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Abstract. As products are growing more complex, so is their documentation. With an increas-

ing number of product options, the diversity in service and maintenance procedures grows

accordingly. This also holds for large-scale medical devices like Magnetic Resonance (MR)

Tomographs. Siemens Medical Solutions has thus decided against one common on-line ser-

vice handbook for all its MR Tomographs. Instead, they fragment the on-line documentation

into small packages, out of which a suitable subset is selected for each individual product

instance. Selection of (so-called) help packages is controlled by XML terms encoding Boolean

choice conditions. To assure that the set of available help packages is sufficient for all valid

product instances, we developed a tool called HelpChecker that provides a transformation

of XML terms to propositional logic formulae, and then employs BDD-based methods to

ascertain completeness of the on-line documentation and to support authors in locating any

gaps. Experiments with SAT-Solvers were also made.

Keywords: real-world applications, problem encoding, BDD-techniques, SAT

1. Introduction

There is a persistent trend towards products that are individually adaptable

to each customer’s needs (mass customization [7]). This trend, while offering

considerable advantages for the customer, at the same time demands spe-

cial efforts by the manufacturer, as he now must make arrangements to cope

with myriads of different product instances. Questions arising in this context

include: How can such a large set of product variants be represented and

maintained concisely and uniquely? How can the parts be determined that are

required to manufacture a given product instance? Is a certain requested prod-

uct variant manufacturable at all? And—the question we specifically address

in this paper—how can the accompanying documentation such as service and

user manuals be customized consistently with the product configuration?

Triggered—among other reasons—by an increased product complexity,

Siemens Medical Solutions recently introduced a semi-formal description for
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their magnetic resonance (MR) tomographs based on XML. Thus, not only

individual product instances, but also the set of all possible (valid, correct)

product configurations can now be described by an XML term which encodes

the logical configuration constraints. This formal product documentation al-

lows for an automated checking of incoming customer orders for compliance

with the product specification. Besides checking an individual customer order

for correctness, further tests become possible, including those for complete-

ness and consistency of the on-line help system which are the topic of this

paper. Similarly, cross-checks between the set of valid product instances and

the parts list (in order to find superfluous parts) or other product attributes are

within the reach of this method [28].

In order to apply automated reasoning to an industrial process, the follow-

ing steps are commonly necessary [31]. First, a formal model of the process

must be constructed. Second, correctness assertions must be derived in a for-

mal language which is compatible with the model. Third, it must be proved

mechanically whether the assertions hold in the model. Finally, those cases

where the assertions fail must be explained to the user to make debugging

possible. Throughout the formal process, speed is usually an issue, because

in practice verification is often applied repeatedly as a formal debugging step

embedded in an industrial development cycle [30].

In this paper we develop a formal semantics for the XML representation

of the Siemens MR systems using propositional logic. This is accomplished

by making the implicit assumptions and constraints of the semi-formal XML

representation explicit. We then translate different consistency properties of

the on-line help system (help package overlaps, missing help packages) into

propositional logic formulae, and thus we are able to apply automatic theorem

proving methods in order to find defects in the package assignment of the

on-line help system. Situations in which such a defect occurs are computed

and simplified using Binary Decision Diagrams (BDDs). This exceeds the

possibilities of other previously suggested XML checking techniques, such

as those of the XLinkIt system [23].

2. Product Configuration with XML

2.1. PRODUCT STRUCTURE

Many different formalisms have been proposed in the literature to model

the structure of complex products [21, 25, 34, 19, 14]. The method used by

Siemens for the configuration of their MR systems was developed in collabo-

ration with the first author of this paper and resembles the approach presented

by Soininen et al. [34]. Structural information is explicitly represented as an

AND-OR-tree. This tree serves two purposes: first, it reflects the hierarchical
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assembly of the device, i.e. it shows the constituent components of larger

(sub-)assemblies (indicated by solid lines in Fig. 1); and, second, it collects

all available, functionally equivalent (or similar) configuration options for a

particular functionality (indicated by dashed lines). The latter can also be

regarded as an is-a relationship, whereas the former expresses a has-a rela-

tionship. These two distinct purposes are also reflected by two different kinds

of nodes in the tree, as can be seen from the example in Figure 1.

Rx4=X-2

Type

System

MPCU Receiver Rx4

SatelliteMain

Harmony Concerto

Table SAR

300

MHz

R-4 X-2

Open

HW

X-1 IECR-2

Type Node

Item Node

Constraint

Figure 1. Product structure of magnetic resonance tomographs (simplified example).

Type Nodes (OR-nodes) reflect a common type that all their direct child

nodes have in common. Typically exactly (or sometimes at least) one of the

child nodes has to be selected in a valid configuration (thus OR-node). So,

e.g., the Receiver node gathers all available nodes of type receiver (R-2 and

R-4), and indicates that exactly one of them has to be selected. Item Nodes

represent concrete configuration items (e.g. parts or assemblies). The child

nodes of an item node are the sub-assemblies that are required for the item

to be complete. All of them have to be present in a valid configuration (thus

AND-node). So, e.g., system Harmony requires three sub-assemblies, one of

type MPCU, one of type Receiver, and one of type Rx4.

