
Checking and Enforcing Robustness against TSO

Ahmed Bouajjani1, Egor Derevenetc2,3, and Roland Meyer3

1 LIAFA, University Paris 7
2 Fraunhofer ITWM

3 University of Kaiserslautern
abou@liafa.univ-paris-diderot.fr,
{derevenetc,meyer}@cs.uni-kl.de

Abstract. We present algorithms for checking and enforcing robustness
of concurrent programs against the Total Store Ordering (TSO) memory
model. A program is robust if all its TSO computations correspond to
computations under the Sequential Consistency (SC) semantics.

We provide a complete characterization of non-robustness in terms of
so-called attacks: a restricted form of (harmful) out-of-program-order ex-
ecutions. Then, we show that detecting attacks can be parallelized, and
can be solved using state reachability queries under the SC semantics in a
suitably instrumented program obtained by a linear size source-to-source
translation. Importantly, the construction is valid for an unbounded num-
ber of memory addresses and an arbitrary number of parallel threads. It
is independent from the data domain and from the size of store buffers
in the TSO semantics. In particular, when the data domain is finite and
the number of addresses is fixed, we obtain decidability and complexity
results for robustness, even for a parametric number of threads.

As a second contribution, we provide an algorithm for computing an
optimal set of fences that enforce robustness. We consider two criteria of
optimality: minimization of program size and maximization of its perfor-
mance. The algorithms we define are implemented, and we successfully
applied them to analyzing and correcting several concurrent algorithms.

1 Introduction

Sequential Consistency (SC) [21] is a natural shared-memory model where the
actions of different threads are interleaved while the program order between
actions of each thread is preserved. For performance reasons, however, modern
multiprocessors implement weaker memory models relaxing program order. For
instance, the common store-to-load relaxation, which allows loads to overtake
earlier stores, reflects the use of store buffers. It is actually the main feature of
the TSO (Total Store Ordering) model adopted, e.g., in x86 machines [28].

Nonetheless, programmers often assume that memory accesses are performed
according to SC, where they are instantaneous and atomic. This assumption
is safe for data-race-free programs [3], but in many situations data-race-freedom
does not apply. This is, for instance, the case of programs implementing synchro-
nization operations, concurrency libraries, and other performance-critical system
services employing lock-free synchronization. These programs are designed to be

M. Felleisen and P. Gardner (Eds.): ESOP 2013, LNCS 7792, pp. 533–553, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

534 A. Bouajjani, E. Derevenetc, and R. Meyer

robust against relaxations, i.e., relaxations should not introduce behaviors that
are impossible under SC. Memory fences must be included appropriately in pro-
grams to prevent non-SC behaviors. Getting such programs right is a notoriously
difficult and error-prone task. Therefore, important issues in this context are (1)
checking robustness of a program against the relaxations of a memory model,
and (2) identifying a set of program locations where it is necessary to insert
fences to ensure robustness.

In this paper we address these two issues in the case of TSO. We consider a
general setting without any bounds on the shared-memory size, nor on the size of
the store buffers in the TSO semantics, nor on the number of threads. This allows
us to reason about robustness of general algorithms without assuming any fixed
values for these parameters that depend on the actual machine’s implementation.
Moreover, we tackle these issues for general programs, independently from the
domain of data they manipulate.

Robustness against memory models has been addressed first by Burckhardt
and Musuvathi in [10] (actually, for TSO only), and subsequently by Burnim et
al. in [11]. Alglave and Maranget developed a general framework for reasoning
about robustness against memory models in [4,5] (where the term stability is
used instead of robustness). Roughly, these works are based on characterizing
robustness in terms of acyclicity of a suitable happens-before relation. In that,
they follow Shasha and Snir [29] who introduced a notion of trace that captures
the control and data dependencies between events of an SC computation, and
established that computations that are not SC have a cyclic happens-before
relation. We adopt here the same notion of (trace-)robustness, i.e., a program is
robust if every TSO computation has the same trace as some SC computation.

From an algorithmic point of view, the existing works mentioned above do
not provide decision procedures for robustness. [10,11] provide testing procedures
based on enumerating TSO runs and checking that they do not produce happens-
before cycles. Clearly, while these procedures can establish non-robustness, they
can never prove a program robust. On the other hand, [5] provides a sound
over-approximate static analysis that allows for proving robustness, but may
also inaccurately conclude to non-robustness and insert fences unnecessarily. We
are interested here in developing an approach that allows for precise checking of
trace-robustness, and for optimal fence insertion (in a sense defined later).

In our previous work [9], trace-robustness against TSO has been proven to be
decidable and PSpace-complete, even for unbounded store buffers, in the case
of a fixed number of threads and assuming a fixed number of shared variables,
ranging over a finite data domain. The method that shows this decidability
and complexity result does not provide a practical algorithm: it is based on a
non-deterministic, bounded enumeration of computations. Moreover, it does not
carry over to the general setting we consider here. Therefore, in this paper we
propose a novel approach to checking robustness that is fundamentally different
from [9]. We provide a general, source-to-source reduction of the trace-robustness
problem against TSO to the state reachability problem under the SC semantics.
In other words, we show that trace-robustness is not more expensive than SC

Checking and Enforcing Robustness against TSO 535

state reachability, which is the unavoidable problem to be solved by any precise
decision algorithm for concurrent programs. This is the key contribution of the
paper from which we derive other results, such as decidability results in particular
cases, as well as an algorithm for efficient fence insertion.

To establish our reduction, we first provide a complete characterization of non-
robustness in terms of so-called feasible attacks. An attack is a pair of load and
store instructions of a thread, called the attacker, whose reordering may lead to
a non-SC computation. In that case we say the attack is feasible, because it has
a (TSO) witness computation. The special form of witness computations allows
us to detect them by solving an SC state reachability query in an instrumented
program. The fact that only the SC semantics (of the instrumented program)
needs to be considered for detecting non-SC behaviors (of the original program)
is important: it relieves us of examining TSO computations, which obliges one to
encode (somehow) the contents of store buffers (as in, e.g., [10,11]). Interestingly,
the feasibility checks for different attacks can be parallelized, which speeds up
the decision procedure. Overall, we provide a reduction of the TSO robustness
problem to a quadratic number (in the size of the program) of state reachability
queries under the SC semantics in linear-size instrumented programs of the same
type as the original one. Our construction is source-to-source and is valid for (1)
an unbounded number of memory addresses/variables, (2) an arbitrary data
domain, (3) an arbitrary number of threads, and (4) unbounded store buffers.

With this reduction, we can harness all techniques and tools that are available
for solving SC reachability queries (either exactly, or approximately) in various
classes of concurrent programs, regardless of decidability and complexity issues.
It also yields decision algorithms for significant classes of programs. Assume
we have a finite number of memory addresses, and the data domain is finite.
Then, for a fixed number of threads, a direct consequence of our reduction is
that the robustness problem is decidable and in PSpace since it is polynomially
reducible to state reachability in finite-state concurrent programs. Therefore,
we obtain in this case a simple robustness checking algorithm which matches
the complexity upper bound proven in [9]. Our construction also provides an
effective decision algorithm for the up to now open case where the number of
threads is parametric. In this case, SC state reachability queries can be solved
in vector addition systems with states (VASS), or equivalently as coverability
in Petri nets, which is known to be decidable [27] and EXPSpace-hard [24]. In
both cases (fixed and parametric number of threads) the decision algorithms do
not assume bounded store buffers.

