
Checking Only When It Is Necessary: Enabling
Integrity Auditing Based on the Keyword With
Sensitive Information Privacy for Encrypted

Cloud Data
Xiang Gao , Jia Yu ,Member, IEEE, Yan Chang, Huaqun Wang , and Jianxi Fan

Abstract—The public cloud data integrity auditing technique is used to check the integrity of cloud data through the Third Party Auditor

(TPA). In order to make it more practical, we propose a new paradigm called integrity auditing based on the keyword with sensitive

information privacy for encrypted cloud data. This paradigm is designed for one of the most common scenario, that is, the user

concerns the integrity of a portion of encrypted cloud files that contain his/her interested keywords. In our proposed scheme, the TPA

who is only provided with the encrypted keyword, can audit the integrity of all encrypted cloud files that contain the user’s interested

keyword. Meanwhile, the TPA cannot deduce the sensitive information about which files contain the keyword and how many files

contain this keyword. These salient features are realized by leveraging a newly proposed Relation Authentication Label (RAL). The RAL

can not only authenticate the relation that files contain the queried keyword, but also be used to generate the auditing proof without

sensitive information exposure. We give concrete security analysis showing that the proposed scheme satisfies correctness, auditing

soundness and sensitive information privacy. We also conduct the detailed experiments to show the efficiency of our scheme.

Index Terms—Cloud storage, sensitive information privacy, keyword search, data auditing, privacy

Ç

1 INTRODUCTION

THE cloud storage service enables people to conveniently
outsource their large amounts of data to centralized

cloud servers. Taking Electronic Medical Record (EMR) as
an example, doctors may upload patients’ EMRs to cloud
servers, which will be accessed afterward by other doctors
from different departments. The integrity of EMRs is of
great importance, since the tampered EMRs may cause
incorrect diagnosis, or even death to a patient. Cloud data
integrity auditing techniques can check whether the users’
files are intactly stored in the cloud. The integrity auditing
task is usually performed by the Third Party Auditor (TPA)
which has powerful computational capability that the user
does not have.

Generally speaking, the TPA usually adopts the “pay-as-
you-go” model to charge users according to the workload of
auditing services it provides. The more cloud files are aud-
ited, the more money the user needs to pay. It is estimated
by the Internet Data Center, the data held by each user will
be up to 5200 GB in 2020 [1]. When such large-scale files are
moved to the cloud, auditing the integrity of all cloud files
periodically would bring a heavy economic burden on the
user. Furthermore, it would cause unavoidable waste of
resources. In most cases, the user might only concern the
integrity of specific files that will be utilized shortly. For
example, when a patient comes to the hospital for treat-
ments, the doctor only concerns the integrity of the EMRs
about this patient. The doctor may search and extract these
EMRs from the cloud according to the identity of this
patient. When medical scientists are going to do a diabetes
research, they might only concern the integrity of EMRs
containing the keyword “diabetes” or “GLU” in the cloud.
In these scenarios, it would be more reasonable and cost-
effective to only audit the integrity of files that contain the
keyword of interest.

Since keywords in files often contain the user’s sensitive
information, the user needs to encrypt files before upload-
ing them to the cloud. When the user wants to check the
integrity of all encrypted cloud files containing the inter-
ested keyword, he/she just provides the TPA with the
encrypted keyword (search trapdoor). This makes achieving
integrity auditing based on the keyword for encrypted
cloud data more difficult. Briefly speaking, it faces two criti-
cal challenges. The first challenge is how to audit the integ-
rity of all encrypted cloud files containing the queried

� Xiang Gao and Jia Yu are with the College of Computer Science and Tech-
nology, Qingdao University, Qingdao 266071, China, and also with the
State Key Laboratory of Cryptology, Beijing 100878, China.
E-mail: gxcuit@163.com, qduyujia@gmail.com.

� Yan Chang is with the School of Cybersecurity, Chengdu University of
Information Technology, Chengdu 610225, China, and also with the
Advanced Cryptography and System Security Key Laboratory of Sichuan
Province, Chengdu 610000, China. E-mail: cyttkl@cuit.edu.cn.

� Huaqun Wang is with the Jiangsu Key Laboratory of Big Data Security
and Intelligent Processing, Nanjing University of Posts and Telecommu-
nications, Nanjing, Jiangsu 210023, China. E-mail: wanghuaqun@aliyun.
com.

� Jianxi Fan is with the School of Computer Science and Technology, Soo-
chow University, Suzhou 215006, China. E-mail: jxfan@suda.edu.cn.

Manuscript received 17 Sept. 2020; revised 7 July 2021; accepted 16 Aug. 2021.
Date of publication 24 Aug. 2021; date of current version 11 Nov. 2022.
(Corresponding author: Jia Yu.)
Digital Object Identifier no. 10.1109/TDSC.2021.3106780

3774 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-5634-2857
https://orcid.org/0000-0002-5634-2857
https://orcid.org/0000-0002-5634-2857
https://orcid.org/0000-0002-5634-2857
https://orcid.org/0000-0002-5634-2857
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0002-0574-7803
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0001-7254-6465
https://orcid.org/0000-0002-7055-5891
https://orcid.org/0000-0002-7055-5891
https://orcid.org/0000-0002-7055-5891
https://orcid.org/0000-0002-7055-5891
https://orcid.org/0000-0002-7055-5891
mailto:gxcuit@163.com
mailto:qduyujia@gmail.com
mailto:cyttkl@cuit.edu.cn
mailto:wanghuaqun@aliyun.com
mailto:wanghuaqun@aliyun.com
mailto:jxfan@suda.edu.cn

keyword under the condition that the TPA is only provided
with the search trapdoor. When the TPA does not know
which files contain this queried keyword, the malicious
cloud might provide a valid proof which is computed from
files that do not contain this keyword or a portion of files
that contain this keyword to pass the verification. The sec-
ond challenge is that, from the integrity auditing procedure,
the TPA should not know which files contain this queried
keyword, or the number of files containing this queried key-
word. Because the task of the TPA is only to perform the
integrity auditing, such sensitive information should not be
exposed to the TPA. The sensitive information may disclose
which encrypted keyword is more important, even exposes
the inner relation among files.

In order to address above challenges, we explore how to
achieve integrity auditing based on the keyword with sensi-
tive information privacy for encrypted cloud data. The con-
tributions of this paper can be summarized as follows:

(1) We propose a new paradigm called integrity auditing
based on the keyword with sensitive information privacy
for encrypted cloud data. Different from previous schemes,
the TPA could check the integrity of all encrypted cloud
files containing one specific keyword only with the search
trapdoor in such a scheme. The proof from the cloud can
pass the verification from the TPA, if and only if the cloud
correctly stores all of the encrypted files that contain this
keyword. In addition, the TPA cannot obtain any sensitive
information, for example, which files contain the queried
keyword and how many files contain the queried keyword.
Existing works cannot achieve such security. Therefore, this
new paradigm is different from the traditional cloud data
integrity auditing. In integrity auditing procedure, our pro-
posal is only with Oð1Þ computation complexity and com-
munication complexity in terms of the total number N of
files containing the queried keyword, which is superior to
OðNÞ complexity of the data auditing based on the verifi-
able searchable encryption.