From the example tree shown in Figure 1 we can therefore, e.g., conclude

that there are two different possibilities for choosing a System: Harmony and

Concerto. A Harmony system possesses three configurable (direct) subcom-

ponents, of type MPCU, Receiver, and Rx4, respectively. The receiver, in turn,

may be selected from the two alternatives, R-2 and R-4. Choosing the latter

option puts an additional restriction on the configurable component Rx4: this

has to be selected in its form X2 in case R-4 is selected. Each type node

possesses two additional attributes, MinOccurs and MaxOccurs, to bound the

number of admissible sub-items of that type. Assuming that for each type
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<Config auto-ns1:noNamespaceSchemaLocation="Config.xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<Structure>

<Type IDREF="INT_ConsoleType" MinOccurs="1" MaxOccurs="1">

<Item IDREF="INI_ConsoleType_Sat"/>

<Item IDREF="INI_ConsoleType_Main">

<SubType IDREF="INT_System" MinOccurs="1" MaxOccurs="1">

<!-- Harmony -->

<Item IDREF="INI_System_024">

<SubType IDREF="INT_Comp_MPCU" Default="INI_Comp_MPCU300"

ReadOnly="true" MinOccurs="1" MaxOccurs="1">

<Item IDREF="INI_Comp_MPCU300"/>

</SubType>

<SubType IDREF="INT_Comp_RXNumOf" Default="INI_Comp_RXNumOf1"

MinOccurs="1" MaxOccurs="1">

<Item IDREF="INI_Comp_RXNumOf1"/>

<Item IDREF="INI_Comp_RXNumOf2"/>

</SubType>

<SubType IDREF="INT_Comp_ReceiverNumOf" MinOccurs="1"

MaxOccurs="1">

<Item IDREF="INI_Comp_ReceiverNumOf2"/>

<Item IDREF="INI_Comp_ReceiverNumOf4">

<Conditions>

<Condition Type="INT_Comp_RXNumOf" Op="eq"

Value="INI_Comp_RXNumOf2"/>

</Conditions>

</Item>

</SubType>

</Item>

<!-- Concerto --> ...

</SubType>

</Item>

</Type>

</Structure>

</Config>

Figure 2. Excerpts of the XML representation corresponding to the product structure shown

in Figure 1.

exactly one item has to be selected (i.e. MinOccurs = MaxOccurs = 1 for all

type nodes), the configuration tree shown in Figure 1 permits the following

valid configuration (regarded as a set of items assigned to types):

Type = Main MPCU = 300MHz Rx4 = X2

System = Harmony Receiver = R-4

A particular system configuration is completely determined by a complete

set of assignments, i.e. a set where all cardinality constraints (MinOccurs

and MaxOccurs) are satisfied. As the item names are unique and each item

can be selected at most once, a configuration is already determined by its

set of items. This alleviated translation to propositional logic considerably,

as thus each item can be considered as a propositional variable and a system

configuration corresponds to an assignment to these variables.

Within the Siemens system, the tree describing all product configurations

is represented as an XML term. The term corresponding to the tree of Figure 1

is shown in Figure 2. The XML terms reflect the tree structure almost one-

to-one. There is a Type element for each type node, and an Item element for

each item node of the tree. In an Inventory (not shown in Figure 2) all possible

node names are stored via ID attributes. These can then be referenced in the

configuration structure via IDREF attributes. So, e.g. the Receiver node name
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is indicated by the IDREF attribute INT Comp ReceiverNumOf. Moreover,

cardinality constraints on the number of admissible sub-items of a type node

can be specified using the two attributes MinOccurs and MaxOccurs. Condi-

tions are expressed in the form <Type><Op><Value>, where Op must be

one of ”eq” or ”ne”, indicating equality or inequality. A condition T eq V
requires that the item with name V is selected for the type with name T in a

valid configuration, whereas T ne V requires that item V is not selected. All

XML terms are checked for well-formedness using XML Schema [37].

We will use the simplified configuration example of this section through-

out the rest of the paper for illustration purposes. The experiments of Sec-

tion 4, however, were conducted on more complex realistic data.

2.2. STRUCTURE OF ON-LINE HELP

The on-line help pages that are presented to the user of an MR system depend

on the configuration of the system. For example, help pages are only offered

for those components that are in fact present in the system configuration.

Moreover, for certain service procedures (e.g., tune up, quality assurance),

the accessible pages not only depend on the system configuration at hand, but

also on the (workflow) steps that the service personnel already has executed,

and on the level of knowledge of the user. Workflows are specified as finite

transition systems, where states are labeled with properties denoting, e.g., the

current action the user has to perform or his knowledge level. Consequently,

the help system not only depends on the system configuration, but also on

further parameters like the workflow state.

To avoid writing the complete on-line help from scratch for each possible

system configuration and all possible workflow states, the whole help system

is broken down into small Help Packages (see Figure 3). A help package

contains documents (texts, pictures, demonstration videos) on a specialized

topic. The authors of the help packages decide autonomously how they break

down the whole help (i.e. the material for all manuals) into smaller packages.

So it is their own decision whether to write a collection of smaller packages,

one for each system configuration, or to integrate similar packages into one.

Now, in order to specify the assignment of help packages to system con-

figurations and workflow states, a list of dependencies is attached to each

help package, in which the author lists the situations for which his package

is suitable (see Figure 4, top part, for an example): all of a dependency’s

RefType/RefItem assignments must match in order to activate the pack-

age and to include it in the set of on-line help pages for that system. So, e.g.,

the package of Figure 4 is selected for all situations in which INT System

= INI System 003 and INT Workflow = INI Workflow TUNEUP. Multiple

matching situations (e.g. for either a special coil or a special receiver) may be

specified by associating further Dependency elements with a package.
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Help package

content (HTML,...)

Help

packages

Dependency

(describes matching

product instances)

x ! ¬y

<html>

...

</html>

Manual 1

For Product Instance:
System=Harmony, MPCU=300MHz,

Receiver=R-4, Rx4=X-2,...

HelpPackage 1: Introduction

HelpPackage 3: QA Harmony

HelpPackage 4: Tune-Up Harm.

