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Checking for Prior-Data Conflict

Michael Evans∗ and Hadas Moshonov†

Abstract. Inference proceeds from ingredients chosen by the analyst and data.
To validate any inferences drawn it is essential that the inputs chosen be deemed
appropriate for the data. In the Bayesian context these inputs consist of both the
sampling model and the prior. There are thus two possibilities for failure: the
data may not have arisen from the sampling model, or the prior may place most
of its mass on parameter values that are not feasible in light of the data (referred
to here as prior-data conflict). Failure of the sampling model can only be fixed by
modifying the model, while prior-data conflict can be overcome if sufficient data
is available. We examine how to assess whether or not a prior-data conflict exists,
and how to assess when its effects can be ignored for inferences. The concept of
prior-data conflict is seen to lead to a partial characterization of what is meant by
a noninformative prior or a noninformative sequence of priors.
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1 Introduction

Model checking is a necessary component of statistical analyses; this is because statistical anal-
yses are based on assumptions. These assumptions typically take the form of possibilities for
how the observed data was generated—the sampling model—and, in Bayesian contexts, a quan-
tification of the investigator’s beliefs—the prior—about the actual data generation mechanism,
among the possibilities included in the sampling model.

In certain contexts it might be argued that we have specific information that leads to a
sampling model or that the investigator has a very clear idea of what an appropriate prior is
but, in general, this does not seem to be the case. In fact the sampling model and prior often
seem, if not chosen arbitrarily, then at least selected for convenience. Accordingly, it seems
quite important that, before carrying out an inferential analysis, we first check to make sure
that the choices made make sense in light of the data collected. For, if we can show that the
observed data is surprising in light of the sampling model and the prior, then we must be at
least suspicious about the validity of the inferences drawn (ignoring any ambiguities about the
correct inference process itself).

Our concern here is with the Bayesian context where we have two ingredients—namely, the
sampling model and the prior. Several authors have considered model checking in this situation
such as Guttman (1967), Box (1980), Rubin (1984), and Gelman, Meng and Stern (1996). We
note that all of these authors considered the effect of both the sampling model and the prior
simultaneously. There are, however, two possible ways in which the Bayesian model can fail.

First we may have that the sampling model fails. By this we mean that the observed data
is surprising for each of the possible distributions in the model. If this is the case, then either
we had the misfortune to observe a rare data set or the model is in fact not appropriate. In
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the former situation collecting more data may resolve the issue, but in the latter this will not
be the case.

Second, assuming the sampling model is appropriate, the Bayesian model may fail by the
prior placing its mass primarily on distributions in the sampling model for which the observed
data is surprising. So, in other words, there are distributions in the model for which the data
is not surprising, but the prior places little or no mass there. We refer to this as prior-data

conflict. This conflict again leads to doubts about the validity of inferences drawn from the
Bayesian model.

We note that in the second context increasing the amount of data can lead to a resolution
of the problem, for as the amount of data increases the effect of the prior decreases, vanishing
in the limit. What this implies is that even if there is prior-data conflict, we may have sufficient
data so that its effect can be ignored.

The preceding discussion leads us to the conclusion that in Bayesian problems we must
check individually for the separate sources of failure. First we must check for the failure of
the sampling model. For example, there are many frequentist methods for this and also the
Bayesian methods as discussed in Bayarri and Berger (2000). If we have no evidence that the
sampling model is in error, then we must check to see whether or not there is any prior-data
conflict and, if there is, whether or not this conflict leads to erroneous inferences. Of course,
if we find evidence that the sampling model is wrong, then it doesn’t make sense to check for
prior-data conflict.

We note that, if we do obtain evidence of the sampling model failing, then this failure may
not lead to serious problems for our inferences in certain circumstances. This is because the
model may only be approximately correct and we have observed a sufficient amount of data
to detect a small deviation. If the approximate correctness of the model is appropriate for the
application at hand, then we would not want to discard the model. This is a separate issue,
however, from what we will discuss in this paper and needs to be addressed by methods other
than what we present here. In any case, throughout the remainder of this paper we assume
that the sampling model is correct and focus on looking for prior-data conflict.

It is also worth remarking that some feel that, when a prior reflects the subjective beliefs
of an investigator, then there is no necessity to check for prior-data conflict as the existence of
such a conflict would not necessarily lead one to abandon the prior. While this is a possible
outcome, we note that it is at least informative to know whether or not a prior-data conflict
exists and what its effects on the inferences are. In particular, this seems relevant when
reporting the results of a statistical analysis that will be used by others. We are not dictating
here what a necessary outcome is, when we have decided a prior-data conflict exists, as this
can be determined by the particular context. We do feel, however, that checking for prior-data
conflict can be part of good statistical practice.

The question now arises as to how we should check for the existence of a prior-data conflict.
In Section 2 we argue that it is appropriate to use the prior predictive distribution of the
minimal sufficient statistic to do this. In Section 3 we show how the concept of ancillarity
becomes relevant when looking for prior-data conflict. In Section 4 we discuss the implications
of our definition of prior-data conflict for the characterization of a noninformative prior. In
Section 5 we discuss how to assess whether or not an observed prior-data conflict can be ignored
so that the Bayesian model can be used to derive inferences about the unknowns in the sampling
model. In Section 6 we discuss a factorization of the joint distribution of the parameter and
data that serves as further support for the approach taken here. In Section 7 we discuss the
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generalization of the methods developed for checking the whole prior to checking components
of a prior.

In preparation for our discussion we specify some notation. We denote the sample space for
the data s by S, the parameter space by Ω, and the sampling model by {fθ : θ ∈ Ω} , where each
fθ is a probability density on S with respect to some support measure µ. The prior probability
measure on Ω is denoted by Π with density π with respect to a support measure υ on Ω. The
joint distribution of (θ, s) leads to the prior-predictive measure for s as given by

M(B) =

∫

Ω

∫

B

fθ (s)π (θ) µ (ds) υ (dθ) =

∫

B

m (s) µ (ds) ,

where m (s) =
∫
Ω

fθ (s)π (θ) υ (dθ) is the density of M with respect to µ. We note that we are
restricting our attention here to the case where Π is proper so that M is indeed a probability
measure. We do, however, make some comments relevant to the improper case.

When we observe the data s0, then we have the posterior probability measure Π (· | s0) for
inferences about θ. For a function T : S → T we denote the marginal densities by fθT , with
respect to support measure λ on T , and this leads to the marginal prior predictive density for
T given by mT (t) =

∫
Ω

fθT (t) π (θ) υ (dθ) again with respect to λ.

To assess whether or not a prior-data conflict exists, we need to compare an observed value
T (s0) with a fixed distribution PT to assess whether or not it is surprising. For convenience,
and because at this time it is not clear what an alternative approach is in this context, we
will use a P-value for this purpose. In particular, we will assess how surprising T (s0) is, by
comparing the value of the density pT of T at T (s0) with other possible values—namely, we
will compute PT (pT (t) ≤ pT (T (s0))). When pT is unimodal, this is equivalent to computing
how far out in the tails the observed value T (s0) is and, in the multimodal case, this seems to
give an appropriate measure when T (s0) lies between modes. There are various concerns with
P-values generally and with this P-value. In practical contexts we recommend also plotting
the distribution being used in the comparison, in addition to computing the P-value, to see
where the observed value T (s0) lies with respect to this distribution. Further, the discussion
in Section 5 is concerned with diagnostics that can be used to differentiate between statistical
significance (i.e., deciding via a P-value that prior-data conflict exists) and practical significance
(i.e., whether or not a detected prior-data conflict is really something we need to worry about
when constructing inferences).

2 Checking for Prior-data Conflict: Sufficiency

Intuitively, a prior-data conflict exists whenever the data provide little or no support to those
values of θ where the prior places its support. So in low dimensions we could plot the posterior
and prior distributions of θ to see how different these were. In cases where there is significant
prior-data conflict we would expect the effective supports (loosely speaking, a region that
contained most of the mass for a distribution) of the prior and the posterior to be quite
different. While such plots are useful diagnostics, we would like a more formal measure of
the difference and a general methodology for dealing with higher dimensional θ. Further, to
completely separate the effect of the prior from the data, we choose instead to compare the
effective support of the prior with the region where the likelihood function is relatively high.