As last contribution, we address the issue of enforcing robustness by fence
insertion. Obviously, inserting a fence after each store ensures robustness, but
it also ruins all performance benefits that a relaxed memory model brings. A
natural requirement on the set of fences is irreducibility, i.e., minimality wrt. set
inclusion. Since there may be several irreducible sets enforcing robustness, it is
natural to ask for a set that optimizes some notion of cost. We assume that we
have a cost function that defines the cost of inserting a fence at each program
location. For instance, by assuming cost 1 for all locations, we optimize the size

536 A. Bouajjani, E. Derevenetc, and R. Meyer

of the fence set. Other cost functions reflect the performance of the resulting
program. We propose an algorithm which, given a cost function, computes an
optimal set of fences. The algorithm is based on 0/1-integer linear programming
and exploits the notion of attacks to guide the selection of fences.

We implemented the algorithms (using SPIN as a back-end SC reachability
checker), and applied them successfully to checking and correcting a number of
examples, including mutual exclusion protocols and concurrent data structures.
The experiments we have carried out show that our approach is quite effective:
(1) many of the attacks to be examined can be discarded by simple syntactic
checks (e.g., the presence of a fence between the store and load instructions), and
those that require solving reachability queries are handled in few seconds, (2) the
fence insertion procedure finds efficiently optimal sets of fences, in particular, it
can handle the version of the Non-Blocking Write protocol [18] described in [25]
(where the write is guarded by a Linux x86 spinlock) for which Owens’ method
based on so-called triangular data races (see below) inserts unnecessary fences.

Related Work. There are only few results on decidability and complexity of
relaxed memory models. Reachability under TSO has been shown to be decidable
but non-primitive recursive [7] in the case of a finite number of threads and a
finite data domain. In the same setting, trace-robustness has been shown to be
PSpace-complete [9] using a combinatorial approach.

Alur et al. have shown that checking sequential consistency of a concurrent
implementation wrt. a specification is undecidable in general [6]. This result
does not contradict our findings: we consider here the special case where the
implementation is the TSO semantics and the specification is the SC semantics of
the same program. In [15], the problem of deciding whether a given computation
is SC feasible has been proven NP-complete. Robustness is concerned with all
TSO computations, instead.

As mentioned above, the problem of checking and enforcing trace-robustness
against weak memory models has been addressed in [10,11,5], but none of these
works provide (sound and complete) decision procedures. Owens proposes in [25]
a notion of robustness that is stronger than trace-robustness, based on detecting
triangular data races. This allows for sound trace-robustness checking but, as
Owens shows in his paper, in some cases leads to unnecessary fences which
can be harmful for performance. Moreover, the notion of triangular data races
comes without an algorithm for checking it1. Complexity considerations (using
the techniques in [9]) show that detecting triangular data races requires solving
state reachability queries under SC. Therefore, as we show here, checking trace-
robustness is not more expensive than detecting triangular data races.

State-based robustness (which preserves the reachable states) is a weaker ro-
bustness criterion, but does not preserve path properties in contrast to trace-
robustness, and is of significantly higher complexity (non-primitive recursive
as it can be deduced from [7], instead of PSpace). It has been addressed in a

1 Citation from [25]: “... formal reasoning directly on traces can be tedious, so a pro-
gram logic or sound static analyzer specialized to proving triangular-race freedom
might make the application of TRF more convenient.”

Checking and Enforcing Robustness against TSO 537

precise manner in [2,23], where symbolic decision procedures together with fence
insertion algorithms are provided. The same issue is addressed in [19,20] using
over-approximate reachability analysis based on abstractions of the store buffers.

Finally, let us mention work that considers the dual approach: starting from a
robust program, remove unnecessary fences [30]. This work is aimed at compiler
optimizations and does not provide a decision procedure for robustness. It can
also not find an optimal set of fences that enforce trace-robustness.

2 Parallel Programs

Syntax. We consider parallel programs with shared memory as defined by the
grammar in Figure 1. Programs have a name and consist of a finite number of
threads. Each thread has an identifier and a list of local registers it operates on.
The thread’s source code is given as a finite sequence of labelled instructions.
More than one instruction can be marked by the same label; this allows us to im-
plement conditional branching, iteration, and non-determinism in a lightweight
syntax. The instruction set includes loads from memory to a local register, stores
to memory, memory fences to control the TSO store buffers, local computations,
and assertions. Figure 2 provides a sample program.

〈prog〉 ::= program 〈pid〉 〈thrd〉∗
〈thrd〉 ::= thread 〈tid〉

regs 〈reg〉∗
init 〈label〉
begin 〈linst〉∗ end

〈linst〉 ::= 〈label〉: 〈inst〉; goto 〈label〉;
〈inst〉 ::= 〈reg〉 ← mem[〈expr〉]

| mem[〈expr〉] ← 〈expr〉
| mfence

| 〈reg〉 ← 〈expr〉
| assert 〈expr〉

〈expr〉 ::= 〈fun〉(〈reg〉∗)

Fig. 1. Syntax of parallel programs

program Dekker

thread t1 regs r1 init l0 begin

l0: mem[x] ← 1; goto l1;
l1: r1 ← mem[y]; goto l2;
end

thread t2 regs r2 init l′0 begin

l′0: mem[y] ← 1; goto l′1;
l′1: r2 ← mem[x]; goto l′2;
end

Fig. 2. Simplified version of Dekker’s mu-
tex algorithm. Under SC, it is impossible
that r1 = r2 = 0 when both threads reach
l2 and l′2.

We assume a program comes with two sets: a data domain DOM and a function
domain FUN. The data domain should contain value zero: 0 ∈ DOM. Moreover,
we assume that all values from DOM can be used as addresses. Each memory lo-
cation accessed by loads and stores is identified by such an address, and memory
locations identified by different addresses do not overlap. The set FUN contains
functions that are defined on the data domain and can be used in the program.
Note that we do not make any finiteness assumptions.

TSO Semantics. Fix a program P with threads THRD := {t1, . . . , tn}. Let
each thread ti have the initial label l0,i and declare registers ri. We define the
set of variables as the union of addresses and registers: VAR := DOM∪∪i∈[1,n]ri.
We denote the set of all instruction labels that occur in threads by LAB.

538 A. Bouajjani, E. Derevenetc, and R. Meyer

The TSO semantics we define is operational, in terms of labelled transitions
between states. On the x86 TSO architecture, each thread effectively has a local
FIFO buffer that keeps stores for later execution [26,28,10,11]. Therefore, a state
is a triple s = (pc, val, buf) where the program counter pc : THRD→ LAB holds,
for each thread, the label of the instruction(s) to be executed next. The valuation
val : VAR→ DOM gives the values of registers and memory locations. The third
component buf : THRD→ (DOM × DOM)∗ is the (per thread) buffer content: a
sequence of address-value pairs a← v.

In the initial state s0 := (pc0, val0, buf0) the program counter is set to the
initial labels, pc0(ti) := l0,i for all ti ∈ THRD, registers and addresses hold value
zero, val0(x) := 0 for all x ∈ VAR, and all buffers are empty, buf0(t) := ε for all
t ∈ THRD. Here, ε denotes the empty sequence.

