CHECKING AN EXPERT SYSTEMS KNOWLEDGE BASE
FOR CONSISTENCY AND COMPLETENESS

T. A. Nguyen, W. A. Perkins, T. J. Laffey,
and D. Peoora

Lookheed Research and Development
0/92-10 B/254E
3251 Hanover Street, Palo Alto, CA. 94304

ABSTRACT statioally analyzes the knowledge base
) . (i.e., after the rules and facts are loaded
In this paper we desoribe a program that into the knowledge base), unlike TEIRESIAS,
verifies the oonsistenoy and completeness  whioh performs an assessment of rules in
of expert system knowledge bases whioh the setting of a problem-solving session
utilize the Lookheed Expert System (LES) [31.
framework. The algorithms desoribed here
are not specific to LES and oan be applied Suwa, Soott, and Shortliffe [4] have

to most rule-based systems.  The program, written a program for verifying that a set
oalled CHECK, combines logioal principles of rules comprehensively spans the
as well as SpeOiin information about the know|edge base. This program was devised
knowledge representation formalism of LES. and tested within the oontext of the
The program oheoks for redundant rules, ONCOCIN system (an EMYCIN-like system).
conflicting rules, subsumed rules, missing Our work differs from theirs in that CHECK
rules, ciroular rules, unreachable olauses, inoludes unreachable olauses and deadend
and deadend olauses. It also generates a  olauses as two additional rule oheoking
dependency  ohart whioh shows the  oriteria.  Furthermore, CHECK produoes a
dependencies among the rules and between dependency ohart and deteots any oiroular
the rules and the goals. CHECK oan help rule ohains. Also, CHECK was devised and
the  knowledge engineer to deteot many tested on a generio expert system with
programming errors — even before the oase-grammar rules and a "frame" database.
knowledge base testing phase. It also It has been used to analyze a wide variety
helps deteot gaps in the knowledge base of knowledge bases. CHECK does not take
whioh the knowledge engineer and the expert into aooount oertainty factcrs when
might have overlooked. A wide variety of oheoking the rule base.

knowledge bases have been analyzed using

CHECK. 2.0 CHECKING  FOR  CONSISTENCY AND

COMPLETENESS

1.0 INTRODUCTION
] A statio analysis of the rules oan deteot
The Lookheed Expert System (LES) is a many potential problems and gaps that exist

generio rule-based expert system tool [1] in a rule base. We now identify and give
(similar to EMYCIN [2]) that has been used definitions for seven oriteria that are
as a framework to construct expert systems used by CHECK to perform statio analysis of
in many areas suoh as electronic equipment any rule base oonstruoted for use with LES.
diagnosis, design oheoking, photo The first four oriteria are concerned with
Interpretation, and hazard analysis. LES potential problems, whereas the last three
employs a combination of goal-driven and oriteria are oonoerned with gaps in the
data-driven rules with the Ilatter being knowledge base.

attaohed to the faotual database (demons).

One objective in the design of LES was to 2.1 POTENTIAL PROBLEMS IN A KNOWLEDGE BASE
make it easy to use. Thus, many debugging

tools and aids were added to the LES By statioally analyzing the logioal
program. One of these aids is the semantios of the rules represented in LES's
knowledge base completeness and oonsistenoy case grammar format, CHECK oan deteot
verification program oalled CHECK Its redundant rules, oonflioting rules, rules
purpose is to help a knowledge engineer that are subsumed by other rules, and
oheok the  knowledge base  whioh he circular-rule ohains. The following
oonstruoted for logioally redundant rules, definitions for these four potential
conflicting rules, subsumed rules, missing problems are used in CHECK:

rules, unreachable olauses, and deadend

olauses. CHECK does not perform any syntax o Redundant rules: two rules succeed in
oheoking on the rules, sinoe this is done the same situation and have the same
automatically when the rule files are results. In LES, this means that the

loaded into the knowledge base. CHECK IF parts of the two rules are



376

2.2

T. Nguyen et al.

equivalent, and one or more THEN
olauses are also equivalent. Because
LES allows variables in rules,
equivalent means that the same

specific objeot names can match their
corresponding variables. For example
the rule "p(x) —> q(x)" is equivalent
to the rule "p(y) —> q(y)", where x
and y are variables.

two rules succeed
same situation but with
conflicting results. In LES, this
means that the [IF parts of the two
rules are equivalent, but one or more
THEN olauses are oontradiotory, or one
pair of IF olauses is oontradiotory
while they have equivalent THEN
olauses. For example, the rule "p(x)
—> not(q(x))" is oontradiotory to the
rule "p(x) —> q(x)".