HelpPackage 5: Magnet Cooling

HelpPackage 8: Backup&Rest.

Manual 2

For Product Instance:
System=Concerto, Table=Open,

SAR=IEC,...

HelpPackage 1: Introduction

HelpPackage 2: QA Concerto

HelpPackage 7: Tune-Up Conc.

HelpPackage 5: Magnet Cooling

HelpPackage 10: Dicom Tests

HelpPackage 8: Backup&Rest.

Figure 3. Illustration of help packages: for each system configuration a suitable help package

has to be selected (controlled by dependencies; workflows not shown).

<Package ID="HLP_HP-1-181203-01-001" Name="HP-1-181203-01-001">

<Content> ... </Content>

<Dependencies>

<Dependency>

<RefType IDREF="INT_Workflow">

<RefItem IDREF="INI_Workflow_TUNEUP"/>

</RefType>

<RefType IDREF="INT_System">

<RefItem IDREF="INI_System_003"/>

</RefType>

</Dependency>

</Dependencies>

</Package>

<Context>

<RefType IDREF="INT_System">

<RefItem IDREF="INI_System_003"/>

</RefType>

<RefType IDREF="INT_Workflow">

<RefItem IDREF="INI_Workflow_TUNEUP"/>

</RefType>

<RefType IDREF="INT_WorkflowMode">

<RefItem IDREF="INI_WorkflowMode_General"/>

</RefType>

<RefType IDREF="INT_WorkflowSfp">

<RefItem IDREF="INI_WorkflowSfp_SfpTuncalOpen"/>

</RefType>

</Context>

Figure 4. Example of a help package (with dependencies) and a help context.

The situations for which help packages must be available are specified

by the engineering department using so-called Help Contexts. A help context

determines system parameters and workflow steps for which a help package

must be present. An example of a help context (in XML representation) can

be found in Figure 4 at the bottom. The help package of this example fits

any state of workflow tune up (in which system parameters are optimized by

the maintenance personnel) and all configurations of System 003. The exam-
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ple’s context specifies that for step TuncalOpen in the tune up procedure of

System 003 a help package is required if the workflow mode is set to general.

Currently, more than a thousand help contexts are defined for eleven MR

systems, each with millions of different configuration possibilities. So, in

spite of in-depth product knowledge, it is a difficult and time consuming task

for the authors of help packages to find gaps (missing packages) or overlaps

(ambiguities in package assignment) in the help documents. To assist the

authors, we therefore developed an add-on tool, called HelpChecker, which is

able to perform cross-checks between the set of valid system configurations,

the situations for which help may be requested (determined by the contexts)

and the situations for which help packages are available (determined by the

packages’ dependencies).

3. Logical Encoding of Product Structure and Help System

To check completeness and consistency of the on-line help system we need a

translation into a logical formalism. We have chosen propositional logic for

this purpose because of its simplicity and the presence of fast and elaborate

decision procedures (SAT, BDD). Encoding in a description logic [1] would

also have been possible, but due to lack of experience on using description

logics for large-scale projects, we decided against this approach.

We now lay down precisely what constitutes a consistent help system.

Informally speaking, for each situation in which help may be requested for an

existing system (and therefore a valid system configuration) there should be

a matching help package. This means, help should be complete. Furthermore,

to avoid possible ambiguities or even contradictions, there should be exactly

one unique help package. This means, help should be consistent.

Therefore, we first have to find out which situations and product con-

figurations can actually occur. We therefore develop a formalization of the

product structure by building a configuration validity formula (ValidConf)

describing the set of all valid configurations. The validity formula can auto-

matically be derived from the XML data of the product structure and consists

of consistency criteria for each of the product structure’s tree nodes.

For a type node the following three validity conditions have to be met:

T1. The number of sub-items of the node must match the number restrictions

given by the MinOccurs and MaxOccurs attributes.

T2. All selected sub-items must fulfill the validity conditions for item nodes.

T3. No sub-items may be selected that were not explicitly listed as admissible

for this type.
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In our example, condition T3 would thus ensure that choosing a Receiver for

a Concerto system resulted in an invalid configuration.

For an item node the following three validity conditions have to hold:

I1. All sub-type nodes must fulfill the validity conditions for type nodes.

I2. The item’s constraint, if present, has to be satisfied.

I3. Unreferenced types and their items must not be used below this item in the

configuration. (Types are considered unreferenced if they do not appear

as a sub-node of the item.)

In our example, I3 would ensure that below the Satellite node no further types

may be used.

We now give (still informal) definitions for completeness and consistency

of the on-line help system that we will use later.

DEFINITION 3.1. The on-line help system is complete if, for each context,

a matching help package exists. Only valid system configurations have to be

considered.

Remember that contexts specify situations (system configuration plus work-

flow state) for which help may be requested by the user. Thus the system has

to make sure that for each such situation a help package is available.

To define consistency, we first need the notion of overlapping help pack-

ages:

DEFINITION 3.2. There is an overlap between two help packages (“ambi-

guity”), if there is a context and a valid system configuration for which both

help packages’ dependencies match (i.e., evaluate to true).

DEFINITION 3.3. An on-line help system is consistent if there are no over-

laps between help packages.

In the next section we will give propositional criteria for these two prop-

erties. To build the link between XML terms and propositional logic, we

will have to select sub-elements and attributes from XML terms. For this

purpose we will use XPath [38] expressions (in abbreviated syntax) as shown

in Table I. The result of an XPath selection is always a set of XML nodes

(in case of a path selection) or an attribute (in case of an attribute selection).