Instructions yield transitions between states that are labelled by actions from
ACT := THRD × ({isu, loc} ∪ ({ld, st} × DOM× DOM)). An action consists of
the thread id and the actual arguments of the executed instruction. We use loc
to abstract assignments and asserts that are local to a thread. An issue action
isu indicates that a store was executed by a thread. The store action (t, st, a, v)
gives the moment when the store becomes visible in memory.

The TSO transition relation −→TSO is the smallest relation between TSO states
that is defined by the rules in Table 1. The rules repeat, up to notation and
support for locked instructions, Figure 1 from [26]. The first two rules implement
loads from the buffer and from the memory, respectively. By the third rule,
store instructions enqueue write operations to the buffer. The fourth rule non-
deterministically dequeues and executes them on memory. The fifth rule defines
that memory fences can only be executed when the buffer is empty. The last two
rules refer to local assignments and assertions. We omit locked instructions to
keep things simple. Introducing them is straightforward and does not affect the
results. Indeed, our implementation supports them [1].

The set of TSO computations contains all sequences of actions that lead from
the initial TSO state to a state where all buffers are empty:

CTSO(P) := {τ ∈ ACT∗ | s0 τ−→TSO s for some TSO state

s = (pc, val, buf) with buf(t) = ε for all t ∈ THRD}.
The requirement of empty buffers is not important for our results but rather
a modelling choice. Figure 3 presents a TSO computation of Dekker’s program
where the store of the first thread is delayed past the load.

τ =(t1, isu)(t1, ld, y, 0)(t2, isu)(t2, st, y, 1) (t2, ld, x, 0) (t1, st, x, 1)

Fig. 3. A TSO computation of Dekker’s algorithm. The arc connects the issue action
with the corresponding delayed store action of the first thread.

SC Semantics. Under SC [21], stores are not buffered and hence states are pairs
(pc, val). The rules for SC transitions are appropriately simplified TSO rules. To
avoid case distinctions between TSO and SC in the definition of traces, a store

Checking and Enforcing Robustness against TSO 539

Table 1. TSO transition rules, assuming pc(t) = l, an instruction 〈instr〉 at label l
with destination l′, and pc′ := pc[t := l′]. We use ↓ to denote projection and ∗ for any
value, i.e., buf(t) ↓ (a ← ∗) is the list of address-value pairs in the buffer of thread t
that have address a.

〈instr〉 = r ← mem[fa(ra)], a = fa(val(ra)), buf(t)↓(a← ∗) = β · (a← v)

(pc, val, buf)
(t, ld, a, v)−−−−−−→TSO (pc′, val[r := v], buf)

〈instr〉 = r ← mem[fa(ra)], a = fa(val(ra)), buf(t)↓(a← ∗) = ε, v = val(a)

(pc, val, buf)
(t, ld, a, v)−−−−−−→TSO (pc′, val[r := v], buf)

〈instr〉 = mem[fa(ra)] ← fv(rv), a = fa(val(ra)), v = fv(val(rv))

(pc, val, buf)
(t, isu)−−−→TSO (pc′, val, buf[t := buf(t) · (a← v)])

buf(t) = (a← v) · β
(pc, val, buf)

(t, st, a, v)−−−−−−→TSO (pc, val[a := v], buf[t := β])

〈instr〉 = mfence, buf(t) = ε

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val, buf)

〈instr〉 = r ← f(r)

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val[r := f(val(r))], buf)

〈instr〉 = assert f(r), f(val(r)) �= 0

(pc, val, buf)
(t, loc)−−−→TSO (pc′, val, buf)

instruction generates two actions: an issue followed by the store. Memory fences
have no effect under SC. We denote the set of all SC computations of P by

CSC(P) := {σ ∈ ACT∗ | s0 σ−→SC s for some SC state s}.

3 TSO Robustness

Robustness ensures that the behaviour of a program does not change when it is
run on TSO hardware as compared to SC. We study trace-based robustness as
in [29,10,11,5,9]. Traces capture the essence of a computation: the control and
data dependencies among actions. More formally, consider some computation
α ∈ CSC(P) ∪ CTSO(P). The trace Tr(α) is a graph where the nodes are labelled
by the actions in α (stores and issue yield one node). The arcs are defined by the
following relations. We have a per thread t ∈ THRD total order →t

po that gives
the order in which the actions of t where issued. Similarly, we have a per address
a ∈ DOM total order →a

st that gives the ordering of all stores to a. We call the
unions→po := ∪t∈THRD →t

po and→st := ∪a∈DOM →a
st the program order and the

store order of the trace. Finally, there is a source relation →src that determines
the store from which a load receives its value. By Trmm(P) := Tr(Cmm(P)) with
mm ∈ {SC,TSO} we denote the set of all SC/TSO traces of program P . The
TSO robustness problem checks whether the sets coincide.

540 A. Bouajjani, E. Derevenetc, and R. Meyer

Given: A parallel program P .
Problem: Does TrTSO(P) = TrSC(P) hold?

Since inclusion TrSC(P) ⊆ TrTSO(P) always holds, we only have to check the
reverse inclusion. We call a computation τ ∈ CTSO(P) violating if its trace is
not among the SC traces of the program, i.e., Tr(τ) /∈ TrSC(P). Violating TSO-
computations employ cyclic accesses to addresses that SC is unable to serialize
[29]. These cyclic accesses are made visible using a conflict relation from loads
to stores. Intuitively, ld→cf st means that st overwrites the value that ld reads.
The union of all four relations is commonly called happens-before relation of the
trace, →hb := →po ∪ →st ∪ →src ∪ →cf .

Lemma 1 ([29]). Consider TSO trace Tr(τ) ∈ TrTSO(P). Then Tr(τ) ∈ TrSC(P)
iff →hb is acyclic.

Consider computation τ in Figure 3. The load from thread t1 conflicts with
the store from t2 because the load reads the initial value of y while the store
overwrites it. The situation with the load from t2 and the store from t1 is sym-
metric. Together with the program order, the conflict relations produce a cycle:

(t1, st, x, 1)Tr(τ) :

(t1, ld, y, 0) (t2, st, y, 1)

(t2, ld, x, 0)
po po

cf

cf

Indeed, there is no SC computation with this trace, as predicted by Lemma 1.
Lemma 1 does not provide a method for finding cyclic traces. We have re-

cently shown that TSO robustness is decidable, in fact, PSpace-complete [9].
The algorithm underlying this result, however, is based on enumeration and not
meant to be implemented. The main contribution of the present work is a novel
and practical approach to checking robustness.

The only concept we keep from our earlier work are minimal violations. A
minimal violation is a violating computation that uses a minimal total number
of delays. Interestingly, for minimal violations the following holds.

Lemma 2 (Locality [9,8]). In a minimal violation, only one thread delays
stores.

Consider the computation in Figure 3. It relies on a single delay in thread t1 and,
indeed, is a minimal violation. As predicted by the lemma, the second thread
writes to its buffer and immediately flushes it.