Conflicting rules:

in the

Subsumed rules: two rules have the
same results, but one oontains
additional constraints on the
situations in whioh it will suooeed.
In LES, this means one or more THEN
olauses are equivalent, but the IF
part of one rule oontains fewer
oonstraints and/or clauses than the IF
part of the other rule. For example,
the rule "(p(x) and q(y)) —> r(z)" is
subsumed by the rule "p(x) —> r(z)".

a set of rules is a
circular-rule set if the ohaining of
those rules in the set forms a cycle.
For example, if we had a set of rules

Circular rules:

as follows: (1) "p(x) —> q(x)" (2)
"gq(x) —> r(x)" (3) "r(x) —> p(x)"
and the goal is r(A), where A is a
constant, then the system will enter
an infinite loop at run time, unless
the system has a speoial way of
handling circular rules.

POTENTIAL GAPS IN A KNOWLEDGE BASE

The development of a knowledge-based system

is an iterative prooess in whioh knowledge
is enooded, tested, added, ohanged, and
refined. This iterative prooess often
leaves gaps in the knowledge base whioh
both the knowledge engineer and the expert
may have overlooked during the knowledge

aoquisition prooess.
three situations

In LES, we have found
indicative of gaps in the

knowledge base. These three situations,
called CD missing rules, (2) unreachable
olauses, and (3) deadend olauses are
desoribed below:

o Missing rules: a situation in whioh
some values in the set of possible
values (called legal values) of an
objeot's attribute are not oovered by
any rule's |IF olauses (i.e., the legal
values in the set are oovered only
partially or not at all). A partially

oovered attribute oan prohibit the

system from attaining a oonolusion or
oause it to make a wrong oonolusion
when an unoovered attribute value s
enoountered during run time.

o Unreachable clauses: in a goal-driven
produotion system, a THEN olause of a
rule should either matoh a goal olause
or matoh an IF olause of another rule
(in the same rule set). Otherwise,
the THEN olause is unreachable.

o Deadend Glauses: to aohieve a goal
(or subgoal) in LES, it is required
that either: (1) the attributes of
the goal olause are askable (user

provides needed information) or (2)

that the goal olause is matched by a
THEN olause of one of the rules in the
rule sets applying to that goal. If
neither of these oonditions is
satisfied then the goal olause oan not
be achieved, i.e., it is a "deadend

olause". Similarly, the IF olauses of
a rule also must meet one of these two
oonditions, or they are "deadend
olauses".

2.3 DEPENDENCY CHART AND CIRCULAR-RULE

CHAINS DETECTION

As a by-produot of the rule oheoking, CHECK
generates a dependency ohart whioh shows
the interactions among the rules and

between the rules and the goal olauses. An
example of a dependency ohart for a small
problem is shown in Figure 1. A "
indioates that one or more olauses in the
IF  part of a rule or a goal olause (G.C.)
matches one or more olauses in the THEN

part of a rule. The dependenoy ohart is
very useful when the knowledge -engineer
deletes, modifies, or adds rules to the
rule base.

Note that in Figure 1, the "*" 's indicate
the dependencies for the original rule set.

By adding a olause to Rule 2, the "*2"
dependencles appeared. Note, Rule 2 now
references itself—a self-oiroular rule.
By the addition of one olause to Rule 1,
the "* 1" dependenoles appeared. This also
oauses the rule set to be circular, sinoe
an IF olause of Rule 1 is matohed by THEN
olauses of Rule 7 and Rule 8 whioh in turn
matoh an IF olause of Rule 1. Circular

rules should be avoided since they oan lead

to an infinite loop at run time. Some
expert systems, suoh as EKYCIN, handle
oiroular rules in a speoial way.

Nevertheless, the knowledge engineer will
want to know whioh rules are oiroular. So,
CHECK uses the dependenoy ohart to generate
graphs representing the interaotions
between rules, and wuses a cyclio graph
detection algorithm to deteot oiroular rule
ohains.



