the stability 
of checkerboard solutions. The elasticity problem in (3) is 
typically solved using a finite element method and, as we shall 
show in what follows, some finite element approximations are 
such that arranging the material in a checkerboard fashion 
maximizes the strain energy. This is the main result in this 
paper, and is expressed as Proposition 1 in the next section. 

2.2 Checkerboards and finite element discretization 

To facilitate the analysis it is assumed that K2 can be covered 
by N square finite elements. Approximating u by u h and p 
by ph (3) becomes 

max rain ~ 1  [ max -E(ae)¢(ue).¢(ue)dx - 

f ( u h ) } .  (5) 

Standard finite element shape functions No~(x) are used to 
construct u h E K h C K whose restrictions to element e are 
of the form 

n 

ue : E N " ( x ) u e '  n : number of nodes, 
~=1 

where the ug are nodal degrees of freedom. Regarding the 
discretization of the density p, here we limit the exposition 
to the more commonly used scheme and prescribe ph to be 
constant within each element e, with value pC. 

The presentation is simplified by limiting the analysis 
to "black-and-white", i.e. strong-weak material checkerboard 
mixtures of average density 1/2. In a typical patch P of ele- 
ments labeled 1 through 4 a "black-and-white" checkerboard 

1 2 3 4 distribution is {p , p , p , p } = {0, 1, 0, 1 }. We shall com- 
pare the stiffness of P with the effective stiffness of a mix- 
ture that uses the same amount of strong material, that is, a 
homogenized material with p = 1/2. The stiffness of "grey" 
patches is not discussed here, but numerical experiments have 
shown that results presented for purely black-white patches 
carry through for patches of elements of intermediate densi- 
ties. 
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The main result of this paper states that  some finite ele- 
ment discretizations make checkerboard patches appear to be 
artificially efficient. This result is summarized in Proposition 
1 below. 

Proposition 1. For all nonzero strain fields 
(i) in meshes of four-node elements 

CH - 1NCH g g 1 
W4Noae(~) - ~ 4Node ' > ~ m a x  r ( a ~ ) ~ - 3 ,  (6a) -- aeEXpe 

pe~½ 

(it) in meshes of nine-node elements 

CH - 1-~CH _~ _~ 1 
W9Node(¢) = ~ 9Node " < ~ max E(ae)g.-g. (65) aeEXpe 

pe=l 

The functions w CH and CH 4Node W9Nod e measure the strain en- 
--CH 

ergy density in a material with elasticity tensors E4Nod e and 
--CH 
E9Node, respectively. These are the effective properties of a 
checkerboard arrangement that  is kinematically constrained 
to deform in a fashion consistent with the corresponding finite 
element. This constraint results in a numerically induced, ar- 
tificially high stiffness [without this constraint the actual stiff- 
ness of a microscale checkerboard is zero due to the stress sin- 
gularities at the corners of the solid regions, as discussed by 
Berlyand and Kozlov (1992)]. If four-node elements are used, 
(6a) in Proposition 1 states that,  at least asymptotically, a 
checkerboard arrangement with such constraint is more rigid 
than a layered microstructure that  uses the same amount 
of strong material. In contrast, (6b) states that  the kine- 
matic constraint associated with 9-node elements does not 
stiffen the material as much and checkerboard arrangements 
are less rigid than a layered microstructure. We believe that  
this is sufficient to explain the formation of checkerboards in 
layout optimization problems. A "black-and-white" checker- 
board patch subjected to a constant strain field will have 
the same strain energy as a four- element patch of material 

--CH --CH 
with stiffness tensor E4Nod e or E9Nod e. Furthermore, upon 
refinement, the numerical behaviour of patches of finite ele- 
ments will approach the behaviour of a material with effective 

--CH --CH 
properties E4Nod e or E9Nod e. Due to numerical modeling 
checkerboard arrangements of four-node elements will appear 
to be more rigid than other arrangements using the same 
amount of resources and hence they will be preferred, i.e. 
they will be solutions of the inner problem in (5) over the 
four elements that  make up P. 