(2) We propose the first integrity auditing scheme based
on the keyword with sensitive information privacy for
encrypted cloud data. To construct this scheme, we design a
novel form of label named Relation Authentication Label
(RAL). This label plays an important role in realizing our
design goals. On one hand, the RAL can authenticate the
relation that files contain the keyword. On the other hand, it
can be used to generate the auditing proof, which does not
expose the identity of any file containing this keyword. As a
result, the TPA can perform the integrity auditing task only
with the search trapdoor. Also, the auditing proof does not
expose any sensitive information to the TPA. The cloud can-
not deduce the relation between the file and the queried
keyword. The plaintext of the file and the queried keyword
are also kept secret from the cloud.

(3) We give concrete security analysis showing that the
proposed scheme satisfies correctness, auditing soundness
and sensitive information privacy. We conduct comprehen-
sive experiments to demonstrate the practicality and the
efficiency of our scheme. Experimental results show that it
is efficient for the user to generate/update the authenticator
and the RAL. Experiment results also show that the chal-
lenge/proof generation and the proof verification do not
incur heavy computation overhead in the auditing phase.

Organization. In Section 2, we show the systemmodel and
design goals. In Section 3, we explain the notations, prelimi-
naries, definition and security model. In Section 4, we give
the concrete scheme. In Sections 5 and 6, we give the secu-
rity analysis and experiment results. In Section 7, we intro-
duce the related work. The conclusion is given in the last
section.

2 SYSTEM MODEL, THREAT MODEL AND DESIGN

GOALS

2.1 System Model

As shown in Fig. 1, the system model in the proposed
scheme consists of three entities: the user, the cloud and the
TPA.

The User. It is the person who wishes to store a great
number of encrypted files on the cloud. He generates the
secure index and authenticators, and uploads them along
with the encrypted file blocks to the cloud. In order to
enable the TPA to perform the auditing task on the files that
contain the queried keyword, he sends the search trapdoor
to the TPA.

The Cloud. It is an entity who has massive storage capac-
ity and computational power. When receiving the auditing
challenge for the specific keyword, it first searches through
the secure index to find the corresponding encrypted files.
Then it computes the auditing proof according to the audit-
ing challenge and sends it back to the TPA.

TPA. It is an entity who performs the auditing task on
behalf of the user. It interacts with the cloud in the auditing
phase, and checks the integrity of all files that contain the
queried keyword.

2.2 Threat Model

The cloud and the TPA can both pose potential threats.
The Cloud. The data stored in the cloud may be altered or

removed without the consent from the user. Making things
worse, the cloud will hide the data corruption incidence.
The cloud tries to fool the TPA into accepting its auditing
proof when it does not possess the whole data. In addition,
the cloud is curious about the plaintext of the file/queried
keyword and the relation between the file and the queried
keyword.

The TPA. The TPA is honest in checking the integrity of
user files. Besides that, it does not actively perform the

Fig. 1. System model.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3775

leakage-abuse attack. Therefore, we do not consider for-
ward and backward privacy at the TPA in this paper. How-
ever, it is curious about the sensitive information of the file.
It tries to deduce the plaintext of the keyword and the file. It
is also curious about the identities and the amount of files
that contain the queried keyword.

2.3 Design Goals

1) Correctness: If the cloud correctly stores all of the files
that contain the queried keyword, the auditing proof
can pass the verification.

2) Auditing Soundness: The malicious cloud cannot forge
a valid auditing proof(the aggregated authenticator
and the aggregated data block) to pass the
verification.

3) Sensitive information privacy: (1) For the cloud: Except
the search pattern and the access pattern, the cloud
cannot deduce the relation between the file and the
queried keyword. The plaintext of the file and the
queried keyword are also kept secret from the cloud.
(2) For the TPA: The above-mentioned sensitive infor-
mation which is hidden from the cloud is also
unavailable to the TPA. In addition, from the audit-
ing proof, the TPA cannot deduce which files contain

the queried keyword and how many files contain the
queried keyword. Note that we do not consider for-
ward and backward privacy at TPA.

3 NOTATIONS, PRELIMINARIES, DEFINITION AND

SECURITY MODEL

3.1 Notations

Some frequently used notations are shown in Table 1.

3.2 Preliminaries

3.2.1 Bilinear Map

A map is called as bilinear map e : G1 �G1 ! G2 if it satis-
fies the following three properties:

(i) Computability: It is efficient to compute this map.
(ii) Non-degeneracy : eðg; gÞ 6¼ 1 for a generator g 2 G1.
(iii) Bilinearity: Given a; b 2 Z�q and u; v 2 G1, eðua; vbÞ ¼

eðu; vÞab.

3.2.2 Discrete-Logarithm (DL) Assumption

Given g; ga 2 G1, where a 2 Z�q , computing g is computa-
tionally infeasible.

TABLE 1
Notations

Notation Meaning

pð�Þ A pseudo random permutation

fð�Þ A pseudo random function

G1; G2 Two q � ordermultiplicative cyclic groups

e A bilinear map e : G1 �G1 ! G2

g; u Two generators in G1

n The total number of files

s The total number of blocks in each file

m The total number of keywords

Fi The i� th file

F The file set, that is F ¼ fF1;F2; . . . ; Fi; . . . ; Fng
Ci The encrypted i� th file

cij The j� th block of Ci, that is Ci ¼ fci1; ci2; . . . ; cij; . . . ; cisg
C The encrypted data block set, that is C ¼ fC1; C2; . . . ; Ci; . . . ; Cng
sij The authenticator of encrypted data block cij

F The authenticator set, that is F ¼ fs11; . . . ; s1s; . . . ; sij; . . . ; snsg
wk The k� th keyword

W The keyword set, that isW ¼ fw1; w2; . . . ; wk; . . . ; wmg
VpðwkÞ The RAL of keyword wk

Vwk;j The j� th part of the RAL VpðwkÞ , that is VpðwkÞ ¼ fVwk;1;Vwk;2; . . .Vwk;j; . . . ;Vwk;sg
vwk

The index vector for keyword wk

V The index vector set, that is V ¼ fvw1
; vw2

; . . . ; vwk
; . . . ; vwmg

evpðwkÞ½i� The i� th bit in the encrypted index vector for keyword wk

I The secure index

Tw0 The search trapdoor of keyword w0

3776 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

3.2.3 Computational Diffie-Hellman (CDH) Assumption

Given g; ga; u 2 G1, where a 2 Z�q , computing ua is computa-
tionally infeasible.