This might lead one to compare the MLE θ̂ (s0) (or some other consistent estimate of θ) to
the prior distribution to assess the degree of conflict. If θ̂ (s0) lay in a region where the prior
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placed little support, e.g., out in the tails of π, then we would conclude that a conflict exists.
We note, however, that this is not quite correct, for if the spread of the likelihood is sufficiently
wide, then there could be a significant overlap between the effective support of the prior and
the likelihood, even if θ̂ (s0) was “out in the tails” of π.

Therefore, a more appropriate measure of prior-data conflict would seem to be one that
compared the effective support of the prior with the region where the likelihood was relatively
high. If there is very little overlap between these regions, then we have evidence that a prior-
data conflict exists. It is not clear, however, how to appropriately measure this degree of
overlap.

Accordingly, we take a different approach. We note that the prior induces a probability
distribution on the set of possible likelihood functions via the prior predictive probability mea-
sure M. If the observed likelihood L (· | s0) = f· (s0) is a surprising value from this distribution,
then this would seem to indicate that a prior-data conflict exists.

We can simplify this somewhat by noting that the likelihood is in effect equivalent to a
minimal sufficient statistic T—namely, if we know the value T (s0) then we can obtain the
map L (· | s0) , and conversely. So, instead of comparing the observed likelihood to its marginal
model, we can compare T (s0) to its prior distribution MT . We can then choose T so that this
comparison can be made relatively simply.

We might ask if anything in the observed data s0, beyond the value of T (s0), has any
relevance to checking for prior-data conflict. The following result, proved in the appendix,
suggests that this is not the case.

Theorem 1. Suppose T is a sufficient statistic for the model {fθ : θ ∈ Ω} for data s. Then
the conditional prior predictive distribution of the data s given T is independent of the prior
π.

So the conditional prior distribution of any aspect of the data, beyond the value of T (s0),
doesn’t depend on the prior. Therefore such information can tell us nothing about whether or
not a prior-data conflict exists, and so can be ignored for this purpose. Now note the following
result, also proved in the appendix.

Theorem 2. If L (· | s0) is nonzero only on a θ-region where π places no mass then T (s0) is
an impossible outcome for MT .

So we see that, at least in this extreme case of nonoverlapping support for the likelihood and
prior, comparing T (s0) to MT leads to definite evidence of a prior-data conflict.

These results support our assertion that comparing the observed value T (s0), of a minimal
sufficient statistic, to its prior distribution MT is an appropriate method for checking for prior-
data conflict. We note that Box (1980) proposed comparing the observed data s0 to M as a
method for model checking. So what we are suggesting here is really just a restriction of Box’s
approach to minimal sufficient statistics, and we are further suggesting that this is appropriate
only for checking for prior-data conflict and not model checking generally. This, together with
the discussion in Section 6, would seem to lead to a resolution of some anomalous behavior of
Box’s approach in particular examples. We note also that the discussion in Section 3 leads to
a further modification of Box’s approach.

The following examples show that basing the check for prior-data conflict by comparing
T (s0) to MT produces acceptable results.
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Example 1. Location normal model

Suppose s = (s1, ..., sn) is a sample from a N(θ, 1) distribution with θ ∈ R1 and θ ∼
N(θ0, σ

2
0). A minimal sufficient statistic is T (s) = s̄ ∼ N(θ, 1/n).

For the prior predictive distribution of s̄ we can write s̄ = θ + Z where Z ∼ N (0, 1/n)
independent of θ. So the prior predictive distribution is N(θ0, σ

2
0 +1/n). Accordingly, it makes

sense to see if s̄0 lies in the tails of this distribution; we assess this via the P-value

MT (mT (s̄) ≤ mT (s̄0)) = 2(1 −Φ(|s̄0 − θ0|/(σ
2
0 + 1/n)1/2)). (1)

This shows that when s̄0 lies in the tails of its prior distribution, we have evidence of a prior-
data conflict existing. Note that using the prior-predictive distribution of s̄ to assess this,
instead of the prior for θ, results in the standardization by (σ2

0 + 1/n)1/2 rather than σ0. So s̄0

has to be somewhat further out in the tail than if we simply compared the MLE to the prior
of θ.

Now suppose that the true value of θ is θ∗. Then as n → ∞ we have that (1) converges
almost surely to 2 (1− Φ (|θ∗ − θ0|/σ0)) . Therefore, if the true value of θ∗ lies in the tails of the
prior, then asymptotically (1) will detect this and lead to evidence that a prior-data conflict
exists.

Also note that when σ0 →∞, (1) converges to 1 and no evidence will be found of a prior-
data conflict. This is not surprising; recall that we are proceeding as if the sampling model
is correct and a diffuse prior simply indicates that all values are equally likely, so we should
definitely not find any conflict. Further as σ0 → 0, so we have a very precise prior, then (1) will
definitely find evidence of a prior-data conflict for large n, unless θ0 is indeed the true value.

Example 2. Bernoulli model

Suppose s = (s1, ..., sn) is a sample from a Bernoulli(θ) model with θ ∼ Beta(α, β). A
minimal sufficient statistic is T (s) =

∑
si ∼ Binomial(n, θ).

The prior-predictive probability function of T (s) is then given by

mT (t) =

(
n

t

)
Γ(α + β)

Γ(α)Γ(β)

Γ(t + α)Γ(n− t + β)

Γ(n + α + β)
.

To assess whether or not T (s) = t0 is surprising, we must compare t0 to mT ; we do this
by computing the tail probability MT (mT (t) ≤ mT (t0)) which, in this case, must be done
numerically. In essence, this is the prior probability of obtaining a value of the minimal
sufficient statistic with probability of occurrence no greater than that for the observed value.
Because of cancellations we can write the P-value as

MT

(
Γ(t + α)Γ(n − t + β)

Γ(t + 1)Γ(n − t + 1)
≤

Γ(t0 + α)Γ(n − t0 + β)

Γ(t0 + 1)Γ(n − t0 + 1)

)
. (2)

Notice that when α = β = 1, then (2) equals 1 and we never have any evidence of prior-data
conflict. This makes sense, as when the sampling model is correct, there can be no conflict
between the data and a noninformative prior.

To illustrate the use of the P-value given by (2), we consider a numerical example. For this
suppose that n = 10, α = 5 and β = 20. In this case the prior distribution puts most of its
mass on values of θ in (0, 1/2). Figure 1 is a plot of the prior predictive probability function
of the minimal sufficient statistic.
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Figure 1: Plot of mT for a sample of n = 10 from the Bernoulli(θ) distribution when

θ ∼ Beta(5,20) in Example 2.

Generating a sample of size 10 from the Bernoulli(0.9) distribution, we obtained t0 = 9.
Note that θ = 0.9 is outside the effective support of the prior distribution. The prior predictive
P-value, is given by MT (mT (y) ≤ mT (9)) = mT (9) + mT (10) = 0.000117. As expected, this is
an indication of a prior-data conflict. Generating a sample of size 10 from the Bernoulli(0.25)
distribution we obtained t0 = 1. The P-value is given by MT (mT (y) ≤ mT (1)) = 0.736635.
As expected, this does not indicate any prior-data conflict.

The following example illustrates that the notion of a noninformative prior is somewhat
subtle. We discuss this further in Section 4.

Example 3. Negative-binomial sampling

Suppose that s is distributed Negative-binomial(k, θ); then s is minimal sufficient. Note that
the likelihood function is a positive multiple of the likelihood function in Example 2 (Bernoulli)
when we obtain s0 zeros in a sample of size n = s0 +k. It is then clear that posterior inferences
about θ are the same from the two models. We will see, however, that the checks for prior-data
conflict are somewhat different.