We assume that attributes are always defined (which is ascertained by XML

Schemas). So, for example, the expression /Config/Structure/Type selects all

XML nodes that are reached when following each path Config→Structure→
Type from the root node of the XML document. In Table I, a stands for an

arbitrary XML attribute and p for an arbitrary path, i.e. a list of XML elements

separated by slashes (/).
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Table I. XPath examples as used in the propositional logic translation.

Expression Denotation Example(s)

/p absolute path /Config/Structure

p/.. parent element Type/Item/.. (= Type)

p@a attribute selection Item@MaxOccurs, SubType@IDREF

3.1. FORMALIZATION OF THE PRODUCT STRUCTURE

We now derive a propositional logic formula describing all valid system con-

figurations, which means that the models of this formula are exactly the valid

system configurations. The variables occurring in this formula stem from the

XML specification’s unique identifiers (ID and IDREF attributes) for types

(XML element InvType) and items (InvItem). Each identifier is a character

string in the XML representation and is bijectively mapped to a propositional

variable in our encoding. The interpretation of propositional variables is as

follows: A variable is true for a given configuration if and only if the re-

spective type or item is present in the configuration, i.e. if and only if it is

selected for the present product instance. Thus, item-variables uniquely de-

scribe the system configuration (as already mentioned in Section 2.1 above),

and a type-variable is true if and only if at least one of its items occurs in the

configuration. We now gradually derive this configuration validity formula.

Validity of a configuration:

ValidConf = TypeDefs ∧ TypeAliases

∧ ConfigStructure ∧ ForbidGlobalUnrefTypes

TypeDefs =
∧

t∈/Inventory/
InvTypes/InvType

((

∨

i∈t/InvItem

i@ID
)

⇒ t@ID
)

TypeAliases =
∧

t∈/Inventory/
InvTypes/InvTypeAlias

(

t@ID ⇔ t@Base
)

ConfigStructure =
∨

t∈/Config/
Structure/Type

ValConfT(t)

ForbidGlobalUnrefTypes =
∧

t∈globalUnrefTypes

¬t@IDREF

Formula ValidConf describes the set of all valid system configurations. A

configuration is valid, if and only if it respects the type definitions (TypeDefs),

type aliases are set up correctly (TypeAliases), no defined but unreferenced
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types are used (ForbidGlobalUnrefTypes), and it matches at least one con-

figuration structure of the XML document (ConfigStructure). The latter is

assured by the big disjunction over ValConfT(t), which means that for each

valid configuration the top node t of at least one configuration structure must

satisfy ValConfT(t).1 As the MR system structure is defined recursively over

tree nodes (cf. Figure 1), the validity formulae (ValConfT and ValConfI) are

also recursive. The distinction between type and item nodes in the XML

model is also carried over to a distinction between validity formulae for type

and item nodes.

The type definitions specified in subformula TypeDefs ensure that a type

variable is set as soon as at least one of its items is selected. (The Inventory

contains a list of all possible Types together with a list of possible Items for

each of them.) This simplifies the definition of unreferenced types.

Type aliases are used to define alternative names (stored under attribute

ID) for existing types (stored under attribute Base) within the XML product

structure. The correct mapping of alias types to their base types is assured by

formula TypeAliases.

Turning back to our example, and assuming an inventory specifying three

items INI System 024 , INI System 005 and INI System 007 (for systems

Harmony, Avanto, and Concerto, respectively) of type INT System, the Type-

Defs formula for this particular type would be

(INI System 024 ∨ INI System 005 ∨ INI System 007)

⇒ INT System ,

by which the type-variable INT System is set as soon as any items of this type

are set. The formula ForbidGlobalUnrefTypes excludes all types occurring in

the inventory but not in the configuration tree structure. So if we have two

types INT Coil and INT Country in the inventory, which do not show up in

the configuration tree structure, we obtain the formula

¬INT Coil ∧ ¬INT Country

for ForbidGlobalUnrefTypes, which forbids the use of these types (and by

formula TypeDefs also their items) in any configuration.

Validity of a type node: 2

ValConfT(t) = CardinalityOK(t) ∧ SubItemsValid(t)

∧ ForbidUnrefItems(t)

1 Variables i and t are assumed to range over XML nodes here. Attributes like t@ID are

identified with propositional variables.
2 Definitions for auxiliary expressions used in these formulae but not defined here can be

found in Appendix A.
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CardinalityOK(t) =























S1
1({i@IDREF | i ∈ t/Item})

if t@CheckMode = ExactlyOne

St@MaxOccurs
t@MinOccurs ({i@IDREF | i ∈ t/Item})

otherwise

SubItemsValid(t) =
∧

i∈t/Item

(

i@IDREF ⇒ ValConfI(i)
)

ForbidUnrefItems(t) =
∧

i∈unrefItems(t)

¬i@IDREF

A type node t is valid if and only if the three conditions (corresponding

to T1-T3) of ValConfT(t) hold. First, the number of selected items must

match the MinOccurs and MaxOccurs attributes (CardinalityOK(t)) of the

type node. There is one exception—when the type node’s CheckMode at-

tribute is set to ExactlyOne—in which case an explicit number restriction of

exactly one is assumed. The reason for this exceptional handling is explained

in Section 5. To express number restrictions, we use the selection operator

S introduced by Kaiser [13, 28]. Sb
a(M) is true if and only if between a

and b formulae in M are true. Second, the validity of all selected sub-items

of type t, i.e. those items i for which i@IDREF is true, must be guaran-

teed (SubItemsValid(t)). And, third, items that are not explicitly specified as

sub-items of type node t are not allowed (ForbidUnrefItems(t)).
Expanding these definitions for the Receiver type node of our example

(which can be found under tR = /Config/Structure/ . . . /INT SubType[
@IDREF = ’INT Comp ReceiverNumOf’]) and using R2 and R4 as abbrevi-

ations for the IDREFs of the sub-items of tR, i.e. INI Comp ReceiverNumOf2

and INI Comp ReceiverNumOf4, we obtain the following:

CardinalityOK(tR) = S1
1({R2, R4})

= S1({R2, R4}) ∧ ¬S0({R2, R4})

= (R2 ∨ R4) ∧ ¬(R2 ∧ R4)

SubItemsValid(tR) = (R2 ⇒ ValConfI(i1)) ∧ (R4 ⇒ ValConfI(i2))

ForbidUnrefItems(tR) = ⊤

Here, i1 and i2 are the paths to the two sub-items of the Receiver type node.