3.2.4 Secure Index

As shown in Fig. 2, the secure index[2] is derived from the
inverted index structure[3]. The inverted index enables the
cloud to efficiently search files based on the queried key-
word. The inverted index includes two parts: the keyword
wkð1 � k � mÞ and the index vector vwk

ð1 � k � mÞ. The
index vector, which is represented by an n� bit binary
string, records the relation between the file and the key-
word. If the file Fi contains the keyword, the i� th bit of the
index vector is set to 1ðvwk

½i� 1Þ; otherwise, the i� th bit
of the index vector is set to 0ðvwk

½i� 0Þ.
The secure index [2] enables the cloud to efficiently

search encrypted files based on the encrypted keyword. The
secure index includes two parts: the address pðwkÞð1 � k �
mÞ and the encrypted index vector evpðwkÞð1 � k � mÞ. The
address is a permutation of the keyword. The encrypted
index vector is also an n� bit binary string, but hides the
relation between the file and the keyword. Given the search
trapdoor pðwkÞ, the cloud searches the address in the secure
index, and decrypts the corresponding encrypted index vec-
tor. Finally, the cloud can find the files containing this que-
ried keyword. The secure index guarantees that : 1) without
knowing the search trapdoor, the cloud cannot deduce any
relation between the file and the keyword. 2) Given one
search trapdoor, the cloud can only know which files con-
tain this queried keyword. The cloud cannot deduce any
other relation between other keywords and files.

3.3 Definition

Definition 1. An integrity auditing scheme based on the key-
word with sensitive information privacy for encrypted cloud
data includes eight algorithms: (SysInið�Þ, SetupðF Þ,
IndexGenðx;W; V Þ, AuthGenðx;CÞ, TrapdoorGenðw0Þ,
ChallGenðTw0 Þ, ProofGenðChal; I; C;FÞ, ProofVerify
ðChal; ProofÞ).
1) SysInið�Þ ! ðpp; x; yÞ: This algorithm takes the secu-

rity parameter � as input. This algorithm outputs the
system parameters, the secret key x and the public
key y of the user..

2) SetupðF Þ ! ðC;W; V Þ: The user executes this algo-
rithm. It takes the file set F as input. This algorithm
outputs the encrypted data block set C, the keyword
setW , the index vector set V ,

3) IndexGenðx;W; V Þ ! I: The user executes this algo-
rithm. It takes the secret key x, the keyword set W
and the index vector set V as input. This algorithm
outputs the secure index I.

4) AuthGenðx;CÞ ! F: The user executes this algo-
rithm. It takes the secret key x and the encrypted
data block set C as input. This algorithm outputs the
authenticator set F.

5) TrapdoorGenðw0Þ ! Tw0 : The user executes this algo-
rithm. It takes the keyword w0 as input. This algo-
rithm outputs the search trapdoor Tw0 .

6) ChallGenðTw0 Þ ! Chal: The TPA executes this algo-
rithm. It takes the search trapdoor Tw0 as input. This
algorithm outputs the auditing challenge Chal.

7) ProofGenðChal; I; C;FÞ ! Proof : The cloud exe-
cutes this algorithm. It takes the auditing challenge
Chal, the secure index I, the encrypted data block set
C and the authenticator set F as input. This algo-
rithm outputs the auditing proof Proof .

8) ProofVerifyðChal; ProofÞ ! f0; 1g: The TPA exe-
cutes this algorithm. It takes the auditing challenge
Chal and the auditing proof Proof as input. This
algorithm outputs the auditing result.

3.4 Security Model

The security model involves auditing soundness and sensi-
tive information privacy. First, we introduce the following
game between a challenger C and an adversary A to define
the auditing soundness. This game includes the following
phases:

1) Setup Phase: The challenger C executes the SysIni
algorithm, and sends the system parameters pp and
the public key y of the user to the adversary A.

2) Query Phase: The adversary A makes the following
queries:

a) Authenticator Query: The adversary A adap-
tively selects a series of blocks fcijgð1 � i � n; 1 �
j � sÞ and sends them to the challenger C. The chal-
lenger C computes the corresponding authenticators
and sends them back to the adversary A.

b) RAL Query: The adversary A adaptively selects
a series of encrypted keywords wkð1 � k � mÞ and
sends them to the challenger C. The challenger C
computes the corresponding RALs and sends them
back to the adversary A.

3) Challenge Phase: The challenger C sends the auditing
challenge Chal ¼ fTw; fj; vjgj2Qg to the adversary A,
where Tw is the search trapdoor of the queried key-
word w, j is the challenged index and vj is the chal-
lenged coefficient. The adversary is required to
return an auditing proof for the challenge Chal.

4) Forgery Phase: According to the auditing challenge
Chal, the adversary A finds files that contain the que-
ried keyword and computes the auditing proof. This
auditing proof is composed by the aggregated data
block and the aggregated authenticator. If this audit-
ing proof can pass the verification, the adversary A
wins in this game.

The above-mentioned security model shows that an
adversary who does not keep all challenged blocks correctly,

Fig. 2. Secure index.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3777

tries to cheat the challenger to accept the auditing proof. Def-
inition 2 shows that there exists a knowledge extractor that
can extract the corresponding blocks if the adversary outputs
a valid auditing proof. Definition 3 shows that, for the
unchallenged blocks, if the auditing proof could pass the ver-
ification, the cloud stores themwith high probability.

Definition 2 (Auditing Soundness). We say that an integ-
rity auditing scheme based on the keyword with sensitive infor-
mation privacy for encrypted cloud data achieves auditing
soundness if the following condition holds: if the adversary A
wins in the above-mentioned game with non-negligible probabil-
ity, there is a knowledge extractor which could extract the corre-
sponding blocks except possibly with negligible probability.

Definition 3 (Detectability). We say that an integrity audit-
ing scheme based on the keyword with sensitive information
privacy for encrypted cloud data is ðr; dÞ detectable ð0 � r �
1; 0 � d � 1Þ if, given a fraction r of tampered blocks, the prob-
ability of detection for the tampered blocks is at least d.

Next, we introduce leakage functions and experiments to
define sensitive information privacy. We first define two
leakage functions L1 and L2 [4]. These leakage functions
capture what is exposed by the ciphertext and the search
trapdoors. L1ðF; V Þ takes the file set F and the index vector
set V as input. It reveals the total number of files jF j, each
file block size jFijj, the total number of keywords jW j, each
keyword size jwj and the index i of each file. Because the
RAL size is constant, this function also reveals the RAL size
jVpðwkÞj. L2ðF; V; w0Þ takes the file set F , the index vector set
V and the keyword w0 as input. It reveals the size of the key-
word jw0j, the search pattern and the access pattern. Then
we define the following experiments in which A is a stateful
adversary and S is a stateful simulator.

RealAð�Þ: The challenger gets the secret key of the PRP
and PRF. A sends the file set F and the index vector set V to
the challenger and gets the secure index I and the encrypted
data block set C. A makes polynomial times queries and
receives the corresponding search trapdoor Tw0 . Finally, A
outputs one bit b.

IdealA;Sð�Þ: A chooses the file set F and the index vector
set V . Given L1ðF; V Þ, S sends the secure index I 0 and the
encrypted data block set C0 to A. Amakes polynomial times
queries. Given L2ðF; V;w0Þ, S sends the search trapdoor T 0w0
to A. Finally,A outputs one bit b.

The above-mentioned experiments formalize a simulator
and an adversary who tries to obtain sensitive information
from leakage functions. Definition 4 shows that except the
search pattern and the access pattern, the cloud cannot deduce
any useful sensitive information such as the relation between
the file and the queried keyword, the plaintext of files and the
queried keyword. All above-mentioned sensitive information
which is kept secret from the cloud should also be unavailable
to the TPA. In addition, from the auditing proof, the TPA can-
not deduce any sensitive information such as which files con-
tain the queried keyword and how many files contain the
queried keyword.