Suppose that we place a uniform prior on θ. In Example 2 (Bernoulli), the prior predictive
for the minimal sufficient statistic is uniform and we never have evidence of a prior-data conflict
existing. The prior predictive under negative binomial sampling, however, is given by

m(s) =

(
s + k − 1

k − 1

)∫ 1

0

θk(1− θ)s dθ =
k

(s + k) (s + k + 1)
(3)

and this is not uniform. Indeed, it cannot be uniform because the support for this distribution
is the nonnegative integers. Since (3) is decreasing in s,

M (m(s) ≤ m(s0)) =
∞∑

s=s0

k

(s + k) (s + k + 1)
=

k

s0 + k
. (4)

We see that this P-value is small only when s0 is large compared to k.
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While this P-value may seem unusual, when compared to the Binomial case, there is a
subtle difference between the two situations. In particular, in the Binomial(n, θ) case it is
permissible to have θ = 0 and so, for example, observe n consecutive tails. In the Negative-
binomial(k, θ) case, however, it is not possible to have θ = 0 as there is no such thing as the
Negative-binomial(k, 0) distribution. The uniform prior on the unit interval places positive
mass on every interval about 0 and so is not really a sensible prior for this model, as the
positive mass indicates a prior belief that θ = 0 is a possible value. Recall our restriction that,
when looking for prior-data conflict, we assume that the sampling model is correct.

If we place a uniform prior on [ε, 1] with ε > 0, as this places no mass at 0, and de-
note the prior predictive by mε, then the dominated convergence theorem establishes that
limε→0 Mε (mε(s) ≤ mε(s0)) is equal to (4). In fact, when k = 1, we have that Mε (mε(s) ≤ mε(s0)) =
(1 − ε)s0/(s0 + 1). Accordingly we can view (4) as an approximation to the P-value we would
obtain for a prior that is 0 in a small neighborhood of 0.

Example 4. Location-scale normal model

Suppose that x = (x1, ..., xn) is a sample from a N(µ, σ2) distribution where µ ∈ R1 and
σ > 0 are unknown. With s2 = (n − 1)−1

∑
(xi − x̄)2 , then (x̄, s2) is a minimal sufficient

statistic for (µ, σ2) with x̄ ∼ N(µ, σ2/n) independent of s2 ∼ (σ2/ (n− 1))χ2
(n−1). Suppose the

prior on (µ, σ2) is given by

µ |σ2
∼ N(µ0, τ

2
0 σ2),

1

σ2
∼ Gamma(α0, β0). (5)

The posterior distribution of (µ, σ2) is then given by

µ |σ2, x1, . . . , xn ∼ N
(
µx,
(
n + 1/τ 2

0

)−1
σ2
)

1

σ2
|x1, . . . , xn ∼ Gamma

(
α0 +

n

2
, βx

)

where µx = (n + 1/τ 2
0 )−1(µ0/τ 2

0 + nx̄) and

βx = β0 + (n − 1)s2/2 + n(x̄− µ0)
2/2(nτ 2

0 + 1).

The joint prior predictive density m(x̄, s2) of (x̄, s2) is proportional to

(s2)(n−1)/2−1β−n/2−α0
x . (6)

We then assess whether or not observed (x̄0, s
2
0) is a reasonable value by computing the P-value

M
(
m(x̄, s2) ≤ m(x̄0, s

2
0)
)
; note that we don’t need the norming constant of m(x̄, s2) for this.

To compute this, for specified values of the hyperparameters α0, β0, µ0 and τ 2
0 , we generate

(µ, σ2) using (5), then generate (x̄, s2) from their joint distribution given (µ, σ2) and evaluate
m(x̄, s2) using (6). Repeating this many times, and recording the proportion of values of
m(x̄, s2) that are less then or equal to m(x̄0, s

2
0), gives us a Monte Carlo estimate of the

P-value.

For example, suppose that (µ, σ) = (0, 1) and that for a sample of size n = 20 from this
distribution we obtained x̄0 = 0.0358324 and s2

0 = 0.836563. Then for the prior specified by
τ 2
0 = 1, µ0 = 50, α0 = 1 and β0 = 5, based on a Monte Carlo sample of size N = 103, the

P-value is estimated as 0.000 and so clear evidence of a prior-data conflict is obtained.
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Rather than computing a P-value based on the full prior predictive distribution of T, it is
also possible to use the prior predictive distribution of some function of the minimal sufficient
statistic. For example, we could instead use the marginal prior predictive distributions of x̄
and s2.

We can write x̄ = µ + (σ2/n)z where z ∼ N(0, 1) and µ |σ2 ∼ N(µ0, τ
2
0 σ2). This implies

that x̄ |σ2 ∼ N(µ0, σ
2(τ 2

0 + 1/n)). Then, after multiplying the N(µ0, σ
2(τ 2

0 + 1/n)) density by
the prior for 1/σ2 and integrating out σ2, we have that

x̄ ∼ t2α0

(
µ0, (β0

(
τ 2
0 +

1

n

)
α−1

0 )1/2

)
,

where tλ(0, 1) denotes the t distribution with λ degrees of freedom and tλ(µ, σ) = µ+σtλ(0, 1),
is the marginal prior predictive distribution of x̄. Therefore the P-value based on x̄ alone is
2(1−G2α0 (|x̄0 − µ0|/(β0

(
τ 2
0 + 1/n

)
/α0)

1/2)), where G2α0 is the cdf of the t distribution with
2α0 degrees of freedom. For the above generated data, the P-value equals to .0021, which also
indicates the existence of a prior-data conflict.

Similarly, we find that s2 ∼ (β0/α0)F(n−1,2α0) is the marginal prior predictive of s2. For
the above example we compare s2/5 = 0.1673126 with the F (19, 2) distribution. Comput-
ing the probability of obtaining a value from the F (19, 2) distribution with density smaller
than that obtained at the observed value, leads to the P-value Pr (F (19, 2) ≤ 0.1673126) +
Pr (F (19, 2) > 1.5295) = .47832, which does not indicate any prior-data conflict. We see from
these two tests that the conflict arises from the location of that data and not its spread.

3 Checking for Prior-data Conflict: Ancillarity

In principle we could look for prior-data conflict by comparing the observed value of U (T (s))
with its marginal prior-predictive distribution for any function U—e.g., consider Example 4
(Location-scale normal). We note, however, that for certain choices of U this will not be
appropriate. For, if U is ancillary, then the prior-predictive distribution of U is the same as its
sampling distribution—i.e., the marginal prior-predictive distribution does not depend on the
prior. So, if U (T (s0)) is surprising this cannot be evidence of a prior-data conflict, but rather
indicates a problem with the sampling model. Since we are assuming here that the sampling
model has passed its checks, we want to avoid this possibility.

A simple answer would be to simply not choose any ancillary U . But note that the prior-
predictive distribution of T will also be affected by aspects that are ancillary. In other words,
T (s0) may be a surprising value because U (T (s0)) is surprising for some ancillary U and we
want to avoid this. Accordingly, it makes sense to compare the observed value T (s0) with
its prior-predictive distribution given the value U (T (s0)) , i.e., we remove the variation in the
prior-predictive distribution of T, that is associated with U, by conditioning on U.

Note that we avoid the necessity of conditioning on an ancillary whenever we have a com-
plete minimal sufficient statistic T. In this situation Basu’s theorem implies that every ancillary
U is independent of T and so the prior predictive distribution of T does not exhibit variation
that can be ascribed to U. Therefore, for the examples discussed in Section 2 we do not need
to condition on ancillaries.

If U1 ◦ T and U2 ◦ T are ancillary and U1 ◦ T = h ◦ U2 ◦ T for some h then we only need
to do the check based on the prior-predictive distribution for T given U2 (T (s0)) since this is
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conditioning on more information and so removing more variation. When an ancillary U1 is
such that there is no function h and ancillary U2 (other than a choice where h is one-to-one)
such that U1 ◦ T = h ◦ U2 ◦ T then U1 is a maximal ancillary. So we want to condition on
maximal ancillaries.

We note, however, as discussed in Lehmann and Scholz (1992), the lack of a general method
for obtaining maximal ancillaries. Still if we have an ancillary U available it seems better to
condition on U, and so remove the variation due to U, even if we cannot determine whether or
not U is maximal ancillary or determine a maximal ancillary based on U.