4 Attacks on TSO Robustness

Our approach to checking TSO robustness combines two insights. We first
rephrase robustness in terms of a simpler problem: the absence of feasible attacks.
We then devise an algorithm that checks attacks for feasibility. Interestingly, SC
reachability techniques are sufficient for this purpose. Together, this yields a
sound and complete reduction of TSO robustness to SC reachability.

The notion of attacks is inspired by the shape of minimal violations. We show
that if a program is not robust, then there are violations of the form shown in

Checking and Enforcing Robustness against TSO 541

τ = isustA ldA stAτ1 τ2 τ3 τ4

Fig. 4. TSO witness for the attack (tA, stinst, ldinst). It satisfies the following con-
straints. (W1) Only the attacker delays stores. (W2) Store stA is an instance of stinst.
It is the first store of the attacker that is delayed. Load ldA is an instance of ldinst.
It is the last action of the attacker that is overstepped by stA. So τ2 contains loads,
assignments, asserts, and issues, but no fences and stores of the attacker. It may con-
tain arbitrary helper actions. (W3) We require ldA →+

hb act for every action act in
ldA · τ3 · stA. An issue + store of a helper is counted as one action act. (W4) Sequence
τ4 only consists of stores of the attacker that were issued before ldA and that have been
delayed. (W5) All these stores st satisfy addr(st) �= addr(ldA), i.e., ldA has not read
its value early.

Figure 4: one thread, the attacker, delays a store action stA past a later load
action ldA in order to break robustness. The remaining threads become helpers
and provide a happens-before path from ldA to stA. This yields a happens-before
cycle and shows non-robustness.

Thread, store instruction stinst of stA, and load instruction ldinst of ldA are
syntactic objects. The idea of our approach is to fix these three parameters,
the attack, prior to the analysis. The algorithm then tries to find a witness
computation that proves the attack feasible.

Definition 1. An attack A = (tA, stinst, ldinst) consists of a thread tA ∈ THRD
called attacker, a store instruction stinst and a load instruction ldinst. A TSO
witness for A is a computation of the form in Figure 4, i.e., it satisfies (W1)
to (W5). If a TSO witness exists, the attack is called feasible.

In Dekker’s algorithm, there is an attack A = (tA, stinst, ldinst) with tA = t1,
stinst the store at l0, and ldinst the load at l1. A TSO witness for this attack is
the computation τ from Figure 3. With reference to Figure 4, we have τ1 = ε,
isustA = (t1, isu), τ2 = ε, ldA = (t1, ld, y, 0), τ3 = (t2, isu) · (t2, st, y, 1) · (t2, ld, x, 0),
stA = (t1, st, x, 1), τ4 = ε. The program also contains a symmetric attack A′ with
t2 as the attacker.

Although TSO witnesses are quite restrictive computations, robustness can
be reduced to verifying that no attack has a TSO witness.

Theorem 1 (Complete Characterization of Robustness with Attacks).
Program P is robust iff no attack is feasible, i.e., no attack admits a TSO witness.

Proof. The existence of a TSO witness implies non-robustness of the program.
Indeed, a TSO witness comes with a happens-before cycle stA →+

po ldA →+
hb stA.

We argue that also the reverse holds: if a program is not robust, there is a feasible
attack. Assume P is not robust. We construct a TSO witness computation.
Among the violating computations, we select τ ∈ CTSO(P) where the number of
delays is minimal. The computation need not be unique. By Lemma 2, in τ only
one thread tA uses its buffer and (W1) holds. We elaborate on the shape of τ .

542 A. Bouajjani, E. Derevenetc, and R. Meyer

Initially, the attacker executes under SC so that stores immediately follow
their issues. This computation is embedded into τ1 in Figure 4. Eventually, the
attacker starts delaying stores. Let stA be the first store that is delayed. It gets
reordered past several loads, the last of which being ldA. This shows (W2).

Consider the helper actions in τ3. To see that we can assume (W3), first
note that ldA →+

hb stA holds. If there was no such path, stA could be placed
before ldA without changing the trace. This would save a delay, in contradiction
to minimality of τ . Assume τ3 = τ ′3 · act · τ ′′3 where act is the first action so
that ldA �→+

hb act. Then act is independent from all actions in ldA · τ ′3. We find a
computation with the same trace where act is placed before ldA.

With cycle stA →+
po ldA →+

hb stA, computation τ4 only needs to contain the
stores of the attacker that have been delayed past ldA. Since these stores are
non-blocking, the helpers can stop with the last action in τ3. We can moreover
assume ldA to be the program order last action of the attacker. (W4) holds.

We now argue that ldA has not read its value early from any of the delayed
stores, (W5). Towards a contradiction, assume ldA obtained its value from st in
τ4 = τ41 · st · τ42. There is a computation τ ′ where we avoid the early read: it
replaces τ4 by τ41 · st · ldA · τ42. The traces of τ and τ ′ coincide, but τ ′ saves the
delay of st past ldA. A contradiction to minimality.

It is readily checked that τ is a TSO witness for the attack (tA, stinst, ldinst)
where stinst and ldinst are the instructions that stA and ldA are derived from. �	
Since the number of attacks is only quadratic in the size of the program, we
can just enumerate them and check whether one admits a TSO witness. To
check whether a witness exists, we employ the instrumentation described in the
following section.

5 Instrumentation

Consider program P with attack A = (tA, stinst, ldinst). TSO witnesses for A only
make limited use of the store buffers, to an extent that allows us to characterize
them by SC computations in a program PA that is instrumented for attack A. By
instrumentation we mean that PA replaces every thread by a modified version.
Capturing TSO witnesses with a program that runs under SC is difficult for
two reasons. First, TSO has unbounded store buffers which can delay arbitrarily
many stores. Second, the happens-before dependence that the helpers create
may involve an arbitrary number of actions. Our instrumentation copes with
both problems, using the following tricks.

To handle store buffering, we instrument the attacker thread (Section 5.1).
Essentially, we emulate store buffering under SC using auxiliary addresses. To
explain the idea, consider the TSO witness in Figure 4. When the instrumented
attacker executes the delayed stores stA · τ4 under SC, they occur right behind
their issue actions. To mimic store buffering, these stores now access auxiliary
addresses that the other threads do not load. As a result, the stores remain
invisible to the helpers. This is as intended: the delayed stores stA ·τ4 in Figure 4
are also never accessed by helper threads. But how many auxiliary addresses do
we need to faithfully simulate buffers? It is sufficient to have a single auxiliary

Checking and Enforcing Robustness against TSO 543

address per address in the program. The reason is that a load always reads the
most recent store to its address that is held in the buffer.

To build up a happens-before path from ldA to stA, we instrument the helper
threads (Section 5.2). The question is how to decide whether a new action act is in
happens-before relation with an earlier action act′ so that ldA →∗

hb act
′ →∗

hb act.
What is the information we need about the earlier actions in order to append act?
It is sufficient to know two facts. Has the thread already contributed an action
act′? This information ensures act′ →∗

po act, and can be kept in the control flow
of the thread. Moreover, we keep track of whether the path contains a load or
store access to the address addr (act). If there was a load access act′ = ld, we
can add a store act = st and get ld →∗

hb st. If there was a store, we are free to
add a load or a store. Hence, we need one auxiliary address per address in the
program for this access information: no access, load access, store access.