Definition 4 (Sensitive Information Privacy). We say that
an integrity auditing scheme based on the keyword with sensi-
tive information privacy for encrypted cloud data achieves sen-
sitive information privacy if the following conditions hold:

1) There exists a probabilistic polynomial-time (PPT) simu-
lator S for any PPT adversary A such that:
jPr½RealAð�Þ ¼ 1� � Pr½IdealA;Sð�Þ ¼ 1�j � neglð�Þ.
2) The sensitive information which is kept secret from the

cloud is also unavailable to the TPA. In addition, the TPA can-
not know which files and how many files contain the queried
keyword.

4 OUR PROPOSED SCHEME

In this section, we first give two straightforward approaches
to achieve integrity auditing based on the keyword for
encrypted cloud data. The first is the naive approach that
requires the cloud to return all files containing the queried
keyword to the TPA in the auditing phase. It will incur a
heavy communication burden. Besides, this approach can-
not realize sensitive information privacy. The second is a
slightly better approach, which has better communication
efficiency, but still may disclose sensitive information to the
TPA. Then we give our core scheme to achieve integrity
auditing based on the keyword with sensitive information
privacy over encrypted cloud data.

4.1 A Naive Approach

This approach is designed partially based on the Verifiable
Searchable Encryption (VSE) technique[5]. We name it as the
data auditing based on the VSE. The user and the TPA share
one secret key for one MAC algorithm. The cloud stores the
encrypted files and the secure index along with a MAC set. In
order to generate theMACvalue in thisMAC set, the user runs
the MAC algorithm with inputting each encrypted keyword
and all encrypted files that contain this keyword. When the
TPAwants to check the integrity of files containing the specific
keyword, it sends the encrypted keyword as the auditing chal-
lenge to the cloud. According to the secure index, the cloud
finds all of the encrypted files that contain this keyword. Then
he returns them along with the corresponding MAC value to
the TPA. Because the TPA holds the secret key for the MAC
algorithm, it can verify whether this MAC value is valid based
on these received encrypted files. If it is valid, it means all files
containing this keyword are intact. However, in this approach,
the cloud needs to return all MACs and files containing the
queried keyword to the TPA. Assume there isN files that con-
tain the queried keyword in total. It will incurOðNÞ communi-
cation overhead in integrity auditing procedure. In addition,
the TPA has to check the validity of these MACs based on the
OðNÞ received files independently. It will incur OðNÞ compu-
tation overhead in integrity auditing procedure. Obviously,
the data auditing based on the VSE is not efficient, especially
when the number or the size of files containing this keyword is
large. Besides, it inevitable exposes the sensitive information,
like which files contain this queried keyword, to the TPA.
Therefore, this approach is unpractical.

4.2 A Slightly Better Approach

Similarly to the first approach, the user and the TPA also
share one secret key for one MAC algorithm in this
approach. In addition, the cloud stores the encrypted files
and the secure index along with a MAC set. Different from
the first approach, the user sets the encrypted keyword and
the corresponding file identities as the input of the MAC

3778 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

algorithm. When the cloud receives the encrypted keyword,
it first finds the corresponding files according to the secure
index. Then the cloud just returns the corresponding MAC
value and file identities back to the TPA. The TPA verifies
whether the MAC value is valid based on the encrypted
keyword and the returned file identities. If it is valid, the
TPA will know which files contain the queried keyword. By
executing the regular PDP scheme[6], [7], the TPA can ver-
ify whether the cloud intactly stores all of files containing
the queried keyword. Obviously, this approach does not
need the cloud to send all related files to the TPA. So it is
much more efficient than the first approach. However, the
TPA also knows which files contain this queried keyword.
This sensitive information will be fully exposed to the TPA.
So this approach is still practically unacceptable.

High Level Explanation. The reason why the above-men-
tioned approaches expose sensitive information is that, in
regular PDP schemes[6], [7], for each data block cj, the user
uses his secret key x to compute an authenticator sj ¼
ðHðIDjjjÞ � gcjÞx. For each file, the user uploads data blocks
along with authenticators to the cloud. In the auditing
phase, the cloud computes the aggregated authenticator
and the aggregated data block as the auditing proof. Actu-
ally, the hash of the file identity is one key factor of the
aggregated authenticator in the auditing proof. The TPA
verifies the auditing proof with the file identity and the pub-
lic key of the user. Thus, if we utilize the PDP technique
directly in our setting, the TPA must know the correspond-
ing file identities to perform the auditing task. In other
words, the TPA needs to know which files contain the que-
ried keyword. To achieve sensitive information privacy, all
identities of the files containing the queried keyword need
to be hidden in the auditing proof. Meanwhile, the integrity
of all files that contain the queried keyword should be able
to be verified. In order to realize this goal, we design a novel
label called Relation Authentication Label (RAL), and implant
it into the secure index as shown in Fig. 3. We consider to
multiple the regular aggregated authenticator[6] with the
RAL to generate the final aggregated authenticator in our
scheme. In order to hide the identities of files that contain
the queried keyword, we set the aggregated hash inversion
of these identities as one multiplication factor of the RAL.
When the regular aggregated authenticator is multiplied by
the RAL, all file identities could be eliminated from the
auditing proof. The sensitive information privacy can be
achieved by this way. However, if the RAL is only com-
posed by this factor, the proposed scheme will not be secure

against the replace attack [8]. So we set the trapdoor and the
corresponding block number as other two multiplication
factors of the RAL. These two factors along with the aggre-
gated hash inversion of file identities constitute the core fac-
tors in the final RAL. When this designed RAL multiples
the regular aggregated authenticator, file identities could be
eliminated from the auditing proof. Meanwhile, the TPA is
able to verify the integrity of all files containing the queried
keyword based on the trapdoor. More details will be given
in the later section. Generally speaking, the designed RAL is
the core component of the proposed scheme. The RAL can
not only be used to authenticate the relation that files con-
tain the queried keyword, but also is used to eliminate the
sensitive information such as which files and how many
files contain the queried keyword.

4.3 Our Core Scheme

Scheme Details. Fig. 4 shows the process of the proposed
scheme. 1) The user first executes Setup, IndexGen and
AuthGen algorithms to generate the encrypted data block
set, the authenticator set, the secure index. He sends them
to the cloud. 2) The user executes TrapdoorGen algorithm to
generate the search trapdoor, and sends it to the TPA. This
search trapdoor contains the encrypted keyword, which
will be used as one part of the auditing challenge. 3) The
TPA executes ChalGen algorithm to generate the auditing
challenge, and sends it to the cloud. This auditing challenge
includes the search trapdoor which enables the cloud to
find the files. This auditing challenge also designates which
blocks the TPA challenges. 4) The cloud executes ProofGen
to search through the database and finds the corresponding
data blocks and authenticators. Then the cloud computes
the auditing proof and sends it back to the TPA. Finally, the
TPA verifies whether the auditing proof is valid.

Now let us describe the scheme details.