Furthermore, it can happen that there is more than one maximal ancillary in a problem, e.g.,
see Lehmann and Scholz (1992). The lack of a unique maximal ancillary can cause problems
in frequentist approaches to inference because inference about θ can be different, depending on
which ancillary we choose to condition on. This does not cause a problem here, however, for if
the check based on conditioning on one maximal ancillary indicates that a prior-data conflict
exists, then a conflict exists irrespective of what happens when we condition on other maximal
ancillaries. In essence we are considering different aspects of the prior-predictive distribution
when we condition on different maximal ancillaries.

The following example is presented in Cox and Hinkley (1974) as a compelling argument
for the use of ancillary statistics in inference.

Example 5. Mixture

Suppose we have that a response x is either from a N(θ, σ2
0) or N(θ, σ2

1) distribution where
θ ∈ R1 is unknown and σ2

0 , σ2
1 are both known and unequal. Suppose these two distributions

correspond to the variation exhibited by two measuring instruments and the particular instru-
ment used is chosen according to c ∼ Bernoulli(p0) where p0 is known. Then we see that
(c, x) is minimal sufficient and c is ancillary. We place a N(θ0, 1) prior on θ. Therefore, when
c = 0 we would use the prior predictive based on the prior and the N(θ, σ2

0) family—namely
x ∼ N(θ0, σ

2
0 + 1)—and when c = 1 we would use the prior predictive based on the prior and

the N(θ, σ2
1) family—namely x ∼ N(θ0, σ

2
1 + 1)—to check for prior-data conflict.

This example nicely illustrates the use of ancillary statistics; there are two “components”
to the prior predictive distribution of the minimal sufficient statistic and the ancillary statistic
selects one. The data x may lead to a prior-data conflict for both components, one component
or neither component. This will depend on the prior and the values of σ2

0 and σ2
1 . Also, if p0

is very small and we observed c = 1, then we consider this as evidence of a problem with the
model, not an indication that a prior-data conflict exists (see Section 6).

The following example is presented in Cox and Hinkley (1974) as a case where the use of
ancillary statistics leads to ambiguity for inferences about the model parameter.

Example 6. Special Multinomial Distribution

Suppose that we have a sample of n from the

Multinomial (1, (1− θ) /6, (1 + θ) /6, (2 − θ) /6, (2 + θ) /6)

distribution where θ ∈ [−1, 1] is unknown. Then the cell counts (f1, f2, f3, f4) constitute a
minimal sufficient statistic and U1 = (f1 + f2, f3 + f4) is ancillary as is U2 = (f1 + f4, f2 + f3) .

Then (f1, f2, f3, f4) | U1 is given by f1 | U1 ∼ Binomial(f1 + f2, (1− θ) /2) independent of
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f3 | U1 ∼ Binomial(f3 + f4, (2 − θ) /4) giving

m (f1, f2, f3, f4 |U1) =

(
f1 + f2

f1

)(
f3 + f4

f3

)
×

∫ 1

−1

(
1 − θ

2

)f1
(

1 + θ

2

)f2
(

2− θ

4

)f3
(

2 + θ

4

)f4

π (θ) dθ.

This distribution is 2-dimensional and can be used as described in Example 4 (Location-scale
normal) for prior-data conflict checking. We can also use the 1-dimensional distributions f1 |U1

and f3 | U1.

For example, suppose the prior π is the distribution given by θ = 1 − 2U where U ∼
Beta(α, β) . When α = β = 20, so the prior concentrates about 0, and f1 + f2 = 10, Figure
2 shows the conditional prior predictive probability function for f1 |U1. We see that we will
find evidence of a prior-data conflict whenever f1 ∈ {0, 1, 9, 10} . On the other hand when
α = 1, β = 20, so the prior concentrates about 1, and f1 + f2 = 10, Figure 3 shows the
conditional prior predictive probability function for f1 |U1. In this case we will find evidence
of a prior-data conflict whenever f1 ∈ {3, . . . , 10} .

•
•

•

•

•

•

•

•

•

•
•
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Figure 2: Conditional prior predictive of f1 given U1 when α = β = 20 in Example 6.

Alternatively, we could use f1 |U2 ∼ Binomial(f1 + f4, (1− θ) /3). In this case, when α =
β = 20 and f1 +f4 = 10, a similar calculation shows that we will find evidence of a prior-data
conflict whenever f1 ∈ {0, 8, 9, 10} . This differs from the previous check involving f1, but there
is no conflict between them. If either check indicates that f1 is a surprising value, then we
have evidence of a prior-data conflict existing. We also have available the checks using f3 |U1

and f2 |U2.

The following example can be considered as an archetype for the situation where an ancillary
is determined as the maximal invariant under a transformation group acting on a sample space.

Example 7. Location Cauchy

Suppose we have a sample s = (s1, . . . , sn) from a distribution with density proportional to
1/(1+(x− θ)2) where θ ∈ R1. Then it is known that T (s) =

(
s(1), . . . , s(n)

)
, the order statistic,
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Figure 3: Conditional prior predictive of f1 given U1 when α = 1, β = 20 in Example 6.

is a minimal sufficient statistic. Further we have that U(T (s)) = (s(2) − s(1), . . . , s(n) − s(1)) =
(u1, . . . , un−1) is ancillary. Clearly the conditional distribution of T given U can be expressed
as the conditional distribution of s(1) given U and this has conditional density proportional to

1/{(1 +
(
s(1) − θ

)2
)Πn−1

i=1 (1 +
(
s(1) + ui − θ

)2
)}.

Note that the normalizing constant will not involve θ and so the conditional prior predictive
density of s(1) is

mT (s(1) |u1, . . . , un−1)

∝

∫ ∞

−∞

1(
1 +

(
s(1) − θ

)2)
n−1∏

i=1

1(
1 +

(
s(1) + ui − θ

)2) π (θ) dθ

=

∫ ∞

−∞

1

(1 + v2)

n−1∏

i=1

1(
1 + (v + ui)

2
) π
(
s(1) − v

)
dv.

Integrating s(1) out of the above expression shows that the normalizing constant is given by∫∞

−∞
{(1+v2)Πn−1

i=1 (1+(v + ui)
2)}−1 dv. We then check for any prior-data conflict by comparing

the observed value of s(1) with the distribution given by m(· |u1, . . . , un−1).

To evaluate a P-value associated with this conditional prior predictive we must integrate
numerically. For example, consider the following ordered sample of n = 10 from the Cauchy
distribution with θ = 0. Further suppose that θ ∼ N(0, 1).

−4.4829 −2.9692 −0.8915 −0.7164 −0.5501
−0.2805 0.0474 2.1665 4.1467 18.7272

The conditional density mT (· |u1, . . . , un−1) is shown in Figure 4. From this we can see, as
we would expect, that the observed value s(1) = −4.4829 provides no evidence of prior-data
conflict.

Suppose, however, the prior distribution is N(θ0, 1). In this case mT (· |u1, . . . , un−1) looks
just like that plotted in Figure 4 but is translated by θ0 units. So we see that if |θ0| is more
than 3 then the observed value s(1) = −4.4829 will provide evidence of a prior-data conflict.
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Figure 4: The density function mT (· |u1, . . . , un−1) with a N(0, 1) prior in Example 7.

As noted in Lehmann and Scholz (1992), there can be a conflict between ancillarity and
sufficiency in frequentist inference, as it is not entirely clear which should be imposed first. In
other words there are situations where ancillary statistics exist that are not functions of the
minimal sufficient statistic. In the context of checking for a prior-data conflict, however, this
does not pose a difficulty, as it is clear from Theorem 1 that we only consider functions of the
minimal sufficient statistic for this. Of course, for Bayesian inferences about θ the concept of
ancillarity has no relevance.