The first formula ascertains that the cardinality constraint is satisfied, the

second that the sub-items are valid if they are selected, and the third formula

forbids items of type Receiver that occur in the inventory, but are not sub-

items of node tR. As there are no such sub-items, the conjunction is over the

empty set and thus equivalent to true. Sb(M) is true if and only if at most b
formulae in M are true.
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12

Validity of an item node:

ValConfI(i) = SubTypesValid(i) ∧ ConditionValid(i)

∧ ForbidUnrefTypes(i)

SubTypesValid(i) =
∧

t∈i/SubType

ValConfT(t)

ConditionValid(i) =























⊤ if i/Conditions = ∅,
∨

c∈i/Conditions
∧

d∈c/Condition

DecodeOp(d) otherwise

ForbidUnrefTypes(i) =
∧

t∈unrefTypes(i)

¬t@IDREF

The validity of item nodes is defined in an analogous way. Again, three

conditions (according to I1-I3) have to be fulfilled for an item node i to be

valid. First, all sub-type nodes of item i have to be valid. Second, the item

node’s Condition XML-elements, have to be satisfied (ConditionValid(i))
if present, where each Condition is a disjunction of conjunctions (DNF) of

atomic equality (=) or disequality (6=) expressions, as delivered by DecodeOp.

And, third, unreferenced types, i.e. types that are not used beyond item node

i, may not be used (ForbidUnrefTypes(i)).
Considering item R-4 (named INI Comp ReceiverNumOf4 in the XML

file) of our example and denoting the path to this node by iR4, we obtain the

following formulae:

SubTypesValid(iR4) = ⊤

ConditionValid(iR4) = INI Comp RXNumOf2

ForbidUnrefTypes(iR4) = ⊤

The first formula checks sub-types for validity, which is trivial, since node

iR4 possesses no sub-types. The second formula ascertains that the node’s

condition is valid, which simply enforces INI Comp RXNumOf2 to be set to

true, and the last formula forbids unreferenced types, which is also trivially

true.

3.2. FORMALIZATION OF HELP PACKAGE ASSIGNMENT

To formalize the help package assignment we first define three basic proper-

ties. Within these definitions, c and p are XML help context and help package

elements, respectively.
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Assignment of help packages:

HelpReq(c) =
∧

t∈c/RefType

HelpTypeCond(t)

HelpProv(p) =
∨

d∈p/Dependencies

∧

t∈d/Dependency

HelpTypeCond(t)

HelpTypeCond(t) =

{

¬HelpTypeSubCond(t) if t@Negate = true

HelpTypeSubCond(t) otherwise

HelpTypeSubCond(t) =

{

∨

i∈t/RefItem i@IDREF if t/RefItem 6= ∅,
∨

i∈allItems(t) ¬i@IDREF otherwise

HelpReq(c) defines for which situations, i.e. combinations of configura-

tions and workflows, context c requires a help package, whereas HelpProv(p)
determines the situations for which help package p provides help. Situa-

tions are implicitly specified (in the XML representation) as formulae in a

generalized conjunctive normal form (CNF) in case of help contexts and as

disjunctions of generalized CNFs in case of help package dependencies. The

latter leaves even more freedom to write down constraints. In a generalized

CNF, each clause may also be negated (indicated by the Negate attribute). If

a RefType has no sub-items in a context or dependency specification, this is

interpreted as a situation in which none of the items of this type are present.

Considering our example, we obtain the following formulae (denoting the

help package and context paths by p1 and c1, respectively):

HelpReq(c1) = s003 ∧ wTUNEUP ∧ wmGeneral ∧ wsSfpTuncalOpen

HelpProv(p1) = wTUNEUP ∧ s003

Here we have used abbreviations for the Boolean variables, e.g. s003 for

INI System 003.

3.3. CONSISTENCY CRITERIA

With these definitions, we are now in a position to give propositional logic

formulae corresponding to completeness and consistency of the help system.

Completeness of the help system is equivalent to validity of formula COMP

defined as

∧

c ∈ /Help/Contexts

(

HelpReq(c) ∧ ValidConf ⇒
∨

p ∈ /Help/Packages

HelpProv(p)

)

.

Thus, for completeness to hold, there must be a matching help package for

each situation that belongs to a help context and describes a valid configura-

tion. Situations for which the formula does not hold are error conditions that

can be reported by the HelpChecker.
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Let us now turn to consistency, respectively package overlaps: There is an

overlap between help packages p1 and p2 if and only if formula Overlap(p1, p2)

defined as

∨

c ∈ /Help/Contexts

(

HelpReq(c) ∧ ValidConf ∧ HelpProv(p1) ∧ HelpProv(p2)

)

is satisfiable. Thus, there is an overlap between packages p1 and p2 if there is

a situation that at the same time describes a valid configuration, belongs to a

help context, and selects both packages p1 and p2 simultaneously. If no such

situation exists, i.e. if formula CONS defined as
∧

p1,p2 ∈ /Help/Packages
p1 6=p2

¬Overlap(p1, p2)

is valid, then the help system is consistent. Again, all cases in which this con-

dition is violated are error situations that can be reported by the HelpChecker.