1) SysInið�Þ ! ðpp; x; yÞ
a) Choose the system parameters pp as follows: two

q � order multiplicative cyclic groups G1; G2, a
bilinear map e : G1 �G1 ! G2, two generators
u; g 2 G1, three secure hash functions H1 :
f0; 1g� ! G1; H2 : f0; 1g� ! G1; H3 : f0; 1g� !
G1, a symmetric encryption algorithm Encð�; k0Þ
with key k0, a pseudo random permutation(PRP)
pk1ð�Þ with key k1, and a pseudo random

Fig. 3. Our secure index with RAL.

Fig. 4. The process of the proposed scheme.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3779

function(PRF) fk2ð�Þ with key k2. For simplifica-
tion, we will use pð�Þ to denote pk1ð�Þ and fð�Þ to
denote fk2ð�Þ in the detailed scheme.

b) Randomly choose the secret key for the user
x 2 Z

�
q , and the corresponding public key

y ¼ gx.

2) SetupðF Þ ! ðC;W; V Þ
a) For each file, the user splits it into s blocks, and

encrypts them by the symmetric encryption algo-
rithm (e.g., AES or 3DES).

b) The user extracts all keywords, then builds the
keyword setW .

c) For each keyword wk, the user creates an n� bit
binary string as the index vector vwk

. He initiates
every element in this index vector to 0. For each
file Fi, if it contains keyword wk, the user sets the
i� th bit of the index vector to 1: vwk

½i� ¼ 1.
d) All of these index vectors vwk

compose the index
vector set V ¼ fvw1

; vw2
; . . . ; vwmg.

3) IndexGenðx;W; V Þ ! I
a) For each keyword wk, the user computes pðwkÞ as

the address of each row in the secure index.
b) For each keyword wk, the user encrypts the index

vector evpðwkÞ ¼ vwk
	 fðpðwkÞÞ.

c) For each keyword wk, the user creates an empty
set Swk

¼ ;. For each i 2 ½1; n�, if vwk
½i� ¼ 1, the

user adds this file index i to the set Swk
.

d) For each keyword wk, the user computes the RAL
VpðwkÞ ¼ fVwk;1;Vwk;2; . . . ;Vwk;sg, where Vwk;j ¼
½ðQi2Swk

H1ðIDijjjÞ�1Þ �H3ðjÞ �H2ðpðwkÞjjjÞ�x.
e) The user sets I ¼ fpðwkÞ; evpðwkÞ;VpðwkÞgk¼1;2;...;m.

4) AuthGenðx;CÞ ! F
a) For each encrypted data block cij, the user com-

putes the authenticator sij ¼ ½H1ðIDijjjÞ � ucij �x.
b) The user sets F ¼ fsijgð1 � i � n; 1 � j � sÞ.

5) TrapdoorGenðw0Þ ! Tw0
The user computes the search trapdoor as Tw0 ¼

fpðw0Þ; fðpðw0ÞÞg.
6) ChalGenðTw0 Þ ! Chal

a) The TPA randomly chooses a c-elements subset
Q
 ½1; s�.

b) For each j 2 Q, the TPA randomly chooses vj 2
Z�q .

c) The TPA sets the auditing challenge as Chal ¼
fTw0 ; fj; vjgj2Qg.

7) ProofGenðChal; I; C;FÞ ! Proof
a) The cloud parses the challenge Chal ¼

fTw0 ; fj; vjgj2Qg, where Tw0 ¼ fpðw0Þ; fðpðw0ÞÞg.
b) According to the address pðwkÞ ¼ pðw0Þ, the

cloud finds the corresponding encrypted row
evpðwkÞ and the RAL VpðwkÞ in the secure index.
Then the cloud decrypts the corresponding
encrypted index vector vwk

¼ evpðwkÞ 	 fðpðwkÞÞ.
c) The cloud initiates an empty set Swk

¼ ;. For each
i 2 ½1; n�, if vwk

½i� ¼ 1 , the cloud adds i toSwk
.

d) The cloud computes T ¼Q
i2Swk

Q
j2Q sij

vj �Q
j2Q Vwk;j

vj , m ¼P
i2Swk

P
j2Q cij � vj. The cloud

sets the auditing proof Proof ¼ fT;mg.
8) ProofVerifyðChal; ProofÞ ! f0; 1g

TheTPAchecks thevalidity of the following equation:

eðT;gÞ¼? eðð
Y

j2Q
ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um; yÞ: (1)

If this equation holds, the TPA outputs 1,whichmeans
that the files containing the queried keyword are cor-
rectly stored in the cloud; otherwise, he outputs 0 ,
whichmeans that some files have been tampered.

Algorithm 1. Setup

Input: The file set F .
Output: The encrypted data block set C, the keyword set W ,

the index vector set V , the secret key x and the public key y.
1: for each Fi 2 F ð1 � i � nÞ do
2: Split it into s blocks Fi1; Fi2; . . . ; Fis;
3: for each 1 � j � s do
4: Compute cij ¼ EncðFij; k0Þ;
5: end for
6: end for
7: Set C ¼ fcijgð1 � i � n; 1 � j � sÞ;
8: Extract all keywords, and buildW ;
9: for each wk 2Wð1 � k � mÞ do ;
10: Create an n� bit binary string vwk

;
11: Initiate all elements in vwk

to 0;
12: for each Fi 2 F ð1 � i � nÞ do
13: if Fi contains wk then
14: Set vwk

½i� ¼ 1;
15: end if
16: end for
17: end for
18: Set V ¼ fvw1

; vw2
; . . . ; vwmg;

19: Randomly choose x 2 Z
�
q , and compute y ¼ gx;

20: returnðC;W; V; x; yÞ;

We show an example of the RAL construction in Fig. 5.
Suppose there are three files F1; F2; F3 containing the key-
word w. Each file is encrypted and divided into two blocks.
We use ci1; ci2ði ¼ 1; 2; 3Þ to represent the first and the sec-
ond encrypted data blocks of file Fi. Each encrypted data
block cijði ¼ 1; 2; 3; j ¼ 1; 2Þ is related to an authenticator sij.
We use VpðwÞ ¼ fVw;1;Vw;2g to represent the RAL of key-
word w, where Vw;1 and Vw;2 correspond to the first block
and the second block, respectively.

Note that, if the RAL is multiplied by all of authenticators
of files that contain the keyword w, the file identity embed-
ded in the authenticator could be eliminated. In this case,
Vw;1 � s11 � s21 � s31 ¼ ½H2ðpðwÞjj1Þ �H3ð1Þ � uc11þc21þc31 �x (for
the first block) and Vw;2 � s12 � s22 � s32 ¼
½H2ðpðwÞjj2Þ �H3ð2Þ � uc12þc22þc32 �x (for the second block).