4 Noninformative Priors

Various definitions are available for expressing what it means for a prior to be noninformative.
For example, see Kass and Wasserman (1996) for a discussion of the various possibilities and
difficulties inherent in this, and also Bernardo (1979) and Berger and Bernardo (1992). A
somewhat different requirement for noninformativity arises from considerations about prior-
data conflict.

For if a prior is such that we would never conclude that a prior-data conflict exists, no
matter what data is obtained, then it seems reasonable to say that such a prior is at least a
candidate for being called noninformative. Example 2 (Bernoulli) gives an example where the
uniform prior on a compact parameter space satisfies this requirement. We saw in Example
3 (Negative-binomial) that, while the parameter space is contained in a compact set, it is not
the case that the uniform distribution is always noninformative.

Strictly interpreted, our requirement only applies to proper priors because MT is not a
probability measure unless Π is proper. We can, however, extend this to sequences of priors
that converge in some sense to an improper prior. As in Example 1 (Location normal), we can
say that a sequence of priors satisfies this requirement for noninformativity if the P-value we
choose to compute converges to 1 for every possible set of data.

In general it is not clear whether a proper prior (or sequence of proper priors) that satisfies
this requirement will exist for a given problem. Even if we can show that such objects do exist,
it is likely that further requirements must be satisfied for a prior to be called noninformative.
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If it is possible, however, for a so-called noninformative prior to conflict with the data in
some sense, then it does seem that it is putting some information into the analysis. So we
consider the absence of the possibility of any prior-data conflict as a necessary characteristic
of noninformativity rather than a characterization.

The following example demonstrates that more than one sequence can satisfy the require-
ment.

Example 8. Location normal model

Consider the context of Example 1 (Location normal) but suppose we take the prior Πw

for θ to be the uniform distribution on (−w, w) for some w > 0. The prior predictive density
of T (s) = s̄ is given by mT,w (s̄) = (Φ (

√
n (w − s̄)) − Φ (

√
n (−w − s̄)))/2w. It is clear that

mT,w is unimodal, with mode at s̄ = 0, and is symmetric about 0. Then the relevant P-value
is given by

MT,w (mT,w (s̄) < mT,w (s̄0)) = 1−MT,w ((−s̄0, s̄0))

= 1 −

∫ s̄0

0

1

w

(
Φ
(√

n (w − s̄)
)
− Φ

(√
n (−w − s̄)

))
ds̄

which converges to 1, as w →∞, by the dominated convergence theorem.

So in this case we see that a natural sequence of priors converging to the uniform prior
satisfies our requirement, as in the limit there is no prior-data conflict. This is also true, as
discussed in Example 1 (Location normal), for a sequence of N(θ0, σ

2
0) priors with σ2

0 → ∞.
Both of these sequences give the same limiting posterior inferences.

The discussion in Section 3 indicates that the definition of a noninformative prior must
also involve ancillary statistics.

Example 9. Mixture

Consider again the context of Example 5 (Mixture) and suppose that we take the prior on θ
to be the uniform prior on (−w, w) . Then, after conditioning on the ancillary c, the analysis of
Example 8 (Location normal) shows that the improper uniform prior satisfies our requirement
for noninformativity as the sequence of P-values converges to 1. Notice, however, that if p0 was
small and we didn’t condition on c, then if we observed c = 1 the P-value would not converge
to 1 as w → ∞. This reinforces the necessity of conditioning on ancillaries when considering
whether or not a prior-data conflict exists.

In Examples 6 (Special multinomial) and 7 (Location Cauchy) it is not entirely clear what
priors will satisfy our requirement for noninformativity. This is partly a technical problem
that might yield results with more work, but it is conceivable that in certain problems no such
priors or sequences of priors will exist. Further, there is no reason to suppose that, even if such
a prior exists, that it will be necessarily unique.

In the following Example 11 we discuss what it means for a sequence of priors to be
noninformative for the location-scale normal problem, as discussed in Example 4 (Location-
scale normal), in light of our requirement. This presents a more challenging problem than
those considered in this section.
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5 Diagnostics for Ignoring Prior-data Conflict

Suppose we have concluded that there is evidence of a prior-data conflict. The question then
remains as to what to do next. In general this is a difficult question to answer. Modifying the
prior in some simple way to avoid the conflict is hard to justify scientifically. One possibility,
however, is that we proceed to replace an informative prior by a noninformative prior as
discussed in Section 4. Of course, this approach depends on a noninformative prior existing.

One scientifically justifiable answer is that we collect more data, for we know that with
sufficient data, the effect of the prior on our inferences is immaterial. Of course, circumstances
can arise where collecting more data is not possible, but we would still like to know if, in a
given context, we have enough data to ignore the prior-data conflict and, if not, how much
more data we need.

When there is a noninformative prior, we can simply compare the posterior inferences
obtained via this prior with those obtained using the informative prior. If these inferences
do not differ by an amount that is considered to be of practical importance, then it seems
reasonable to ignore the prior-data conflict. The amount of difference will depend on the
particular application, as a small difference in one context may be considered quite large in
another.

Consider the following examples:

Example 10. Bernoulli model

Suppose the situation is as described in Example 2 (Bernoulli). Suppose further we are
interested in estimating θ and for this we use the posterior mode. Given that the posterior
distribution is Beta(α+ns̄, β+n(1−s̄)) the mode is (α+ns̄−1)/(α+β+n−2). A noninformative
prior is, as described in Example 2, given by α = β = 1. A comparison between the posterior
modes leads to the difference

∣∣∣∣
α + ns̄− 1

α + β + n − 2
− s̄

∣∣∣∣ =
∣∣∣∣
(α− 1)(1 − s̄)− (β − 1)s̄

α + β + n− 2

∣∣∣∣ . (7)

If (7) is smaller than some prescribed value δ, then we can say that any prior-data conflict can
be ignored. Note that (7) is bounded above by (α + β − 2)/(α + β + n − 2) and so we can
determine n so that this difference is always smaller than δ for a given choice of prior. The
value δ is such that a difference greater than this is of practical significance and not otherwise.
Necessarily, δ depends upon the application and must be specified by the analyst.

Example 11. Location-scale normal model

Suppose the situation is as described in Example 4 (Location-scale normal) and we are in-
terested in a .95-HPD interval for µ. With the prior specified as in (5), the posterior distribution
of µ is

µx +
(
n + 1/τ 2

0

)−1/2
(α0 + n/2)−1/2 β1/2

x t2α0+n,

where µx, βx are as specified in Example 4. Therefore, a γ-HDP interval for µ is given by

µx ±
(
n + 1/τ 2

0

)−1/2
(α0 + n/2)−1/2 β1/2

x G−1
2α0+n((1 + γ)/2) (8)

where G−1
2α0+n is the inverse cdf for the t2α0+n(0, 1) distribution.
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To determine a noninformative sequence of priors, we must consider

M
(
m(x̄, s2) ≤ m(x̄0, s

2
0)
)

as a function of the hyperparameters µ0, τ0, α0, and β0. From (6), and some easy algebraic
manipulations, we see that

M
(
m(x̄, s2) ≤ m(x̄0, s

2
0)
)

= M

(
n

n−1
1

nτ2
0+1

α0
β0

(x̄− µ0)
2 + α0

β0
s2 ≥

n
n−1

1
nτ2

0+1

α0
β0

(x̄0 − µ0)
2 + α0

β0
s2
0

)
. (9)

Now recall that s2 ∼ (β0/α0)F(n−1,2α0) and so the left side of the inequality in (9) converges
almost surely (and so in distribution also) to a random variable with the F(n−1,2α0) distribution,
as τ 2

0 → ∞, β0 → 0 with the added restriction that β0τ
2
0 → ∞. Then, with the additional

restriction that α0/β0 → 0, we see that (9) converges to 1. Note that since β0 → 0 this also
implies that α0 → 0. Therefore a sequence of priors, as specified in Example 4 (Location-
scale normal), via the hyperparameters (µ0, τ0, α0, β0), will be noninformative for this problem
whenever τ0 → ∞, β0τ

2
0 → ∞ and α0/β0 → 0. Actually, it is apparent that we need only

require that α0/β0 → 0 to have a noninformative sequence of priors, so there are many such
sequences.