Consider the TSO witness for Dekker given in Figure 3. Instead of buffering
(t1, st, x, 1), the instrumentation immediately executes the store after its issue
action. But instead of address x, the action accesses the auxiliary address (x, d)
that is invisible to the other threads. So, the SC computation of the instrumented
program roughly looks like this:

(t1, isu) · (t1, st, (x, d), 1) · (t1, ld, y, 0)
(1)· (t2, isu)(t2, st, y, 1)

(2)· (t2, ld, x, 0).

At moment (1), we know that there has been a load access to address y. At
moment (2), address y has even seen a store. At the end of the computation,
address y has seen a store and address x has seen a load.

The store of t2 can be appended since it is in happens-before relation with the
attacker’s load. The following load can be added as t2 has contributed the pre-
vious store. The search terminates here since the helper’s load accesses address
x that was used by the store from the attack.

5.1 Instrumentation of the Attacker

The instrumentation emulates the buffering of stores in a TSO witness (Fig-
ure 4). Starting from stA, the stores are replaced by stores stauxA to auxiliary
addresses (a, d) that are only visible to the attacker. As long as a has not been
written, (a, d) holds the initial value 0. Once the attacker stores v into a, we
set mem[(a, d)] = (v, d). In this way, (a, d) always holds the most recent store.
A load r ← mem[a] of the attacker reads a value v from the buffer whenever
mem[(a, d)] = (v, d); otherwise mem[(a, d)] = 0 and the load obtains the value
v = mem[a] from memory. We turn to the translation.

Let tA declare registers r∗, have initial location l0, and define instructions
〈linst〉∗ that contain stinst and ldinst from the attack. The instrumentation is

[[tA]] := thread t̃A regs r∗ init l0

begin 〈linst〉∗ [[stinst]]A1 [[ldinst]]A1 [[〈linst〉]]∗A2 end.

It introduces a copy of the source code [[〈linst〉]]∗A2 where the stores are replaced
by accesses to the auxiliary addresses. To move to the code copy, the attacker
uses an instrumented version [[stinst]]A1 of stinst.

544 A. Bouajjani, E. Derevenetc, and R. Meyer

[[l1: mem[e1]← e2; goto l2;]]A1 := l1: mem[(e1, d)]← (e2, d); goto l̃x; (1)

l̃x: mem[astA]← e1; goto l̃2;

[[l1: r ← mem[e]; goto l2;]]A1 := l̃1: assert mem[(e, d)] = 0; goto l̃x1; (2)

l̃x1: mem[hb]← true; goto l̃x2;

l̃x2: mem[(e, hb)]← lda; goto l̃x3;

[[l1: mem[e1]← e2; goto l2;]]A2 := l̃1: mem[(e1, d)]← (e2, d); goto l̃2; (3)

[[l1: r ← mem[e]; goto l2;]]A2 := l̃1: assert mem[(e, d)] = 0; goto l̃x1; (4)

l̃x1: r ← mem[e]; goto l̃2;

l̃1: assert mem[(e, d)] �= 0; goto l̃x2;

l̃x2: (r, d)← mem[(e, d)]; goto l̃2;

[[l1: local; goto l2;]]A2 := l̃1: local; goto l̃2; (5)

[[l1: mfence; goto l2;]]A2 := (6)

Fig. 5. Instrumentation of the attacker

The translation of instructions is defined in Figure 5. We make a few remarks.
The instrumentation (1) of stinst saves the address used in the store in a fresh
address astA . For the sake of readability, Equation (4) uses memory accesses
in asserts. Equation (6) deletes fences, as they forbid to delay stA over ldA.
Equation (2) checks that the load used in the attack has not read its value
early, sets an auxiliary happens-before address (e, hb) to access level load, lda,
and halts the attacker. We postpone the definition of access levels until the
translation of helpers. The equation also sets a flag hb that forbids helpers to
execute actions not contributing to the happens-before path. Figure 6 illustrates
the instrumentation on our running example.

5.2 Instrumentation of Helpers

In TSO witnesses, all helper actions after ldA are in happens-before relation with
ldA, by (W3). To ensure this, we use Lemma 3. The proof from left to right is by
definition of happens-before. For the reverse direction, note that happens-before
is stable under insertion. Consider st→src ld. A happens-before relation remains
valid in any computation that places actions between st and ld.

Lemma 3. Consider τ = τ1 · act1 · τ2 ∈ CSC(P) where for all act2 in τ2 we have
act1 →∗

hb act2. Computation τ · act satisfies act1 →∗
hb act iff

(i) there is an action act2 in act1 · τ2 with thread(act2) = thread(act) or
(ii) act is a load whose address is stored in act1 · τ2 or
(iii) act is a store (with issue) whose address is loaded or stored in act1 · τ2.
The lemma suggests the following instrumentation. For every helper t, we track
whether it has executed an action that depends on ldA. The idea is to use the
control flow. Upon detection of this first action, the thread moves to a copy of
its code. All actions from this copy stay in happens-before relation with ldA.

Checking and Enforcing Robustness against TSO 545

thread t̃1 regs r1 init l0 begin

/* Original code */

l0: mem[x] ← 1; goto l1;
l1: r1 ← mem[y]; goto l2;

/* Instrumented stinst */

l0: mem[(x, d)] ← (1, d); goto l̃x;
l̃x: mem[astA] ← x; goto l̃1;

/* Instrumented ldinst */

l̃1: assert mem[(y, d)] = 0; goto l̃x1;
l̃x1: mem[hb] ← true; goto l̃x2;
l̃x2: mem[(y, hb)] ← lda; goto l̃x3;
end

/* Instrumented copy of the store */

l̃0: mem[(x, d)] ← (1, d); goto l̃1;

/* Instrumented copy of the load */

l̃1: assert mem[(y, d)] = 0; goto l̃x4;
l̃x4: r1 ← mem[y]; goto l̃2;
l̃1: assert mem[(y, d)] �= 0; goto l̃x5;
l̃x5: (r1, d) ← mem[(y, d)]; goto l̃2;

Fig. 6. Attacker instrumentation of thread t1 in Dekker from Figure 2. The attack’s
store is the store at label l0, the load is the load at label l1.

It remains to decide whether an action act allows a thread to move to the
code copy. According to Lemma 3, this depends on the earlier accesses to the
address a = addr (act). We introduce auxiliary happens-before addresses (a, hb)
that provide this access information. The addresses (a, hb) range over the domain
{0, lda, sta} of access types. It is sufficient to keep track of the maximal access
type wrt. the ordering 0 (no access) < lda (load access) < sta (store access).

For the definition, consider a helper thread t that declares registers r∗, has
initial label l0, and defines instructions 〈linst〉∗. The instrumented thread is

[[t]] := thread t̃ regs r̃, r∗ init l0

begin [[〈linst〉]]∗H0 [[〈ldstinst〉]]∗H1 [[〈linst〉]]∗H2 [[〈l〉]]∗H3 end.

The instrumentation of the original code [[〈linst〉]]H0 forces helpers to either enter
the code copy or stop when the hb flag is raised. To move to the code copy,
we instrument the subsequence 〈ldstinst〉∗ of all load and store instructions in
〈linst〉∗. The code copy is [[〈linst〉]]∗H2. Let 〈l〉∗ be all labels used by the thread.
The additional instructions [[〈l〉]]∗H3 raise a success flag when a TSO witness has
been found.