4.4 Discussion

The proposed scheme can be extended to support efficient
dynamic operation. When the user modifies his file, he
needs to update the secure index. The secure index includes
the encrypted index vector and the RAL. It is easy to update
the encrypted index vector, which is similar to other
dynamic searchable encryption(SE) schemes[9], [10], [11].
The RAL generation takes most of the computation over-
head of the secure index generation. However, the user
does not need to re-execute the entire RAL generation when
he adds/deletes/updates his files. Instead, the user only
needs to update the first part ðQi2Swk

H1ðIDijjjÞ�1Þx of the

3780 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

corresponding RAL. Here, we give an example. Suppose
three files F1; F2; F3 with identities ID1; ID2; ID3 contain the
keyword w. The RAL of the keyword is designed as Vw;j ¼
½ðQi2f1;2;3gH1ðIDijjjÞ�1Þ �H3ðjÞ �H2ðpðwÞjjjÞ�x. If the user
adds a file F4 which also contains the keyword w, the new
RALV0w;j can be easily computed based on the old RAL:V0w;j ¼
Vw;j �H1ðID4jjjÞ�x. The deletion/update operation is similar
to the addition operation. The computation overhead is rela-
tively low compared with re-executing the entire RAL genera-
tion. In Section 6,we compare the computation overhead of the
RALupdatewith re-executing the entire RALgeneration.

Algorithm 2. IndexGen

Input: The secret key x, the keyword setW , the index vector set V .
Output: The secure index I.
1: for each wk 2Wð1 � k � mÞ do
2: Extract vwk

from V ;
3: Compute pðwkÞ;
4: Compute evpðwkÞ ¼ vwk

	 fðpðwkÞÞ;
5: Create an empty set Swk

¼ ;;
6: for each i 2 ½1; n� do
7: if vwk

½i� ¼¼ 1 then
8: Add i to set Swk

;
9: end if
10: end for
11: for each j 2 ½1; s� do
12: Compute:

Vwk;j

¼ ½ð
Y

i2Swk

H1ðIDijjjÞ�1Þ �H3ðjÞ �H2ðpðwkÞjjjÞ�x

13: end for
14: Set VpðwkÞ ¼ fVwk;1;Vwk;2; . . . ;Vwk;sg;
15: end for
16: returnI ¼ fpðwkÞ; evpðwkÞ;VpðwkÞgk¼1;2;...;m;

When the user updates files, he also needs to compute
the authenticators of the corresponding blocks and the
authenticated tag. This computation is compatible with
many Dynamic Provable Data Possession (DPDP) schemes,
such as DPDP based on Merkle tree[12], [13], DPDP based
on Oblivious RAM[14], DPDP based on authenticated dic-
tionaries[15], DPDP based on linked table and location
array[16]. Since the data dynamic is not the focus of this
paper, we omit the detailed description and refer readers to
the above-mentioned references for more details.

As we have analyzed previously, the computation com-
plexity and the communication complexity of the data

auditing based on the VSE are both OðNÞ in integrity audit-
ing procedure, where N is the total number of files contain-
ing the queried keyword. In the proposed scheme, the proof
sent from the cloud to the TPA is Proof ¼ fT;mg. It only
incurs Oð1Þ communication overhead in terms of N . There-
fore, the communication complexity of the proposed
scheme is lower compared with that of the data auditing
based on the VSE in integrity auditing procedure. In
addition, the computation complexity for TPA to check the
integrity is also only Oð1Þ. In conclusion, the proposed
scheme outperforms the data auditing based on the VSE
in both communication complexity and computation
complexity.

5 CORRECTNESS AND SECURE ANALYSIS

Theorem 1 (Correctness). If the cloud correctly stores all of
the files that contain the queried keyword, the auditing proof
can pass the verification.

Proof. It is because

eðT; gÞ
¼ eð

Y

i2Swk

Y

j2Q
sij

vj �
Y

j2Q
Vwk;j

vj ; gÞ

¼ eð
Y

i2Swk

Y

j2Q
½H1ðIDijjjÞ � ucij �x�vj �

Y

j2Q
½ð
Y

i2Swk

H1ðIDijjjÞ�1Þ �H3ðjÞ �H2ðpðw0ÞjjjÞ�x�vj ; gÞ

¼ eðð
Y

i2Swk

Y

j2Q
H1ðIDijjjÞvjÞ � ðu

X

i2Swk

X

j2Q
cij � vj

Þ�
Y

j2Q

Y

i2Swk

H1ðIDijjjÞ�vj �
Y

j2Q
H3ðjÞvj �

Y

j2Q
H2ðpðw0ÞjjjÞvj ; gxÞ

¼ eðð
Y

j2Q
ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um; yÞ:

tu

Fig. 5. An example of the RAL construction.

Algorithm 3. ProofGen

Input: The auditing challenge Chal, the secure index I, the
encrypted data block set C, the authenticator set F.

Output: The auditing proof Proof .
1: Extract the auditing challenge Chal ¼ fTw0 ; fj; vjgj2Qg,

where Tw0 ¼ fpðw0Þ; fðpðw0ÞÞg;
2: Search the corresponding row in the secure index, where

pðwkÞ ¼ pðw0Þ;
3: Compute vwk

¼ evpðwkÞ 	 fðpðwkÞÞ;
4: Initiate an empty set: Swk

¼ ;;
5: for each i 2 ½1; n� do
6: if vwk

½i� ¼¼ 1 then
7: Add i to Swk

;
8: end if
9: end for
10: Compute T ¼

Y

i2Swk

Y

j2Q
sij

vj �
Y

j2Q
Vwk;j

vj and m ¼
X

i2Swk

X

j2Q
cij�

vj;
11: return Proof ¼ fT;mg;

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3781

Theorem 2 (Detectability). Assume that the cloud stores
total n data blocks for one file with m tampered blocks. The
TPA randomly selects c blocks to check. The cloud can
detect the cloud’s malicious behavior with the probability of
at least 1� ðn�mn Þc.

Proof. Let X be the random variable denoting the number
of tampered blocks that are sampled. The probability
PDetect is computed as follows:

PDetect ¼ PfX � 1g ¼ 1� PfX ¼ 0g
¼ 1� n�m

n
� n�m� 1

n� 1
� . . . � n�m� cþ 1

n� cþ 1

� 1� ðn�m

n
Þc:

Remark. When only 1 percent files has been tampered,
the probability is higher than 95 percent by setting c ¼
300; or higher than 99 percent by setting c ¼ 460. The
relation between the detectability and the number of
sampling blocks can be found in Ref. [17]. tu

Theorem 3 (Auditing soundness). If the CDH problem in
G1 is hard, the proposed scheme achieves auditing soundness.

Proof.Now,weutilize a series of games to prove that the adver-
sary cannot forge the aggregateddata block and authenticator.

Game0. This game is similar to the game in the
Section 3.4.

Game1. Game1 is as same as Game0, except that the
challenger keeps the record of the auditing proof P ¼
fT;mg. If the adversary submits a forged proof and
passes the verification, but the aggregated authenticator
T � is not in the record list, this game aborts.

Analysis. Assume ðT;mÞ is the valid proof. From the
Equation (1), we know

eðT; gÞ ¼ eððQj2Q ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um; yÞ.
Assume the adversary outputs a forged proof ðT �;m�Þ

and this proof passes the verification. From the Equa-
tion (1), we know

eðT �; gÞ ¼ eðð
Y

j2Q
ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um� ; yÞ:

(2)

Because Game1 aborts, we have m 6¼ m� (Otherwise
T ¼ T �). We define Dm ¼ m� � m. Next, we will show,
if Game1 aborts, the simulator can solve the CDH
problem.