RULE MDENTIFIERS

TREN T 0 T3 Ta (s (678 9 w][nii |t m]s

1 | a

-
1% | x| *

*pok | k| x

GOAL AND RULE IDENTIFIERS

AL * | *

k] * | #*

G.C.1T *

c.C.2 *

).C. 3 *

IC.C. ¥ *

G-C.SI *

c.c.6f *

G.C.7 *

Figure 1

3.0 IMPLEMENTATION OF RULE CHECKER

In solving a problem, the knowledge
engineer may write several sets of
goal-driven rules with eaoh set having a

unique subjeot category. (In LES it is
oonvenient to put rules in different
subjeot categories so that the system oan

solve different goals using only those rule
sets which apply to that goal.; To solve a
partioular goal, often he will seleot
several goal-driven rule sets and WHEN
rules (demons). Sinoe these rule sets are
generated over a period of time, it is
quite possible that their interaction will
oause some problems. Thus, for eaoh goal
it is neoessary to compare the rules (in
the rule sets speoified by that goal)
against eaoh other and against the olauses
of that goal. We now show an algorithm (in
an Algol-like notation) whioh CHECK wuses.
The algorithm does the checking for a set
of subjeot oategories with N rules and a
goal with G olauses.

Beoause an IF part or a THEN part oan have
more than one olause, the comparison
between one part and another is handled by
comparing a olause of one part to every
olause in the other part.

T. Nguyen etal. 377

work for
rules, whioh are oalled

However, the criterion
not applicable to

These algorithms also

forward-ohalning

WHEN rules in LES. \
unreachable clauses is
forward-chaining rules.

procedure Analyzs_KEB(Rules.Goel N,G);
beglin
for i = 1 to N begin
/* compare rutes ogainst eoch other e/
for j = | to N begin
for k = firat_clause(l) to lost_clause{l} begin
for o= firat_clause{)) to loat_c!auu([g begin
match_resutt(k) = Compare_clauses{k,n);
and; fe | »}
ond: Jo k o/
snd; /e ] o/
/* compare goal clausss ogainst rule clouses »/
for g= t to G begln
for k = first_clause{l) to Iull_clcuu(i; bagin
motch_result(g) = Compere_clousaw(g,k};
and;

and;
/* collect Information on attributes coverage »/
for p = first_|f_ciouse(]) to lost_|f_ciousa{l|) beglin
detarmine attridbute referred by clause p;
siore the gtiribute's valus coversd by clouss p;
end;
end; So i o/
/» oheck for possible problems In rules »/
for | = 1 to N bagin
for k= firet_clouse({l) to last_clauss(i} bagln
matchad_rule = Tranaform(l,k,clouse_reliations);
while (matched_rule < ©) do begin
Chack_problema(] ,matched_rule,clouse_relotlena);
motched_rula = Transform{l . k.clauss_relations);
ond;
and;
and;
/v chack for posalble ¢aps In rules ond goals «/
Check_gopa{gool_clauses, rulee):
s generata the depsndency chart s/
Gontrato_,dtp'ndoney_charl(?oel__s:Iaulu,rulu);
/o check tor poswitie misming rules ¢/
for m = firet_cotegory to last_cotegory begin
for n = first_attribute{m} to Jost_atiribute(m} begin
compare covarad values with lega! values;
i! not_comptetely_covared then
Inform usar that some rule Ie miesing;
It iiiwgal_attribute_vaiue then
Inform ymer that attribute vaiue Is |tregal;
end; /s for n o/
end:  Je form e/
snd; /s Analyxs_K9 »/

proc[:odurc Check_gapa(goal_claunes, rules);
begin
for | = firwt_then_ctouss to lost_then_clouss bagin
1f (i did not match any IF clouse or GOAL clouwe) then
then_result{i} = UNREACHABLE
and;
tor | = flret_goat_clouss to lost_goal_clouns begin
1t (i not_match ony THEN clouss & not askabie{i)) then
goal_result(t) = DEADEND:;
and;
for I = tirst_I{ _clouss to lasi_If_clouse begln
If (i not_metch any THEN clause &k not askaklie(1)) then
If_result(]) = DEADEND;
ond;

ond; }'o Chack_gaps ¢/



378 T. Nguyen et al.

:rofodnn Chack_problemn(l,m,clouse_relotlone);
ogln
'eonfllct_couat - B;
mubmet = FALSE;
suparset = TRUE;
for c = first_if_claune{i) to foat_ H einuu(i} begin
If claume_ r.lalloﬂl(e) = SUBSET t
subset « TRUE;
wlos if clouse_relotions{c) = SUPERSET than
supargat = TRUE;
olae if clouss_ u!allana(c) = CONFLICT then
confllct_count = confllct_count + 1;
olas
H_IT = SAME; /e componite remuil moy be SAME »/
ond;