In order to verify the validity of Proposition 1 we need first 
--CH 

to calculate the effective properties of a checkerboard E4Nod e 
--CH 

and E9Nod e. This will be discussed in the next section. 

3 EfFective p r o p e r t i e s  o f  a c h e c k e r b o a r d  

Here we compute the elastic properties of a checkerboard ar- 
rangement of material in a unit cell Y divided in four equal, 
nonoverlapping quadrants y i  such that  E = E -  in y1  U y 3  
and E = E + in y 2  U y4 .  In contrast to standard applica- 
tions of homogenization, where the goal is to estimate the 
properties of a composite (e.g. Berlyand and Kozlov 1992; 
Guedes and Kikuchi 1992), we seek instead to estimate the 

asymptotic behaviour of checkerboard patches of finite ele- 
ments. Such properties can be obtained using the well-known 
formulae (for details, see Bensoussan et al. 1978) 

-Eijkl = J" { Eijkt  - Eijpqe~q iX (kg) ] } dy,  (7) 

Y 

using Y-periodic fields X (kl) restricted to finite element 
spaces of interest and discretizing the cell Y using only one 
element per quadrant y i .  Strains ¢~q[x(kl)] may vary within 
the cell and are induced by the inhomogeneity of the mate- 

rial. The fields --X(p ~t) E V h are Y-periodic, finite element 
solutions of the cell problem 

/ Eijpq{e~q[X (k~)] - _0 (kl) Ou i gpq } - -  dy = 0, Oyj 
Y 

f o r a l l u E V  h,  andk ,  l = l , 2 .  (8) 

The asymptotic stiffness properties of a finite element patch 
are obtained simply by building the finite element space V h 
using the same shape functions used to approximate the av- 
erage displacement field u(x), i.e. by defining 

V h = 

{u(y) E R 2 :  u ( y ) = g a ( y ) u ~ ,  i f y E Y ' ,  i = 1 , . . . , 4 } ,  

where the nodal quantities u~ are such that  u(0, y2) = 
u(1, Y2) and u(yl ,0)  = u(y 1, 1). All entries in the tensor 
of effective properties can be obtained from (7) after solving 

(8) using three uniform, unit pre-strains -0(kt) ~pq , as discussed 
by Sigmund (1993). 

3.1 Checkerboards of four-node elements 

Four-node isoparametric elements with bilinear shape func- 
tions Na(x) are the most commonly used elements in layout 
optimization. The solution of the cell problem (8) is partic- 
ularly simple in this case and is such that  

c*[x(k0] = 0. (9) 

In other words, the (periodic) deformation of a checkerboard 
patch of any number of four-node elements subject to a con- 
stant prestrain g(kg) is such that  the strain in the patch is 
constant. For illustration the field X corresponding to a pre- 
strain ~11 -- ~22 = 1 and g12 : 0 is illustrated in Fig. 3. 
From (9) and (7) it follows that  the effective properties of 
the patch are simply the arithmetic average of E + and E - .  
As E -  = 0 ,  

- -CH 21 - E4Nod e = E + . 

This accounts for the high stiffness of patches of four-node 
elements and makes material distributions in checkerboard 
fashion particularly attractive. For example, if 

E -  = 0, EI+ll 1 = E2+222 = 1, El+122 = 0.3, E1+212 = 0.35, 

(10) 

the effective properties are 

El111 = E2222 = 0.5, El122 = 0.15, E1212 = 0.175. 
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3.2 Checkerboards of nine-node elements 

Meshes of nine-node elements have many more displacement 
degrees of freedom per material  design variable pe than four- 
node element meshes. For this reason nine-node elements are 
seldom used in layout optimization, in spite of the fact that 
most authors report  that  solutions based on these elements 
have no checkerboards. 

The solution of the cell problem (8) is qualitatively dif- 
ferent from that  of a four-node element patch. The inho- 
mogeneities in the material  result in a nonzero local strain 
variation, as illustrated in Fig. 3b. For this reason, patches 
of nine-node elements are more flexible than their four-node 
counterparts. For example, with constitutive material as be- 
fore (10), analytical solution of (7) and (8) yields 

E l l l l  = E2222 = 0.172, El122 = 0.0941, E1212 = 0.1159. 