Given g; g@; w 2 G1, the simulator tries to output w@.
The simulator behaves like in Game0, except for the
following:

The simulator randomly selects a;b 2 Z�q and sets u ¼
gawb. The simulator is given g@, and does not know the
secret key @.

For each hash query H1ðIDijjjÞ, the simulator ran-
domly selects rij 2 Z�q and performs random oracle as
H1ðIDijjjÞ ¼ grij

ðgawbÞcij . For each hash query H2ðpðwkÞjjjÞ,
the simulator can get the corresponding file index set
Swk

. Then it randomly selects rkj 2 Z�q and performs ran-

dom oracle as H2ðpðwkÞjjjÞ ¼ grkj

ðgawbÞ
P

i2Swk
cij
. For each

hash query H3ðjÞ, the simulator randomly selects rj 2
Z�q and performs random oracles as H3ðjÞ ¼ grj .

Thus, it can compute the authenticator without know-
ing the secret key @

sij

¼ ½H1ðIDijjjÞ � ucij �x

¼ ½ grij

ðgawbÞcij � ðg
awbÞcij �@

¼ ½grij �@ ¼ ½g@�rij :
Similarly, the simulator can compute the RAL without

knowing the secret key @

Vwk;j

¼ ½ð
Y

i2Swk

H1ðIDijjjÞ�1Þ �H3ðjÞ �H2ðpðwkÞjjjÞ�@

¼ ½ðg
awbÞ

P
i2Swk

cij

g

P
i2Siwk

rij
� grj � grkj

ðgawbÞ
P

i2Swk
cij
�@

¼ ½grkjþrj�
P

i2Swk
rij �@

¼ ½g@ �rkjþrj�
P

i2Swk
rij
:

Now, by dividing Equations (2) by (1), we can get
eðT�T ; gÞ ¼ eðuDm; g@Þ.

It is clear T�
T ¼ ðgawbÞ@�Dm. Thus, we know

w@ ¼ ½T�T � ðg@Þ�a�Dm�
1

b�Dm.
Because b is randomly chosen from Z�q and Dm 6¼ 0,

the probability of b � Dm 6¼ 0 is 1� 1
q . This means that

the simulator could solve the CDH problem if the dif-
ference between the adversary’s probabilities of suc-
cess in Game0 and Game1 is non-negligible.

Game2. Game2 is as same as Game1, with one differ-
ence. If the adversary successfully forges a proof and
passes the verification, but the aggregated data block
m� is not in the record list, Game2 aborts.

Analysis. Suppose the valid auditing proof is ðT;mÞ
and the forged auditing proof is ðT �;m�Þ. According to
Equations (1) and (2), we have

eðT; gÞ ¼ eðð
Y

j2Q
ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um; yÞ

eðT �; gÞ ¼ eðð
Y

j2Q
ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um� ; yÞ:

Next, we will show if Game2 aborts, the simulator can
solve the DL problem.

Given g; w ¼ g@, the simulator tries to output @. The
simulator behaves like in Game1, except for the following:

The simulator randomly selects a;b 2 Z�q and sets
u ¼ gawb.

Because Game2 aborts, we have m 6¼ m�. We define
Dm ¼ m� � m. In Game1, we have showed T ¼ T �. There-
fore, um ¼ um

�
.

3782 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

ðgawbÞm ¼ ðgawbÞm�

) ðgawbÞDm ¼ 1

) ðga � g@�bÞDm ¼ 1

) g�a�Dm ¼ g@�b�Dm

) @ ¼ �a

b
:

As long as b 6¼ 0 (the probability is 1� 1
q), the DL

problem can be solved. This means that if the difference
between the adversary’s probabilities of success in
Game1 and Game2 is non-negligible, the simulator could
solve the DL problem.

The hardness of the CDH problem implies the hard-
ness of the DL problem. Therefore, the difference
between these games is negligible if the CDH problem in
G1 is hard.

Finally, we construct a knowledge extractor to com-
plete this proof. The goal of the knowledge extractor is to
extract cijði 2 Sw; j 2 QÞ. Without loss of generality, we
assume that the challenger challenges jQj blocks and jSwj
files contain the queried keyword. The knowledge
extractor selects jQj � jSwj different coefficients and exe-
cutes jQj � jSwj times challenge on the same auditing chal-
lenge. The knowledge extractor could therefore get
jQj � jSwj independently linear equations. By solving
these equations, the knowledge extractor could extract
cijði 2 Sw; j 2 QÞ. Therefore, we have proven that the if
the auditing proof passes the verification, the proposed
scheme achieves auditing soundness. tu

Theorem 4 (Sensitive information privacy). If the PRP
and PRF are secure, the proposed scheme achieves sensitive
information privacy.

Proof. We first prove that the cloud cannot obtain the sensi-
tive information. Then prove the TPA cannot obtain the
sensitive information.

Simulating C0. Given the leakage function L1, S ran-
domly selects k0 for the CPA-security encryption algo-
rithm. Then he computes cij

0 ¼ Encð0jFijj; k0Þ, and sets
C0 ¼ fcij 0gð1 � i � n; 1 � j � sÞ. Due to the CPA-security
encryption algorithm, C0 and C are indistinguishable
from each other.

Simulating I 0. S randomly selects jwj bits for each
p0ðwkÞ, n bits for each ev0pðwkÞ, jVpðwkÞj bits for each V0pðwkÞ
and sets I 0 ¼ fp0ðwkÞ; ev0pðwkÞ;V

0
pðwkÞgk¼1;2;...;m. Due to the

security of PRP and PRF, I and I 0 are indistinguishable
from each other.

Simulating T 0w0 . If this query has not been queried
before, S randomly selects jw0j bit as p0ðw0Þ, and creates
an n� bit binary string v. Leakage function L2 reveals
the file index set Swk

. For each 1 � i � n, if i 2 Swk
, S sets

v½i� ¼ 1; otherwise, sets v½i� ¼ 0. S computes f 0ðp0ðwÞÞ ¼
v	 ev0pðwÞ. Finally, S returns T 0w0 ¼ fp0ðwÞ; f 0ðp0ðwÞÞg to A.
If this query has been queried before, S returns the corre-
sponding T 0w0 . Due to the security of PRP and PRF, T 0w0
and Tw0 are indistinguishable from each other.

Therefore, A cannot distinguish C0 from C, I 0 from
I, and T 0w0 from Tw0 . That is, jPr½RealAð�Þ ¼ 1� �

Pr½IdealA;Sð�Þ ¼ 1�j � neglð�Þ. We have proved that the
cloud cannot deduce any sensitive information.

Since the cloud stores the secure index, the
encrypted files and search trapdoor, whereas the TPA
only possesses the search trapdoor, the cloud knows
more information than the TPA. It is clear that the
TPA also cannot deduce the relation between the file
and the queried keyword, and the plaintext of files
and the queried keyword.