H {conflict_count > 1) then
[f_1f = DIFFERENT;
slas It {conflict_count=t & not [mubset or supersset)) then
If_if = CONFLICT;
slna bagin /e eoﬂfliel ~tount = @ => no contl gt o/
if (subset & wporul) then
li_It = DIFFER
wise T subsst then
1H_11 = SUBSET;
slee it suparsst then
11_11 = SUPERSET;
slee;
-nd;

4 { {it_it = SAME) &
rumber_of_11_clausen(i) = number_of_[f clouvase{n)) then
for tmfirat_then_clousa(i) to lost lhon_aleuu begin
it (clavee_reiatione(t) = SME) hon
resul t(f.m. Lt} = R
olne If (clovse_relotion(t) = mLICT) then
result{( ,m,t) = CONFLICT;
ales;

ond;
else |1 {I1_if = CONFLICT) then
for t=f|ret_then_ elauui ; to lut thon Ciouse(i) bagln
It (cluuu relatlons hon
M) = MFL]CT
and;

olse (1 { {If_if = SAHE%
numbar_of_If_clauses(i) < nmblr_nl_lf__cluuuaiu ) then
tor t-lirlt_thon_elauuslg to lant_than_clause{1) begin
ir (clause_relations{t) = SAME) then
result(i.m, t}) = SUBSET;

and;
stoe It { (if_if = SUBSET) &
nunber_of_if_clounes(i) >= number_of_if_ciausas(m)) the
for t=first_then_ciouse(]) to lost_then_cleuse(i) begin
i Eelcuu ulutlonas ; = SAME) or
clouss_relat[ons = SUBSET) ) then
result(i,m, t} = SUBSET;

reault(i

and;

slme If ( (if_if = SUPERSET) &
number_of_if_clauses(i) = mmbar_ef_|f_c)ausen u ) then
for taflret_ then_clause(l) to lant_then_clauseli begin

it { Eclwu rolctinnsi ; = SAME) or
clause_relations = SUPERSET) ) then
resutt(},m,t) = SUPERSET;

end;

olan;

end; /s Chack_probleas s/

4.0 gnyMAttv

In this paper we desoribed a program called

CHECK whose function is to deteot four
potential problems (redundant rules,
conflloting rules, subsumed rules, and
oiroular rules) and three potential gaps
(missing rules, unreaohable clauses, and
deadend olauses) in a knowledge base
utilizing the LES framework. We applied
the oonsistenoy and completeness
verifioation method of Suwa, Soott, and

Shortliffe [4] to the generio expert system
LES with good results. Furthermore, we
have extended the checklng to inolude
oiroular rules, unreaohable olauses, and
deadend olauses. We also showed a general
algorithm whioh performs the oheoking

funotion efficiently. Finally, as a
by-produot of the rule oheoking processing,

CHECK generates a dependenoy ohart whioh
shows how the rules oouple and interaot
with eaoh other and with the goals; this

ohart should help the knowledge engineer to

identify immediately the effeots of
deleting, adding, or modifying rules.

From our experiences with oonetruoting
different knowledge bases, we find that

many ohanges and additions to the rule sets
ooour during the development of a knowledge
base. Thus, a tool suoh as CHECK that oan
deteot many potential problems and gaps in
the knowledge base should be very useful to
the knowledge engineer in helping him to
develop a knowledge base rapidly and
accurately.

The major area of improvement for CHECK s
the handling of oertainty faotors in the
rules sinoe LES allows the rules to have
oertainty faotors associated with them;
this may require the definitions for the
seven conditions oovered in this paper to
be revised.

REFERENCES
[1] W. A. Perkins, and T. J. Laffey. "LES:
A General Expert System and Its

Applications", Proc SPIE's Technical

Symposium East, Applications of
Artificial Intelligence, Arlington,
VA., May 3-4, 1984, pp. 46-57.

[2] w. J. van Melle, System Aids in
Constructing Consultation Programs.
UMI Researoh Press, Ann Arbor, Ml
(1981).

[31 R. Davis, "Applications of meta-level
knowledge to the construction,
maintenance, and use of large
knowledge bases", Doctcral
dissertation, Computer Soienoe
Department, Stanford University, 1976.

[4] M. Suwa, A. C. Soott, and E. H.
Shortliffe, "An Approaoh to Verifying

Completeness and
Rule-Based Expert
Magazine. Fall 1982, pp.

Consistenoy in a
System", The Al
16-21.