The condition τ0 → ∞ is saying that the variance of the prior on µ is becoming large.
Since the mean of a Gamma(α0, β0) distribution is α0/β0, the condition α0/β0 → 0 says that
the mass of the prior distribution for 1/σ2 is concentrating at 0. But since the variance of a
Gamma(α0, β0) distribution is α0/β2

0 , the condition β0τ
2
0 →∞ implies that the concentration

must occur at a suitably slow rate. For example, if we take β0 = 1/τ0 and α0 = 1/τp
0 with p > 1,

these conditions will be satisfied as τ0 → ∞. Note that with these choices the prior variance
of 1/σ2 is α0/β2

0 = τ 2−p
0 and so this will become infinite as τ0 →∞ whenever 1 < p < 2, will

remain constant at 1 when p = 2, and goes to 0 when p > 2.

Under a sequence of priors, as specified above, we have that the γ-HPD interval for µ given
by (8) converges to

x̄± (s/
√

n)(1− 1/n)1/2G−1
n ((1 + γ)/2). (10)

This interval differs from the classical interval by using the factor (1− 1/n)1/2G−1
n ((1 + γ)/2)

instead of G−1
n−1((1 + γ)/2). Note, however, that the (1 − 1/n)1/2tn distribution and the tn−1

distribution are very similar.

Now we want to compare the two HPD intervals to obtain our diagnostic. Perhaps the most
natural comparison is to compute the length measure of the symmetric difference of the two
intervals. Certainly something like this would be necessary for general regions. For intervals,
however, if one can show that the differences between the corresponding endpoints are less than
δ, then the length measure of the symmetric difference is also less than δ. So our diagnostic is
the maximum difference between the corresponding endpoints of the intervals given by (8) and
(10). If this maximum is less than δ, where δ is a value such that a difference greater than this
is of practical significance and not otherwise, then we can ignore any prior-data conflict.

Other diagnostics suggest themselves. For example, in general we could compute the diver-
gence between the posterior under the informative and noninformative prior. For this, however,
we would need to first state a cut-off value for the divergence, below which we would not view
the difference between the distributions as being material.
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6 Factoring the Joint Distribution

As further support for the approach taken here, consider the following factorization of the joint
distribution of the data and parameter. This seems to point to a logical separation between
the activities of checking the sampling model, checking for prior-data conflict and inference
about the model parameter.

In a Bayesian analysis with a proper prior, the full information available to the statistician
for subsequent analysis is effectively the observed data s0 and the joint distribution of (θ, s)
as given by the measure Pθ × Π, where Pθ is the conditional distribution of the data s given
θ and Π is the marginal distribution of θ. Denoting a minimal sufficient statistic by T we see
that this factors as P (· |T ) × PTθ × Π, where PTθ is the marginal probability measure of T
and P (· |T ) is the conditional distribution of the data s given T.

The measure P (· |T ) is independent of θ and the prior and so only depends on the choice
of the sampling model {Pθ : θ ∈ Ω} . Therefore, we can compare the observed data s0 against
this distribution to assess whether or not the sampling model is reasonable.

Also we can write PTθ×Π as MT ×Π(· |T ) where MT is the prior predictive distribution of
T and Π (· |T ) is the posterior distribution of θ. As we have discussed in this paper, comparing
the observed value T (s0) with the distribution MT is an appropriate method for assessing
whether or not there is a conflict between the prior and the data.

For a maximal ancillary U that is a function of the minimal sufficient statistic T, we can
write MT ×Π(· | T ) as PU ×MT (· |U) ×Π(· |T ), where PU is the marginal distribution of U
and MT (· |U) is the conditional prior predictive distribution of T given U . We have that PU

depends only on the choice of the sampling model {Pθ : θ ∈ Ω} . Therefore we can also compare
the observed value U (s0) with PU to assess whether or not the sampling model is reasonable.
In a case where U is not independent of T, we have argued that it is more appropriate to
compare T (s0) with MT (· |U) than against MT to assess whether or not a prior-data conflict
exists. Conditioning on U removes inappropriate variation (variation that does not depend on
the prior) from the comparison.

Finally, when we feel comfortable with both the sampling model and the prior, we can
proceed to inferences about θ; for this we use the posterior distribution Π (· |T ) . Note that
checking for prior-data conflict is only appropriate when we know the sampling model is rea-
sonable, and making inferences about θ is only appropriate when we know both the sampling
model is appropriate and that there is no prior-data conflict.

In Box (1980) a method was suggested for model checking based upon the full marginal
prior predictive M for the data. In several examples this can be seen to give anomalous results.
The approach taken in this paper is a refinement of Box’s proposal, for we can factor M as
P (· | T ) ×MT and see that the first component is available for checking the sampling model
and the second is available for checking for prior-data conflict.

7 Hierarchically Specified Priors

Suppose we can write θ = (θ1, θ2) and the prior is specified as

π(θ1, θ2) = π1(θ1)π2(θ2 | θ1),
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where π1 is the marginal prior for θ1 and π2(· | θ1) is the conditional prior for θ2 given θ1. Of
course any prior can be written this way, but here we mean that the prior π is constructed
by specifying π1 and π2. It is natural then to see if we can generalize the methods discussed
here for checking the full prior π, to checking the individual components π1 and π2 to help
identify the source of any conflict more precisely. A prior may be specified with more than two
components, but we will restrict our discussion here to the two component case and leave the
more general problem to be treated elsewhere. We do not, however, restrict θ1 and θ2 to be
1-dimensional.

In Evans and Moshonov (2005) the question of how to check the individual components
was considered and a partial solution developed. The solution was partial in the sense that
not all such decompositions of π are amenable to the methodology. We note, however, that we
can always check the full prior using the methods we have presented so far.

As in the previous sections we suppose that T is the minimal sufficient statistic for the
model and U(T ) is maximal ancillary for θ. Initially we consider checking π2 for conflict with
the data. Suppose we can find a statistic V (T ) that is ancillary for θ2 in the sense that the
sampling distribution of V (T ) is independent of θ2 and depends on θ1. If we conclude that
the observed value T (s0) is a surprising value from MT (· |U(T (s0))), this could arise because
V (T (s0)) is a surprising value from MV (T )(· |U(T (s0))), the conditional prior predictive of
V (T ) given U(T ). The following result is established (the proof is similar to that of Theorem
1) in Evans and Moshonov (2005).

Theorem 3. If V (T ) is ancillary for θ2, then MV (T )(· |U(T )) does not depend on π2.

Therefore, a surprising value of V (T (s0)) cannot be due to a conflict with π2. Now we argue,
just as in Section 3, for ancillary statistics. To assess whether or not T (s0) is conflicting with
π2, the sensible thing to do is to remove the variation in MT (· |U(T )) due to V (T ) when
making the comparison; we do this by conditioning on V (T )—namely, we compare T (s0) to
MT (· |U(T (s0)), V (T (s0))). Of course we want to remove the maximum amount of this variation
and so we take V (T ) to be a maximal ancillary for θ2. Again there could be a number of distinct
maximal ancillaries for θ2 and these all provide valid checks.

We have required that the marginal distribution of V (T ) depend on θ1 and so we can
compare V (T (s0)) to MV (T )(· |U(T (s0))) to assess whether or not there is any conflict with
π1. Notice that Theorem 3 implies that this comparison does not depend in any way upon π2. In
contrast MT (· |U(T (s0)), V (T (s0))) will generally depend upon π1 as well as π2. This suggests
that we first check for prior-data conflict with π1 by comparing V (T (s0) to MV (T )(· |U(T (s0)))
and, if no conflict is found, then proceed to check for prior-data conflict with π2 by comparing
T (s0) to MT (· |U(T (s0)), V (T (s0))). This is analogous to the proviso we stated initially that we
don’t check for prior-data conflict unless we have first agreed that the sampling model makes
sense.

We see that this approach is based on a further factorization of the prior predictive, as
MT (· |U(T )) = MV (T )(· |U(T ))×MT (· |U(T ), V (T )). The first factor is concerned with check-
ing π1 and the second is concerned with checking π2. We consider an example.