The translation of instructions is given in Figure 7. We make some remarks.
Transitions to the code copy check the auxiliary addresses for whether the current
action is in happens-before relation with ldA. Loads in Equation (8) check for an
earlier store access to their address, Lemma 3(ii). Stores in Equation (9) require
that the address has seen at least a load, Lemma 3(iii). They set the access level
to sta. Loads and stores in the code copy maintain the auxiliary addresses to
contain the maximal access types, Equations (12) and (11). Note the auxiliary
register r̃ that ensures we do not overwrite the address. At every label of the code
copy we add a check, Equation (13), whether the address used in the attack’s
store has been accessed in the code copy. If so, a success flag is raised.

546 A. Bouajjani, E. Derevenetc, and R. Meyer

[[l1: instr; goto l2;]]H0 := l1: assert mem[hb] = 0; goto lx; (7)

lx: instr; goto l2;

[[l1: r ← mem[e]; goto l2;]]H1 := l1: assert mem[(e, hb)] = sta; goto l̃x; (8)

l̃x: r ← mem[e]; goto l̃2;

[[l1: mem[e1]← e2; goto l2;]]H1 := l1: assert mem[(e1, hb)] ≥ lda; goto l̃x1; (9)

l̃x1: mem[e1]← e2; goto l̃x2;

l̃x2: mem[(e1, hb)]← sta; goto l̃2;

[[l1: local/mfence; goto l2;]]H2 := l̃1: local/mfence; goto l̃2; (10)

[[l1: mem[e1]← e2; goto l2;]]H2 := l̃1: mem[e1]← e2; goto l̃x; (11)

l̃x: mem[(e1, hb)]← sta; goto l̃2;

[[l1: r ← mem[e]; goto l2;]]H2 := l̃1: r̃ ← e; goto l̃x1; (12)

l̃x1: r ← mem[r̃]; goto l̃x2;

l̃x2: mem[(r̃, hb)]← max{lda, mem[(r̃, hb)]}; goto l̃2;

[[l]]H3 := l̃: r̃ ← mem[astA]; goto l̃x1; (13)

l̃x1: r̃ ← mem[(r̃, hb)]; goto l̃x2;

l̃x2: assert r̃ �= 0; goto l̃x3;

l̃x3: mem[suc]← true; goto l̃x4;

Fig. 7. Instrumentation of helpers

5.3 Soundness and Completeness

The flag indicates that the SC computation corresponds to a TSO witness, and
we call (pc, val) with val(suc) = true a goal configuration. The instrumentation
thus reduces feasibility of attack A to SC reachability of a goal configuration in
program PA. The instrumentation is sound and complete. If a goal configuration
is reachable, we can reconstruct a TSO witness for the attack. In turn, every
TSO witness ensures the goal configuration is reachable.

Theorem 2 (Soundness and Completeness [8]). Attack A is feasible in
program P iff program PA reaches a goal configuration under SC.

In combination with Theorem 1, we can check robustness by inspecting all PA.

Theorem 3 (From TSO Robustness to SC Reachability). Program P is
robust iff no instrumentation PA reaches a goal configuration under SC.

The instrumentation we provide is linear in size. Then, it follows from Theorem 3
that checking robustness for programs over finite data domains is in PSpace.
The problem is actually PSpace-complete due to the lower bound in [9].

6 TSO Robustness for Parameterized Programs

We extend the study of robustness to parameterized programs. A parameterized
program represents an infinite family of instance programs that replicate the

Checking and Enforcing Robustness against TSO 547

threads multiple times. Syntactically, parameterized programs coincide with the
parallel programs we introduced in Section 2: they have a name and declare a
finite set of threads t1, . . . , tk. The difference is in the semantics. A parameterized
program defines, for every vector I = (n1, . . . , nk) ∈ N

k, an instance program
P(I) that declares ni copies of thread ti.

In the parameterized setting, the robustness problem asks for whether all
instances of a given program are robust:

Given: A parameterized program P .
Problem: Does TrTSO(P(I)) = TrSC(P(I)) hold for all instances P(I) of P?

The problem is interesting because libraries usually cannot make assumptions on
the number of threads that use their functions. They have to guarantee proper
functioning for any number.

We reduce robustness for parameterized programs to a parameterized version
of reachability, based on the following insight. A parameterized program is not
robust if and only if there is an instance P(I) that is not robust. With Theorem 1,
instance P(I) is not robust if and only if there is an attack A that is feasible.
With the instrumentation from Section 5 and Theorem 2, this feasibility can be
checked as reachability of a goal configuration in P(I)A.

Algorithmically, it is impossible to instrument all (infinitely many) instance
programs. Instead, the idea is to instrument directly the parameterized program
P towards the attack A. Using the constructions from Section 5, we modify every
thread and again obtain program PA, which is now parameterized.

Actually, for the attacker we have to be slightly more careful. In an instance
program, only one copy of the thread should act as the attacker, the remaining
copies must behave like helpers. Therefore, we instrument the thread not only
as an attacker, but also as a helper. To ensure that only one copy of the attacker
delays stores, we add an additional flag variable. Before starting an attack, the
thread checks this variable. If it contains the initial value, the thread sets the
flag and starts delaying stores. If it has a different value, the thread continues to
run sequentially. This check requires an atomic test-and-set operation which can
be implemented on x86 by the lock cmpxchg instruction. Support for locked
instructions is immediate to add to our programming model.

Modulo these two changes, the instances PA(I) coincide with the instrumenta-
tions P(I)A. Together with the previous argumentation this justifies the following
theorem.

Theorem 4. A parameterized program P is not robust iff there is an attack A
so that an instance PA(I) of program PA reaches a goal configuration under SC.

Reachability of a goal configuration in one instance of PA can be reformulated
as a coverability problem for Petri nets, which is known to be decidable [27].
The key observation in the reduction to Petri nets is that threads in instance
programs never use their identifiers, simply because they are copies of the same
source code. This means there is no need to track the identity of threads, it
is sufficient to count how many instances of a thread are in each state — a
technique known as counter abstraction [14].

548 A. Bouajjani, E. Derevenetc, and R. Meyer

Theorem 5 ([8]). Robustness for parameterized programs over finite data do-
mains is decidable and EXPSpace-hard — already for Boolean programs.

For the lower bound, we in turn encode the coverability problem for Petri nets
into robustness for parameterized programs [24].

7 Fence Insertion

To ease the presentation, we return to parallel programs. Since the algorithm
only relies on a robustness checker, it carries over to the parametric setting.

Our goal is to insert a set of fences that ensure robustness of the resulting
program. By inserting a fence at label l we mean the following modification of
the program. Introduce a fresh label lf . Then, translate each instruction l: inst;
goto l′; into lf: inst; goto l′;. Finally, add an instruction l: mfence; goto lf;.

We call a set of labels F in program P a valid fence set if inserting fences at
these labels yields a robust program. We say that F is irreducible if no strict
subset is a valid fence set. In general, however, we look for a valid fence set which
is optimal in some sense, and pose the fence computation problem as follows:

Given: A program P and a strictly positive cost function C : LAB→ R
+.

Problem: Compute a valid fence set F with Σl∈FC(l) minimal.