4. Technical Realization and Experimental Results

Our implementation called HelpChecker is a C++ program that builds on

Apache’s Xerces XML parser to read the Siemens product configuration and

help system description (package dependencies and contexts). From these

data, it generates formulae COMP and CONS. These formulae are then

negated and transformed into BDDs [3].3 More precisely, one BDD is gener-

ated for formula COMP and one BDD for each pair of packages for formula

CONS (i.e. we generate the Overlap formulae explicitly; however, we avoid

trivial cases in this step). By using the negation, the models of the BDD

correspond one-to-one to error situations. This BDD, call it E, is simplified

by existential abstraction over irrelevant variables using standard BDD tech-

niques (i.e. by replacing E by ∃xE or, equivalently, by E|x=0 ∨ E|x=1 for

an irrelevant propositional variable x). Irrelevant variables are those variables

that do not occur in any help context or help package dependency, but only

in the ValidConf part of the test formula (these are internally used variables

on details of the MR tomographs that are of no relevance to the help pack-

age authors). Then, the whole set of error situations (i.e. all models of the

simplified BDD) is dumped into a result file in XML format. Generating all

error situations at once is important, as the authors of help packages are not

supposed to make incremental runs removing one error situation after the

3 Whenever we talk of BDDs we mean reduced ordered BDDs. We use a BDD package

developed by the first author of this paper. One of the main design goals of the package was to

reduce memory consumption (compared to other BDD implementations). We have not made

a comparison with other BDD packages like, e.g., CUDD [35] yet.
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other, but prefer to have at one glance a complete indication where residual

errors remained.

As an optimization in order to further speed up error detection, we more-

over partition both the set of help packages and the set of help contexts based

on the (typically unique) workflow items these are associated with. This is

especially useful for the test on package overlaps, where the quadratic number

of pairs of help packages can be reduced considerably.

We conducted a series of experiments and timing measurements with the

HelpChecker on different test data sets provided by the Siemens MR depart-

ment. These data sets contained between three and eleven model lines of basic

MR systems, between 77 and 3871 help contexts and between zero and 928

help packages (see Table II). The eleven systems in test case E-T6-4 have only

been partially specified, whereas the systems of the other test cases already

contain the complete system description (The names of the test cases are

abbreviations of internally used filenames, partly containing submitter names,

system versions and encoded dates.) Context specifications are only complete

for the test cases E-U-805, E-U-140-1 and E-F-405. Real help packages have

not yet been present. For all but the last test case, real help packages have

not been present. So we used dummy help packages that were provided by

the Siemens documentation department. The size of the larger data sets (e.g.

E-F-405) is, however, already comparable to the sizes finally to be expected.

The last test case (E-H-306) contains real help packages.

Table II. Statistics on test runs performed by the HelpChecker.

Test Case #Systems #Contexts #Packages #Errors Run-Time

E-T6-4 11 (partial) 964 12 905 / 9 1.94

E-U-805 4 3871 0 3871 / 0 10.95

E-F-505 4 1031 1 1030 / 0 8.70

E-U-140-1 4 3871 3 3869 / 1 11.13

E-F-405 4 3871 928 2916 / 20 42.34

E-VF10A 3 77 48 34 / 1 0.94

E-H-306 4 1862 544 261 / 299 29.63

Test runs of the HelpChecker were performed on a Windows XP PC with

one Pentium 4 CPU running at 3.6 GHz and 1 GB of main memory. All

run times in Table II are given in seconds, and include time for parsing

the XML file, conversion to propositional logic, building the BDDs, com-

puting the error cases by existential abstraction, and writing the results to

an XML file. The second but last column of the table gives the number of

errors found by the HelpChecker in the form x / y, where x is the number

of missing packages and y the number of help package overlaps. The error
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cases were (partially) checked by the Siemens documentation department,

and all reported errors were confirmed. The sizes of the XML files containing

system descriptions and help contexts were up to 2.14 MB (with E-U-140-

1 being the largest). Memory consumption of the HelpChecker was up to

80.4 MB of main memory for the E-F-405 test case. The final sizes of BDDs

generated during all tests (i.e. the simplified BDDs describing sets of error

situations) were never larger than 3000 nodes. Intermediate BDDs, however,

were much bigger. The BDDs for the ValidConf part alone consisted of 3479

nodes and 365 propositional variables for test case E-T6-4 and 892 nodes and

235 variables for test case E-F-405.

The run-time of a complete test run depend, of course, on the number of

help contexts, the number of help packages and the size of the configuration

structure. Checking package overlaps, however, is independent of the number

of help packages. The sizes of the BDDs mainly depends on the number of

help contexts and the size of the configuration structure, and as these were

already completely specified during our test runs, we do not expect any scal-

ability problems on the final data sets. Moreover, we have implemented a

partitioning technique that splits the large sets of help packages and contexts

into smaller portions that can be checked independently (the partitioning is

based on workflow items).

Figure 5. Experimental Java client serving as a graphical user interface to the HelpChecker.

Part of the product structure of the loaded test instance (E-T6-4) is displayed on the left.

To facilitate testing of the HelpChecker we have developed a simple Java

client (see Figure 5). This client allows loading of XML files containing
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system descriptions (configurations) as well as help package dependencies

and contexts (so-called HelpExchange files). Both system structure and help

packages can be displayed. The user can also initiate consistency checks,

and view the results (see Figure 6). This Java client is used only for testing

purposes, however, and is not part of the final product.