Example 12. Location-scale normal model

Suppose the situation is as described in Example 4 (Location-scale normal) and recall that
T =

(
x̄, s2

)
. Here π1 is the prior on θ1 = σ2 and π2(· | θ1) is the conditional prior on θ2 = µ

given σ2. We see immediately that s2 is ancillary for µ. The marginal prior predictive of s2 is
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given by s2 ∼ (β0/α0)F(n−1,2α0) and the conditional prior predictive of x̄ given s2 is distributed
as tn+2α0−1(µ0, σ̃), where

σ̃2 =
{
τ 2
0

(
nτ 2

0 + 1
) (

2β0 + (n − 1) s2
)}

/{nτ 2
0 (n + 2α0 − 1)}.

Now consider the numerical values of the hyperparameters and data prescribed in Example
4. To assess if there is any conflict with π1, we compare s2/5 = 0.1673126 with the F (19, 2)
distribution. In Example 4 we computed this P-value to be .47832 and this doesn’t indicate
any prior-data conflict. To assess if there is any conflict with π2, we compare (x̄ − µ0)/σ̃ =
−31.81617 to the t21 (0, 1) distribution. This is clearly a very extreme value and in fact the
two-sided P-value is 0 to 7 decimals. This check has appropriately detected the discrepancy
between the prior and the location of the data. In Example 4 we also considered using the
marginal prior predictive distribution of x̄ (a Student(2) distribution) to assess whether or not
there was any prior-data conflict. This resulted in a P-value of .0021 and so gave evidence of a
prior-data conflict. Intuitively, this seemed to indicate a problem with the specification of the
part of the prior for µ, but there was no clear rationale for this. We see now, however, that
the hierarchical approach indicates a very clear problem with the specification of π2 and does
so much more dramatically.

We might ask, however, under what circumstances is it possible for the check for π2 to be
independent of π1, so we could do the checks in any order. One set of such conditions can
arise whenever there is a statistic V (T ) that is sufficient-ancillary for (θ1, θ2), namely, V (T ) is
ancillary for θ2 and the conditional distribution of T given V (T ) does not depend on θ1. The
following result is proved in Evans and Moshonov (2005).

Theorem 4. Suppose that Ω = Ω1 × Ω2 with θ1 and θ2 a priori independent, and V (T ) is
sufficient-ancillary for (θ1, θ2) . Then MT (· |U(T ), V (T )) is independent of π1.

In general, as noted in Fraser (1979), it is difficult to find sufficient-ancillary statistics. For
example, s2 is not sufficient-ancillary in Example 12 (Location-scale normal). In Evans and
Moshonov (2005) the multinomial model was shown to possess a sufficient-ancillary statistic
after a reparameterization.

The need to specify an order for the checking, except under the rather specialized conditions
in Theorem 4, and further the need for a statistic V (T ) ancillary for θ2, show that checking for
individual components may not be available generally. There is, however, a fairly wide class
of models and decompositions where such a V (T ) exists. In Evans and Moshonov (2005), an
explicit construction is given for V (T ) when the basic statistical model corresponds to a group
model with a specific structure. In particular, when the parameter space is a group that can
be written as Ω = Ω2Ω1 with θ1 ∈ Ω1, θ2 ∈ Ω2 and Ω1, Ω2 subgroups with the product being a
semidirect product, then V (T ) is easily obtained. Example 12 (Location-scale normal) exhibits
this structure and the construction procedure leads to V (x̄, s2) = s. In fact, V (x̄, s2) = s works
for any location-scale model, with the same prior decomposition, and there are other possible
choices. The location-scale Cauchy model is analyzed for prior-data conflict in Evans and
Moshonov (2005) when θ1 is the scaling parameter and θ2 is the location parameter.

As documented in Fraser (1979), there are many models in statistics that have this struc-
ture. For example, suppose we have a regression model where a basic observation y ∈ R1

has E(y) = xtθ2, V ar(y) = θ1 with θ2 ∈ Rp unknown, θ1 > 0 unknown and the distribution

otherwise fully specified (e.g., normal). Then taking the group product to be (θ1, θ2) (θ′
1, θ

′

2) =
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(θ1θ
′
1, θ2+θ1θ

′

2) we have that this structure obtains. This can also be generalized to multivariate
regression with any error distribution.

There is another context where priors are specified hierarchically—namely, hierarchical
modeling. We make a slight change of notation here and suppose that θ2 ∈ Ω2 denotes the
sampling model parameter and θ1 ∈ Ω1 denotes a set of hyperparameters that specify the prior
for θ2 as π2(· | θ1). Further, suppose we have completed the specification of the prior via π1. This
induces the prior measure Π∗

2(A ) =
∫
Ω1

Π2(A | θ1) Π1 (dθ1) for A ⊂ Ω2 and all the methods

we have been discussing, based on the minimal statistic T for the model {Pθ2 : θ2 ∈ Ω2}, are
available to check whether or not Π∗

2 conflicts with the data. Again we might like to check for
conflicts with the individual components of the prior, but the situation is different than the
previous problem because θ1 is not part of the model parameter. Therefore the methods we
have discussed in this section so far, are not available for this problem and a different approach
is needed.

The joint distribution of (θ1, θ2, s) can be factored as P (· | T )×PTθ2×Π2(· | θ1)×Π1 and we
recall that P (· |T ) is used to check the sampling model {Pθ2 : θ2 ∈ Ω2}. Now observe that there
is another way to at least formally generate a model for s from the joint distribution—namely,
put

Mθ1 (ds) =

∫

Ω2

Pθ2 (ds)Π2(dθ2 | θ1) = P (ds |T ) (t)

∫

Ω2

PTθ2 (dt)Π2(dθ2 | θ1)

= P (ds |T ) (t)×MTθ1 (dt).

This model is only formal as, strictly speaking, when the model {Pθ2 : θ2 ∈ Ω2} is correct, it is
not the case that s ∼Mθ1 for some θ1 ∈ Ω1, except in certain special circumstances. Note that
Mθ1 is the conditional prior predictive distribution for s given θ1 and MTθ1 is the conditional
prior predictive distribution for T given θ1.

Now consider the model for T given by {MTθ1 : θ1 ∈ Ω1} and let V (T ) be a minimal
sufficient statistic for this model. Then we can factor MTθ1 as M (· |V )×MV θ1 , where M (· |V )
is the conditional prior predictive distribution of T given V, and MV θ1 is the conditional prior
predictive distribution of V given θ1. Then the joint distribution of (θ1, s) can be factored as

P (· |T )×M (· | V )×MV ×Π1 (· |V ) , (11)

where MV is the prior predictive distribution of V, and Π1 (· |V ) is the posterior distribution
of θ1. Note that a simple argument establishes that the last three factors in (11) are the same,
whether determined from the joint distribution of (θ1, θ2, s) or the joint distribution of (θ1, s).
In particular, the posterior distribution of θ1 only depends on the data through V (T (s0)).

Now, using the arguments developed in this paper, consider how each of the factors in (11)
is to be used. First, P (· |T ) is available for checking the basic sampling model {Pθ2 : θ2 ∈ Ω2}.
If no evidence is found against the model, we can proceed to check the model {MTθ1 : θ1 ∈ Ω1}

for T using M (· |V ) and note that this does not depend on Π1. If evidence is found against
this model then, because we have accepted the sampling model, and so consequently the model
{PTθ2 : θ2 ∈ Ω2} for T, this must occur because of a conflict between the observed value T (s0)
and Π2. If we find no evidence against {MTθ1 : θ1 ∈ Ω1}, then we can check for a conflict with
Π1 using MV . Finally, if there is no conflict with Π1, then Π1 (· | V ) is available for inference
about θ1. Of course, if there is no conflict with Π1 and Π2, then we can also make inference
about the parameter of interest θ2. We consider an example.