Since we assume C to be strictly positive, every optimal fence set is irreducible.
We consider two criteria of optimality: minimization of program size and

maximization of program performance. By solving the problem for C ≡ 1 we
compute a fence set of minimal size, thus minimizing the code size of the fenced
program. Maximization of program performance requires minimizing the number
of times memory fence instructions are executed: practical measurements [1]
show that it is impossible to save CPU cycles by executing more fences, but
with less stores in the TSO buffer. For this, C(l) is defined as the frequency
at which instructions labeled by l occur in executions of the original program
P . Concrete values of C can be either estimated by profiling or computed by
mathematical reasoning about the program.

From a complexity point of view, fence computation is at least as hard as
robustness. Indeed, robustness holds if and only if the optimal valid fence set is
F = ∅. Actually, since fence sets can be enumerated, computing an optimal valid
fence set does not require more space than checking robustness. Notice that this
also holds in the parameterized case.

Theorem 6. For programs over finite domains, fence computation is PSpace-
complete. In the parameterized case, it is decidable and EXPSpace-hard.

In the remainder of the section, we give a practical algorithm for computing
optimal valid fence sets.

7.1 Fence Sets for Attacks

We say that a label l is involved in the attack A = (tA, stinst, ldinst) if it belongs
to some path in the control flow graph of tA from the destination label of stinst
to the source label of ldinst. We denote the set of all such labels by LA.

Checking and Enforcing Robustness against TSO 549

We call a set of labels FA an eliminating fence set for attack A if adding fences
at all labels in FA eliminates the attack. Dekker’s algorithm has two eliminating
fence sets: FA = {l1} eliminates the only attack by t1, and FA′ = {l′1} eliminates
the only attack by t2. Actually, the sets are irreducible: no strict subset eliminates
the attack. Note that any irreducible eliminating set FA satisfies FA ⊆ LA.
Lemma 4. Every irreducible valid fence set F can be represented as a union of
irreducible eliminating fence sets for all feasible attacks.

Proof. By Theorem 1, fence set F eliminates all feasible attacks. Therefore, it
includes some irreducible eliminating fence set FA for every feasible attack A.
By irreducibility, F cannot contain labels outside the union of these FA sets. �	
In compliance with the lemma, in Dekker’s program F = FA ∪ FA′ .

Lemma 4 is useful for fence computation since optimal fence sets are always
irreducible. All irreducible eliminating fence sets for attacks can be constructed
by an exhaustive search through all selections of labels involved in the attack.

Note that this search may raise an exponential number of reachability queries.
In practice this rarely constitutes a problem. First, attacks seldom involve a large
number of labels, so the number of candidates is small. Second, the reachability
checks can be avoided if a candidate fence set covers all the ways in the control
flow graph from stinst to ldinst.

7.2 Computing an Optimal Valid Fence Set

To choose among the sets FA, we set up a 0/1-integer linear programming (ILP)
problem MP · xP ≥ bP . The optimal solutions f(xP) → min correspond to
optimal fence sets. Here, 0/1 means the variables are Boolean.

We define inequalities that encode the feasible attacks with their corrections.
Consider attack A for which we have determined the irreducible eliminating
fence sets F1, . . . ,Fn. For each set, we introduce a variable xFi and set up
Inequality (14)(left). It selects a fence set to eliminate the attack.

∑

1≤i≤n

xFi ≥ 1
∑

l∈Fi

xl≥ |Fi|xFi f(xP) :=
∑

l∈LAB

C(l)xl. (14)

When Fi has been chosen, we insert a fence at each of its labels l. We add further
variables xl, and encode this insertion by Inequality (14)(center). By definition
of the ILP, the variables xFi and xl will only take Boolean values 0 or 1. So if
xFi is set to 1, the inequality requires that all xl with l ∈ Fi are set to 1.

Our goal is to select fences with minimal costs. We encode this into the objec-
tive function (14)(right). An optimal solution x∗ of the resulting 0/1-ILP denotes
the fence set F(x∗) := {l ∈ LAB | x∗

l = 1}.
Theorem 7. F(x∗) is valid and optimal, and thus solves fence computation.

550 A. Bouajjani, E. Derevenetc, and R. Meyer

8 Experimental Evaluation

We implemented our algorithms in a prototype called Trencher [1]. The tool
performs the reduction of robustness to SC reachability given in Section 5 and
computes a minimal fence set as described in Section 7. Trencher executes
independent reachability queries in parallel and uses SPIN [17] as back-end model
checker. With Trencher, we have performed a series of experiments.

8.1 Examples

The first class of examples are mutual exclusion protocols that are implemented
via shared variables. These protocols are typically not robust under TSO and
require additional fences after stores to synchronization variables. We studied
robust and non-robust instances of Dekker and Peterson for two threads, as well
as Lamport’s fast mutex [22] for three threads. Moreover, we checked the CLH
and MCS locks: robust list-based queue locks that use compare-and-set [16].

As second class of examples, we considered concurrent data structures.
The Lock-Free Stack is a concurrent stack implementation using compare-and-
swap [16]. Cilk’s THE WSQ is a work stealing queue from the implementation
of the Cilk-5 programming language [13].

Finally, we considered miscellaneous concurrent algorithms that are known to
be sensitive to program order relaxations. We analysed several instances of the
Non-Blocking Write protocol [18]. NBWL is the spinlock + non-blocking write
example considered by Owens in Section 8 of [25]. Finally, our tool discovered the
known bug in Java’s Parker implementation that is due to TSO relaxations [12].

8.2 Benchmarking

We executed Trencher on the examples, using a machine with Intel(R)
Core(TM) i5 CPU M 560 @ 2.67GHz (4 cores) running GNU/Linux. Table 2
summarizes the results. The columns T, L, and I give the numbers of threads,
labels, and instructions in the examples. RQ is the number of reachability queries
raised by Trencher. Provided the example is robust, this number is equal to
the number of attacks (tA, stinst, ldinst). NR1 is the number of verification queries
that were answered negatively by Trencher itself, without running SPIN. Such
queries correspond to attacks where stinst cannot be delayed past ldinst because
of memory fences or locked instructions in between. NR2 and R are the numbers
of queries that are answered negatively/positively by the external model checker.
Hence, RQ = NR1 + NR2 + R. F is the number of fences inserted.

The column Spin gives the total CPU time taken by SPIN and Clang, the C
compiler, to produce a verifier executable (pan). The column Ver provides the
total CPU time taken by Trencher and the external verifier. Real is the wall-
clock time in seconds of processing an example. All times are given in seconds.

Checking and Enforcing Robustness against TSO 551

Table 2. Benchmarking results. The test inputs are available online [1].