(a) 4-node e lements  (b) 9-node e lements  
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Fig. 3. Local field X due to a mean strain gaa : E2~ : 1 and 
e12 : 0 

4 Loca l  o p t i m a l i t y  o f  c h e c k e r b o a r d  m a t e r i a l  d i s t r i -  
b u t i o n s  

.[.1 Problem using layered materials 

We now can prove Proposition 1. Consider first the layout 
optimization problem using layered materials (Fig. 2a). For 
fixed strains and density p = 1/2, let W'Rank2 be the optimum 
strain energy density, i.e. 

1 
* - (11) WRank 2 : ~ max ER2(a)¢. ~. aeEX 

pC=½ 

In (11) a 1 and a 2 are layer thicknesses and E-R2 is the tensor 
of the effective properties of a rank 2 material. If the weak 
material is void ( E -  --- 0) it is possible to express w* .vo ex- 

R a  ~ 
plieitly using the results from the paper by Jog et al. ~1992), 
as follows: 
W* Rank2 

+ 2 - -  
El111¢I 

[1-1-,(1--v)+,2] (1 -I-v) 
if , < -(1+2v) 

3+y 2" 
0 - u )  (12) [ l + , ( 1 - v ) + ,  j ( l+~)  if . > 2 

3 - y  
( l - v )  l ( 1 - u  2) if - 1+2~- ~ < " <  2 

In (12) u is the Poisson's ratio of the strong material, the 
material coordinate system is aligned with the directions of 
principal strain, ~; -- (el/~ii) is the principal strain ratio 
and, by convention, I~±1 > Icnl. 

Consider now the strain energy density in a material with 
the effective properties of a checkerboard [obtained by solving 
(7) and (8)]. 
(a) Made of four-node elements. The strain energy density is 

¼ 4Node + 2 - -  ( 1 + 2 u . + . 2 ) .  (13) 
El111¢I 
(b) Made of nine-node elements. The strain energy density 
is 
W* 9Node _ 
E + ~2 

1111¢I 

1 [ (47--  35v--  35u 2 + 25u 3 ) 

[ 22(6 - 5.) 

(50 - 26.  - 7Ou 2 + 50 .  3) 7/+ 

22(6-  5.) 

( 4 7 - 3 5 u - 3 5 .  2 + 2 5 "  3) ] 

It can be easily verified that  for any strain ratio ~/ 

w* _> * and * * (15) 4Node WRank2 W9Node < WRank2 ' 
and w* = w* only for ~1 = - u .  These energies are 4Node Rank2 
plotted in Fig. 4 for u = 0.3. This proves Proposition 1 for a 
layered material. 

w 0 .6  w 4 N ° d /  

/ 

::: /wo  

_ _ r a m  

-I -0.5 O.5 1 11 

Fig. 4. Strain energy density of a layered material compared to 
numerical behaviour of checkerboards 

4.2 Problem using a rectangular hole cell 

The results of the previous section remain essentially un- 
changed if the small scale mixture is characterized by a square 
cell with a rectangular hole (Fig. 2a). From the optimality 
of layered materials (Avellaneda 1987) it is known that  

, 1 
-- aeEXpe 

pC=½ 

and therefore it follows from (15) that  W*4Node -> WRHole'* 
The derivation of the result for nine-node elements is only 
slightly more complicated in this case as an explicit expres- 
sion for the optimal energy such as (14) is not available. A 
numerical calculation for a material  as before (10) yields the 
results shown in Fig. 5. As before, 

* * * 
W4Nod e > WRHol e > W9Nod e • 
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Therefore, in this case too the checkerboard arrangement of 
material is optimal for four- and not for nine-node element 
checkerboards. 

w 0 6  

O 5  

0 4  ole 

e 

-1  - 0 . 5  0 0 . 5  1 I] 