Example 13. Random effects
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Suppose that s = (s1, . . . , sn) is a sample from the Np (µ, I) distribution where µ ∼
Np(µ0, σ

2I) with µ0 ∈ Rp fixed and σ−2 ∼ χ2
α0

with α0 fixed. So here, θ2 = µ and θ1 = σ2.
Then T = s̄, MTθ1 is the Np(µ0, (θ1 + 1/n)I) distribution and V = (s̄− µ0)

t(s̄− µ0).

Given V = v, the conditional distribution of s̄ is uniform on the sphere of radius v1/2

centered at µ0. So in this case M (· |V ) would seem to imply that we will never find evidence
against the Np(µ0, σ

2I) factor in the prior, at least when we compute P-values as we have
prescribed. At first this seems anomalous, but consider that this factor allows for any value for
σ2; by an appropriate choice of σ2 we can avoid any prior-data conflict, in the sense that the
likelihood and prior support for µ will overlap. Whether or not we have specified appropriate
possible values for σ2 will depend only on the prior Π1 for σ2. Contrast this with Example 12,
where the sampling model depends on both θ1 and θ2 while the sampling model only depends
on θ2 here. In Example 12 there will also be values of θ1 such that the prior for θ2 will not
conflict with the data, but these values of θ1 may not be realistic in light of the likelihood. So
in Example 12 a conflict may exist with Π2 irrespective of the prior placed on θ1.

We have that the sampling distribution of (σ2 + 1/n)−1(s̄− µ0)
t(s̄− µ0) is χ2

p. So MV has
density mV given by

Γ (p/2 + α0/2)

Γ (p/2) Γ (α0/2)
vp/2−1

∫ ∞

0

(
1

1 + u/n

)p/2

exp

{
−

1

2

v

1 + u/n

}
g(u) du,

where g is the χ2
p+α0

density. Although nonstandard, this is easily numerically evaluated on a
grid of values and the relevant P-value computed.

8 Conclusions

This paper has been concerned with checking whether or not there is any conflict between the
prior distribution Π and the observed data s0. Conflict here means that the prior distribu-
tion assigns most of its mass to θ values prescribed by the sampling model {Pθ : θ ∈ Ω} for
which the observed data is surprising. Various considerations lead us to conclude that the
appropriate approach to making this comparison is to compare the observed value T (s0) of a
minimal sufficient statistic T with the conditional prior predictive distribution of T given any
maximal ancillary U. If many such nonequivalent maximal ancillaries are available, then all
such comparisons are deemed appropriate.

We note that the above analysis implicitly assumes that the sampling model for the data
is correct. Of course, this is an assumption and must also be checked. We have not discussed
this issue here but, as noted in the Introduction, there are many methods available for this and
we have assumed that this process has been carried out first. Given the different consequences
of sampling model failure and prior-data conflict, and the ability of a Bayesian analysis to
avoid the consequences of a prior-data conflict when there is sufficient data, it is felt that it is
important to assess these potential failures separately.

As mentioned in the Introduction some may feel that when a prior reflects the subjective
beliefs of an analyst, then they do not feel compelled to check for prior-data conflict. Fur-
thermore, it might be argued that posterior predictive model checks could be used to check
for the plausibility of inferences rather than the diagnostic approach that we have proposed.
We note, however, that at least part of the motivation for the approach we are advocating for
model checking and checking for prior-data conflict, as reflected in the factorization discussed
in Section 6, is the avoidance of the kind of phenomena discussed in Bayarri and Berger (2000)
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that led them to argue against the general use of posterior predictive checks when checking
the sampling model. We acknowledge that there are currently differing viewpoints on these
issues, but feel that our approach of separating model checking and checking the prior has some
attractive features, as this paper has hopefully demonstrated.

The developments here have led to a number of new developments, including a role for
the ancillarity concept in Bayesian analysis, and for a necessary requirement for a prior to be
noninformative. While this paper has laid the foundations for this approach, further work is
required to fully investigate all the implications. Also important computational issues arise
in contexts where computing the conditional prior predictive densities of a minimal sufficient
statistic and associated P-values are not straightforward. Typically these problems are similar
to those encountered when we want to compute normalizing constants in Bayesian problems
and presumably similar approaches can be brought to bear.

9 Appendix

Proof of Theorem 1:

Suppose T : S → T possesses the appropriate measurability properties. Since T is suffi-
cient we have, for measurable B ⊂ S, and any T -measurable C ⊂ T , that Pθ(B ∩ C) =∫
C

P (B |T ) (t) PθT (dt) for T -measurable P (B |T ) : T → [0, 1] . Then

M (B ∩ C) =

∫

C

M (B |T ) (t) MT (dt) =

∫

Ω

Pθ(B ∩ C) Π (dθ)

=

∫

Ω

∫

C

P (B |T ) (t) PθT (dt) Π (dθ) =

∫

C

P (B |T ) (t)

∫

Ω

PθT (dt) Π (dθ)

=

∫

C

P (B |T ) (t) MT (dt)

for every T -measurable C ⊂ T . This implies that M (B |T ) (t) = P (B |T ) (t) almost every-
where with respect to MT and we have proved the result.

Proof of Theorem 2:

Let A = {θ : π (θ) > 0} and note that L (· | s0) ∝ L (· |T (s0)) . Then,

mT (T (s0)) =

∫

Ω

fθT (T (s0))π (θ) υ (dθ) =

∫

A

fθT (T (s0)) π (θ) υ (dθ) = 0,

since L (θ |T (s0)) = fθT (T (s0)) = 0 when θ ∈ A.

References

Bayarri, M. J. and Berger, J. (2000). “P values for composite null models.” Journal of the

American Statistical Association, 95(452): 1127–1142.

Berger, J. and Bernardo, J. (1992). “On the development of the reference prior method.” In
Bernardo, J., Berger, J., Dawid, A., and Smith, A. (eds.), Bayesian Statistics 4: Proceedings

of the Fourth Valencia International Meeting, 218–220. Clarendon Press, Oxford, U.K.



914 Checking for Prior-Data Conflict

Bernardo, J. (1979). “Reference posterior distributions for Bayesian inference (with discus-
sion).” Journal of the Royal Statistical Society, Series B, 41: 113–147.

Box, G. (1980). “Sampling and Bayes’ inference in scientific modelling and robustness.” Journal

of the Royal Statistical Society, A, 143: 383–430.

Cox, D. and Hinkley, D. (1974). Theoretical Statistics. London: Chapman and Hall.

Evans, M. and Moshonov, H. (2005). “Checking for prior-data conflict with hierarchically
specified priors.” Technical Report 0503, Dept. of Statistics, U. of Toronto, Toronto. To
appear in the proceedings of the International Workshop/Conference on Bayesian Statistics
and its Applications, Dept. of Statistics, Banaras Hindu U., Varanasi, India.
URL http://fisher.utstat.toronto.edu/mikevans/papers/techrep3.pdf

Fraser, D. (1979). Inference and Linear Models. New York: McGraw-Hill.

Gelman, A., Meng, X., and Stern, H. (1996). “Posterior predictive assessment of model fitness
via realized discrepancies (with discussion).” Statistica Sinica, 6: 733–808.

Guttman, I. (1967). “The use of the concept of a future observation in goodness-of-fit prob-
lems.” Journal of the Royal Statistical Society, B, 143: 383–430.

Kass, R. E. and Wasserman, L. (1996). “The selection of prior distributions by formal rules.”
Journal of the American Statistical Association, 91(435): 1343–1370.

Lehmann, E. and Scholz, F. (1992). “Ancillarity.” In Ghosh, M. and Pathak, P. K. (eds.),
Current Issues in Statistical Inference: Essays in Honor of D. Basu, 32–51. IMS Lecture
Notes-Monograph Series, Hayward, CA.

Rubin, D. (1984). “Bayesianly justifiable and relevant frequency calculations for the applied
statistician.” Annals of Statistics, 12: 1151–1172.

Acknowledgments

Professors Jim Berger and Arnold Zellner provided some useful comments on an orally pre-
sented version of this paper. We also thank the Associate Editor for a number of constructive
comments.

http://fisher.utstat.toronto.edu/mikevans/papers/techrep3.pdf