Program T L I RQ NR1 NR2 R F Spin Ver Real

Peterson (non-robust) 2 14 18 23 2 12 9 2 7.7 0.5 2.9

Peterson (robust) 2 16 20 12 12 0 0 0 0.0 0.0 0.0

Dekker (non-robust) 2 24 30 95 12 28 55 4 31.7 2.1 14.2

Dekker (robust) 2 32 38 30 30 0 0 0 0.0 0.0 0.0

Lamport (non-robust) 3 33 36 36 9 15 12 6 14.4 6.0 5.9

Lamport (robust) 3 39 42 27 27 0 0 0 0.0 0.0 0.0

CLH Lock (robust) 7 62 58 54 48 6 0 0 4.9 0.2 1.6

MCS Lock (robust) 4 52 50 30 26 4 0 0 2.9 0.4 0.9

Lock-Free Stack (robust) 4 46 50 14 14 0 0 0 0.0 0.0 0.0

Cilk’s THE WSQ (non-robust) 5 86 79 152 141 8 3 3 10.0 18.0 7.4

NBW2 (non-robust) 2 21 19 15 9 5 1 1 2.5 0.2 0.8

NBW3 (robust) 2 22 20 15 15 0 0 0 0.0 0.0 0.0

NBW4 (robust) 3 25 22 9 7 2 0 0 0.7 0.1 0.4

NBWL (robust) 4 45 45 30 26 4 0 0 2.7 0.2 0.7

Parker (non-robust) 2 9 8 2 0 1 1 1 0.5 0.0 0.3

Parker (robust) 2 10 9 2 2 0 0 0 0.0 0.0 0.0

8.3 Discussion

The analysis of robust algorithms is particularly fast. They typically only have a
small number of attacks that have to be checked by a model checker. The robust
versions of Dekker and Peterson do not have such attacks at all. In the CLH and
MCS locks, their number is less than 20%.

In some examples (non-robust Dekker, CLH Lock, NBW2, NBW4), up to
94% of the CPU time was spent on generating verifiers. This leaves room for
improvement by switching to a model checker without compilation phase. For
some examples (LamNR, CLH Lock), the wall-clock time constitutes 1/3 to 1/4
of the CPU time (4-cores). This confirms good parallelizability of the approach.

Remarkably, our trace-based analysis can establish robustness of the NBWL
example, as opposed to the earlier analysis via triangular data races which has
to place a fence [25].

We note that there is a reduction of TSO robustness to a single SC reachability
query, again in an instrumented program of linear size. The idea is to let each
thread act as an attacker and as a helper, and to apply [[−]]A1 to all loads and
stores rather than to a single attack. This alternative reduction is implemented
in Trencher, but it performed worse in our experiments because of a higher
degree of non-determinism and the lack of parallelization options.

Acknowledgements. The second author was granted by the Competence Cen-
ter High Performance Computing and Visualization (CC-HPC) of the Fraunhofer
Institute for Industrial Mathematics (ITWM). The work was partially supported
by the PROCOPE project ROIS: Robustness under Realistic Instruction Sets.

552 A. Bouajjani, E. Derevenetc, and R. Meyer

References

1. Trencher: a tool for checking and enforcing robustness against TSO,
http://concurrency.cs.uni-kl.de/trencher.html

2. Abdulla, P.A., Atig, M.F., Chen, Y.-F., Leonardsson, C., Rezine, A.: Counter-
Example Guided Fence Insertion under TSO. In: Flanagan, C., König, B. (eds.)
TACAS 2012. LNCS, vol. 7214, pp. 204–219. Springer, Heidelberg (2012)

3. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

4. Alglave, J.: A Shared Memory Poetics. PhD thesis, University Paris 7 (2010)

5. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan,
G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg
(2011)

6. Alur, R., McMillan, K., Peled, D.: Model-Checking of Correctness Conditions for
Concurrent Objects. In: LICS, pp. 219–228. IEEE Computer Society Press (1996)

7. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the Verification
Problem for Weak Memory Models. In: POPL, pp. 7–18. ACM (2010)

8. Bouajjani, A., Derevenetc, E., Meyer, R.: Checking and enforcing robustness
against TSO. CoRR, abs/1208.6152 (2012), http://arxiv.org/abs/1208.6152

9. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding Robustness against Total Store
Ordering. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 428–440. Springer, Heidelberg (2011)

10. Burckhardt, S., Musuvathi, M.: Effective Program Verification for Relaxed Memory
Models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

11. Burnim, J., Sen, K., Stergiou, C.: Sound and Complete Monitoring of Sequential
Consistency for Relaxed Memory Models. In: Abdulla, P.A., Leino, K.R.M. (eds.)
TACAS 2011. LNCS, vol. 6605, pp. 11–25. Springer, Heidelberg (2011)

12. Dice, D.: A race in locksupport park() arising from weak memory models (Novem-
ber 2009),
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

13. Frigo, M., Leiserson, C.E., Randall, K.H.: The implementation of the Cilk-5 mul-
tithreaded language. SIGPLAN Not. 33(5), 212–223 (1998)

14. German, S.M., Sistla, P.A.: Reasoning about systems with many processes.
JACM 39, 675–735 (1992)

15. Gibbons, P.B., Korach, E.: Testing shared memories. SIAM J. Comp. 26(4), 1208–
1244 (1997)

16. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. MKP (2008)

17. Holzmann, G.J.: The model checker SPIN. IEEE Tr. Soft. Eng. 23, 279–295 (1997)

18. Kopetz, H., Reisinger, J.: The Non-Blocking Write Protocol NBW: A Solution to
a Real-Time Synchronisation Problem. In: IEEE Real-Time Systems Symposium,
pp. 131–137. IEEE Computer Society Press (1993)

19. Kuperstein, M., Vechev, M.T., Yahav, E.: Partial-Coherence Abstractions for Re-
laxed Memory Models. In: PLDI, pp. 187–198. ACM (2011)

20. Kuperstein, M., Vechev, M.T., Yahav, E.: Automatic inference of memory fences.
SIGACT News 43(2), 108–123 (2012)

21. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-
tiprocess programs. IEEE Trans. Comp. 28(9), 690–691 (1979)

22. Lamport, L.: A fast mutual exclusion algorithm. ACM Tr. Comp. Sys. 5(1) (1987)

http://concurrency.cs.uni-kl.de/trencher.html
http://arxiv.org/abs/1208.6152
https://blogs.oracle.com/dave/entry/a_race_in_locksupport_park

Checking and Enforcing Robustness against TSO 553

23. Linden, A., Wolper, P.: A Verification-Based Approach to Memory Fence Insertion
in Relaxed Memory Systems. In: Groce, A., Musuvathi, M. (eds.) SPIN 2011.
LNCS, vol. 6823, pp. 144–160. Springer, Heidelberg (2011)

24. Lipton, R.: The reachability problem requires exponential space. Technical Re-
port 62, Yale University (1976)

25. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on
x86-TSO. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503.
Springer, Heidelberg (2010)

26. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO (extended
version). Technical Report CL-TR-745, University of Cambridge (2009)

27. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comp. Sci. 6, 223–231 (1978)

28. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. CACM 53, 89–97 (2010)

29. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM TOPLAS 10(2), 282–312 (1988)

30. Vafeiadis, V., Zappa Nardelli, F.: Verifying Fence Elimination Optimisations. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 146–162. Springer, Heidelberg
(2011)

	Checking and Enforcing Robustness against TSO
	Introduction
	Parallel Programs
	TSO Robustness
	Attacks on TSO Robustness
	Instrumentation
	Instrumentation of the Attacker
	Instrumentation of Helpers
	Soundness and Completeness

	TSO Robustness for Parameterized Programs
	Fence Insertion
	Fence Sets for Attacks
	Computing an Optimal Valid Fence Set

	Experimental Evaluation
	Examples
	Benchmarking
	Discussion

	References