Fig. 5. Strain energy density of a suboptimal microstructure com- 
pared to numerical behaviour of checkerboards 

~.3 Problem using a modified variable thickness formulation 
A popular layout optimization strategy that is not based on 
a homogenization procedure uses the simple rule 

E(p) = pPE + with p >  0. (16) 

This approach, labeled here the variable thickness formu- 
lation, has been used by several authors (e.g. Mlejnek and 
Schirrmacher 1993) to solve layout optimization problems of 
the form [c.t. (5)] 

N 
max min E 1 / ph6Xh uh6Kh e=l -~ (pe)PE+E(ue)" g(ue) dz - f (uh) ,  

e 

with the feasible set 

The strain energy density is 

1 /1"~ p +_ _ 
  Thick = t 
at a point where the strain is g and the density of strong 
material is p = 1/2, the effective density of a "black-and- 
white" checkerboard. In terms of the principal strains 

WVThick _ 1 (1 + 2 . r /+  z/2). 
+ 2 2 

E1111~I 
Hence, from (13), for a material with p = 1 the strain en- 
ergy density w* is the same as the energy density in VThick 
a checkerboard made of four-node elements. For p = 1 and 
higher 

W4Nod e>wVThick  , p >  1, 
and hence checkerboards are also expected here if fine meshes 
are used. A similar result can be derived for meshes of nine- 
node elements. This is summarized in Proposition 2 below. 

Proposition 2. For all nonzero strain fields ~, 
(i) in meshes of four-node elements 

W~Node(E) = * WVThick(C ), f o r p =  1, 
and 

WlNod e(~) > WVThick(S), for p > 1, 
(ii) in meshes of nine-node elements 

W~Nod e(E) < W~Thick(~) , for p < PI(~),  
and 

W;Node(~ ) > WVThick(e), for p > p~(~'), 
where 

log[22/(6 - 5,)] , log[2. (6 - 5v)] 
P~'(u) = log(2) ' P2( ' )  = log(2) 

Figure 6 shows the variation of p* with Poisson's ratio while 
Fig. 7 shows the variation of W{iThic k with strain for different 
values of p. Proposition 2 suggests that for larger values of p 
checkerboards will appear even in problems where nine-node 
elements are used. The analysis also indicates that contrary 
to conventional wisdom, checkerboards are possible in the 
standard variable thickness sheet problem in optimization, 
which Corresponds to p = 1. Numerical experiments support 
these findings. They also show that "grey" checkerboard pat- 
terns of average density below 1/2 can occur for any p greater 
than 1. 

P* 5 

4.5 

4 
: .  : :  

2.5  ~ 

2 - -P l*  

0 0.i 0.2 0.3 0.4 0.5 

Fig. 6. Variation of p* with Poisson's ratio of the strong material 

03/ 
W4Nod e =WVThick(P= 1) 

0 .2  

WVThick(P =2) 
, ~  0.15 

WVThick(P=Pl*) ~ " P=P2*) 

, W 9 N o d e /  

| , | 

-i -0.5 0 0.5 1 T] 

Fig. 7. Strain energy density in variable thickness formulations 
(v ---- 0.3) 

5 C o n c l u s i o n s  

We have computed the numerical behaviour of arrangements 
of strong and weak materials in a checkerboard fashion where 
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the deformation is constrained to be typical of a finite ele- 
ment space (bilinear for four-node elements, biquadratic for 
nine-node elements). The numerical asymptotic behaviour of 
four-node element patches has been shown to be artificially 
stiff, indeed stiffer than any "real" material  built, for exam- 
ple, by layering two isotropic constituents. This artificially 
high stiffness can account for the formation of checkerboard 
patterns in continuous layout optimization problems of com- 
pliance minimization. We should emphasize that  this anal- 
ysis was limited to black-white checkerboards, i.e. effective 
densities equal to 1/2. The limits of stability of solutions 
are likely to be different when other effective densities are 
considered. Nevertheless, it is expected that  the mechanism 
whereby checkerboards are formed remains the same. This is 
indeed supported by numerical experiments. 
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