Figure 6. Reports generated by HelpChecker. On the left, two instances of an overlap error are

displayed, showing involved help packages and configurations for which the overlap occurs.

On the right, situations for which help packages are missing are reported.

In an early stage of the project we also made experiments with a SAT

solver [30]. During these experiments, 35 SAT instances were generated for

test case E-T6-4 (we used a fast approximative pre-test for package overlaps

that filters out trivial cases). Conversion to CNF, which is necessary for most

SAT solvers was done using the well-known technique due to Tseitin [36].

The generated SAT instances contained 1425 different propositional variables

and between 11008 and 11018 clauses (we employed a slightly different

problem encoding then, see [30]). To check satisfiability, we used a sequential

version of our parallel SAT solver PaSAT [27], which implements a variant of

the DPLL algorithm [6, 5] with conflict clause generation and clause learning

[17], as it is found in most state-of-the-art SAT solvers (like, e.g. zChaff,

[22] or MiniSAT [8]). Our solver indicated that ten of the instances were

satisfiable (correlating with error cases) and 25 were unsatisfiable. One of

the satisfiable instances corresponded to a missing help package, the other

nine were due to package overlaps. Unsatisfiability could always be deter-

mined by unit propagation alone, the maximal search time for a satisfiable

instance amounted to 15.9 ms (on a 1.2 GHz Athlon running under Windows

XP then). These surprisingly good results when applying SAT solvers to the

configuration domain coincide with earlier observations made by the authors

in the field of automotive product configuration [14]. We assume that the good

results of SAT solvers on instances stemming from product configuration are

due to the fact that inconsistencies (unsatisfiable instances) typically involve

only a small fraction of the clauses of the whole instance. Therefore, small
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proofs exist for these formulae. Current SAT solvers, which are typically

tuned for model checking problems arising in hardware verification, seem

to be especially well-suited for such instances.

Although results using SAT techniques were very convincing, we do not

employ them in the current version of the HelpChecker. Whereas perfor-

mance is not an issue (in fact it is even better than with BDDs), SAT solvers

possess the drawback that they do not allow for a concise presentation of

all models (resp. error cases) of a formula. Of course, it is possible without

too much effort to modify a SAT solver in such a way that it successively

generates all models. This would however still be insufficient, as subsequent

operations on the set of all models, e.g. to eliminate irrelevant variables, are

still hard to realize.

5. Practical Aspects

HelpChecker is embedded in a larger interactive authoring system for the

writers of help packages at Siemens Medical Solutions. The authoring system

was developed by Tanner AG, Germany, a company specializing in industrial

documentation systems. A screen-shot of this authoring system is shown in

Figure 7. The authoring system uses an XML data base as its core compo-

nent and allows calling the HelpChecker by pressing a “Check Consistency”

button.

On pressing this button, an XML file is generated that specifies the tests

the HelpChecker has to perform (e.g., check both package overlaps and miss-

ing packages, but only for system Allegra). This—together with a link to the

XML data containing the configuration structure and help data—is sent to the

HelpChecker, which then builds BDDs and computes results. These are then

sent back to the authoring system, where they are displayed in a tree-shaped

structure showing the until then existing help packages. Errors are displayed

with a color code highlighting erroneous packages. No further, more detailed,

data is given to the user to track the cause of the error, as this has not yet

considered to be necessary.

Since October 2005 the authoring system has been in production use (still

in a pilot-phase, though), and both the conversion of old help pages from

predecessor systems as well as writing of new help pages is under way. First

MR tomographs containing on-line manuals checked by the HelpChecker are

supposed to ship in the second half of 2006.

The authoring system not only allows checking of the complete on-line

help, but also of fractions of it. For example, checks can be restricted to only

one model line (in Figure 7 tests are restricted to the model line Allegra) or

to only that part of the help document that the author is currently working on

(by selecting nodes in the Help Structure, see Figure 7).
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Figure 7. Siemens authoring tool: help packages can be added to the system, modified,

deleted, etc. The main view shows a tree-structured representation of the help contexts. Miss-

ing packages are reported with a tagged error message (”– MISSING!”) and a visual emphasis

(red/magenta color). Package overlaps are also reported with a visual marker (magenta).

During development of the HelpChecker we observed that—as usual in

leading edge software development—the system specifications and thus their

formalization are not fixed but change frequently over time. Thus, the en-

coding also had to be fine-tuned frequently. Specifically, the Check Mode

attribute (see definition of CardinalityOK(t) on page 10) was not present

initially, but was introduced in a later stage to handle a special, but fre-

quently occurring situation with magnetic coils (multiple items of the same

type are allowed in the configuration, but only those cases have to be checked

where exactly one of them is present). Moreover, the Negate attribute for

help contexts and dependencies (to negate clauses) and the interpretation

of contexts (see definition of HelpTypeCond(t) on page 13) was changed

during the project. However, we conjecture that having precise mathematical

underpinnings of the software (as given by the translation to propositional

logic) facilitates the adoption of new requirements.

6. Related Work

A lot of different schemes for product configuration have been suggested in

the literature [9, 16, 20, 21, 24], starting with McDermott’s work on R1 [18]
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and Digital’s XCON [2], both of which deal with the configuration of com-

puter systems. Among the different formalisms that have been proposed are

constraint satisfaction [24, 16], rule-based (expert) systems [18], SAT solving

[14], feature logic [32], description logics [19, 20], and various graphical for-

malisms (see, e.g., [9]). Also techniques from the area of logic programming

(like negation as failure or stable model semantics [10]) have been used for

configuration [33].

Most of this work, however, is focussed on configuration formalisms and

on checking individual customer’s orders for correctness. Less work has been

done on consistency checking of configuration data as a whole [14] or on

cross-checking product data with other related data like handbooks. For work

on consistency checking of Boolean configuration constraints in the automo-

tive industry see [14] and [28].

For SAT solving and constraint satisfaction, high performance solvers

are available today and are used in many industrial projects. SAT solving

is the currently dominating technique used in hardware design verification

(there are special tracks on SAT on the design automation conferences), and

commercial products for sales configuration based on constraint satisfaction

(e.g. the ILOG Configurator) are available. For other logical formalisms like

description logic, solvers have also been implemented (like RACER [11] or

FaCT [12]), but their practicability for large-scale industrial projects remains

to be shown. The proven success of propositional reasoning techniques was

one of our motivations for choosing propositional logic in the commercial

project presented in this article.

Concerning consistency checking of XML documents, different approaches

can be found in the literature. To check consistency of XML documents on

the syntactic level, the W3C standards Document Type Definitions (DTDs)

and XML Schema [37] have been developed and are in widespread use today.

Alternatives to XML Schema are also available, e.g. the Schematron rule

language [15] or the XLinkIt system by Nentwich et al. [23]. Also related

is work on consistency checking of CIM models by Sinz et al. [29] and on

Java-based XML document evaluation by Bühler and Küchlin [4].

All these approaches differ considerably in the extent of expressible for-

mulae and practically checkable conditions. The correctness of the semantic

content, however, can be checked only to a certain extent using these tech-

niques. From a logical point of view, none of these techniques exceeds an

evaluation of first-order formulae in a fixed structure, which is not sufficient

for our application, which requires construction of different (propositional)

models and thus real combinatorial search. In this respect, our method opens

up new application areas for the discipline of XML checking.
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7. Conclusion

In this paper we presented an encoding of the configuration and on-line help

system of Siemens MR devices in propositional logic. Consistency prop-

erties of the on-line help system are expressed as Boolean logic formulae

and checked using BDD techniques. Error conditions are output after sym-

bolic simplification. By using a Boolean encoding we can also make use

of advanced SAT-solvers as they are used, e.g., in hardware verification to

efficiently check formulae with hundreds of thousands of variables.

Although we demonstrated the feasibility of our method only for the MR

systems of Siemens Medical Solutions, we suppose that the presented tech-

niques are useful for other complex products as well. More generally, we

expect that a wide range of cross-checks between XML documents can be

computed efficiently using automated theorem proving techniques based on

SAT-solvers and BDDs.
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Appendix

A. Auxiliary Definitions

In this appendix we give definitions and explanations for the formulae and

expressions skipped over in Section 3. We start with auxiliary definitions for

sets of XML nodes.

Auxiliary Set Definitions:

globalUnrefTypes = /Inventory/InvTypes/InvType \
⋃

t∈/Config/
Structure/Type

refTypesT(t)

unrefItems(t) = allItems(t) \ t/Item

allItems(t) =
⋃

t′@ID=baseTypeID(t)

/Inventory/InvTypes/t′/InvItem

baseTypeID(t) =















t′@Base if ∃t′ ∈ /Inventory/InvTypes/InvTypeAlias

with t@IDREF = t′@ID

t@IDREF otherwise

The set globalUnrefTypes contains all type nodes that are defined, but do

not occur in any configuration structure. The set unrefItems(t) contains all

items having the same type as node t, but are not (direct) child nodes of t.
These items are considered invalid for node t, as they are not explicitly given.

They are computed as the set difference between the set of all items of this
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type (allItems(t)) and the explicitly specified child nodes (t/Item). The set

allItems(t) contains all items of type t which are declared in the inventory;

type aliases are reduced to their base types (specified under attribute Base).

unrefTypes(i) = (refTypesT(i/..) \ {i/..}) \ refTypesI(i)

refTypesT(t) = {t} ∪
⋃

i∈t/Item

refTypesI(i)

refTypesI(i) =
⋃

t∈i/RefType

refTypesT(t)

The set unrefTypes(i) contains type nodes that are not allowed as child

nodes of item node i. Such nodes do not occur below (i.e. as direct or indirect

child node of) node i, but are used on other branches of the configuration

tree. It is sufficient to include only those nodes that are not already excluded

in a parent item node i′, as these are already contained in unrefTypes(i′).
The auxiliary functions refTypesT(t) resp. refTypesI(i) compute the set of

all type nodes that occur below type node t (including t) resp. below item

node i (referenced nodes). Using these functions, unrefTypes(i) is computed

as the set of all referenced types of the parent node (refTypesT(i/..)) that are

not referenced by i itself (refTypes(i)).

Auxiliary Formula Definitions:

DecodeOp(d) =

{

d@Value if d@Op = “eq”,

¬d@Value if d@Op = “ne”

Sb
a(M) =

{

Sb(M) if a = 0,

Sb(M) ∧ ¬Sa−1(M) otherwise

Sb(M) =
∧

K⊆M
|K|=b+1

∨

f∈K

¬f

DecodeOp(d) is used within conditions of item nodes to enforce (”eq”) resp.

exclude (”ne”) certain values on other item nodes. The resulting formula

forces the corresponding propositional variables to be either constantly true

or constantly false.

The selection operator Sb
a is used to formulate cardinality constraints. For

two natural numbers a and b with a ≤ b, formula Sb
a(M) is true if and only if

between a and b formulae out of the set M are true. Operator Sb(M) is true if

and only if at most b formulae out of set M are true. The selection operators

may produce formulae having an exponential size in the numbers a and b.

This can be avoided by using a more sophisticated encoding (see, e.g. [26]).
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