Now, we show that, from the auditing proof, the TPA
cannot know which files and how many files contain the
queried keyword. From the Equation (1): eðT; gÞ ¼
eððQj2Q ðH3ðjÞ �H2ðpðw0ÞjjjÞÞvjÞ � um; yÞ, the TPA does not
need to use file identities to check this equation. And the
aggregated data block and aggregated authenticator do
not expose the file identity and the number of files
related to the queried keyword. Therefore, the TPA can-
not know which files and how many files contain the
queried keyword. tu

Discussion. Leakage-abuse attack[18], [19], as one kind of
powerful attacks, threatens the security of searchable
encryption. Most searchable encryption schemes leak search
pattern and access pattern. With above leakage informa-
tion and some knowledge of the database, an adversary
could build the co-occurrence matrix to recover the que-
ried keyword. How to defend the leakage-abuse attack is
not the focus of the proposed scheme. Even if this is con-
sidered, it is hard for the TPA to perform the leakage-
abuse attack. In the proposed scheme, the TPA only
knows the encrypted keyword and the auditing proof,
i.e., the aggregated data block and the aggregated
authenticator. So it is unable to get all of the required
leakage information. In this case, the TPA cannot deduce
the plaintext of the queried keyword. However, for the
cloud, it indeed may perform the leakage-abuse attack.
We could apply some selective countermeasures, such as
padding technique[19] to deal with this attack.

6 PERFORMANCE EVALUATION

6.1 Numerical Analysis

We useHashG1
,MulG1

and PowG1
to denote one hash opera-

tion, one multiplication operation and one exponentiation
operation in G1, respectively. We use Pair to denote one
pairing operation. Assume there are n files andm keywords
in total. Each file is divided into s blocks. For simplification,
assume each keyword is related to jSwj files. We neglect the
simple operations like PRP, PRF and XOR. Table 2 shows
the computation overhead in different phases of our pro-
posed scheme. The computation overhead for RAL genera-
tion is m � s � ½ðjSwj þ 2Þ �HashG1

þ ðjSwj þ 1Þ �MulG1
þ PowG1

�.
The computation overhead for authenticator generation is
n � s � ðHashG1

þMulG1
þ PowG1

Þ. The computation over-
head for proof generation is ð2 � c � jSwj þ cÞ � PowG1

. And
the computation overhead for proof verification is
2 � Pairþ 2 � c �HashG1

þ ðcþ 1Þ �MulG1
þ ðcþ 1Þ � PowG1

.

6.2 Experiment Results

We utilize C-programming language, GMP library[20] and
Pairing-Based-Cryptography (PBC) library[21] to simulate

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3783

the proposed scheme. We test our experiment on Ubuntu
16.04 LTS with 1 CPU, 25 GB Storage, and 1 GB RAM.
Since the computation overhead mainly comes from key-
word searching and cloud data auditing, we test the effi-
ciency of them, respectively. In our experiments, we
utilize type-A pairing with 160 bits group order and 512
bits base field order. The length of each element in Z�q is
20 bytes, and the length of each element in G1 is 128
bytes.

1) Evaluation of authenticator generation In the proposed
scheme, each file is composed by multiple data
blocks. The user needs to compute one authenticator
for one data block. We test the authenticator genera-
tion time for different numbers of files, ranging from
100 to 1,000, and different numbers of blocks in each
file, ranging from 100 to 500. As shown in Fig. 6,
when 100 files are about to be uploaded and each
file contains 100 blocks, the user needs 58.9s to
generate these 100*100 authenticators. When 1,000
files are about to be uploaded and each file con-
tains 500 blocks, the user needs 2865s to generate
these 1000*500 authenticators. The average time to
generate one authenticator is 0.0059s. We can
observe that the authenticator generation time is
related to the number of files and the number of
blocks in each file. In reality, the user only needs
to generate authenticators once, and this work can
be done offline.

2) Evaluation of RAL generation For each keyword, the
user needs to compute s RALs, where s is the total
number of blocks in each file. We test the RAL gener-
ation time for different numbers of blocks in each
file, ranging from 100 to 500, and different numbers
of files, ranging from 100 to 1,000. As shown in
Fig. 7, when 100 files contain the keyword and each
file contains 100 blocks, the user needs 27.1s to

generate the RAL. When 1,000 files contain the
keyword and each file contains 500 blocks, the
user needs 1308s to generate the RAL. When 100
files contain the keyword, the average time of
generating one RAL for one block is 0.268s. When
1,000 files contain the keyword, the average time
of generating one RAL for one block is 0.281s. We
can observe that the RAL generation time is
related to the number of files containing the key-
word and the number of blocks in each file. In
reality, the user only needs to generate the RAL
once when he computes the secure index, and
this work can also be done offline.

3) Evaluation of RAL update When the user adds/
deletes/updates files, our scheme achieves nice
efficiency for the RAL update. The main reason is
that the user does not need to re-execute the
entire RAL generation. We test the RAL update
time for different numbers of the affected files,
ranging from 2 to 20. In our test, we assume there
are total 1,000 files. As shown in Fig. 8, when
there are two affected files, the user needs
1301.33s if he re-executes the entire RAL genera-
tion. In contrast, the user only needs 2.51s to
update the RAL in our scheme.

4) Evaluation of proof generation For one queried key-
word, the cloud needs to use all files containing this
keyword to compute the auditing proof. In our test,
there are total 10,000 files in the cloud. We test the
proof generation time for different numbers of chal-
lenged blocks, ranging from 100 to 1,000, and differ-
ent numbers of files that contain the queried
keyword, ranging from 100 to 1,000. As shown in
Fig. 9, when 100 files contain the queried keyword
and the TPA challenges 100 blocks, the cloud needs
2.688s to generate the auditing proof. When 1,000

Fig. 6. The authenticator generation time. Fig. 7. The RAL generation time.

TABLE 2
Computation Overhead

Phase Computation overhead

RAL generation m � s � ½ðjSwj þ 2Þ �HashG1
þ ðjSwj þ 1Þ �MulG1

þ PowG1
�

authenticator generation n � s � ðHashG1
þMulG1

þ PowG1
Þ

proof generation ð2 � c � jSwj þ cÞ � PowG1

proof verification 2 � Pairþ 2 � c �HashG1
þ ðcþ 1Þ �MulG1

þ ðcþ 1Þ � PowG1

3784 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

files contain the queried keyword and the TPA chal-
lenges 1,000 blocks, the cloud needs 241.33s to gener-
ate the auditing proof.

We also compare the search time with the
auditing proof generation time. In this experi-
ment, the TPA challenges 300 blocks. On average,
the cloud needs 0.131s to finds all of files that
contain the queried keyword. As shown in
Fig. 10, when 0.05 percent of the total files contain
the queried keyword, the cloud needs 76.73 per-
cent of the total time to compute the auditing
proof (the aggregated authenticator and the aggre-
gated data block). When 10 percent of the total
files contain the queried keyword, the cloud needs
99.7 percent of the total time to generate the
auditing proof.

5) Evaluation of challenge generation and proof verifica-
tion The TPA needs to generate the auditing

challenge and verify the auditing proof. We test
the challenge generation time and the proof verifi-
cation time for different numbers of challenged
blocks, ranging from 100 to 1,000, and different
numbers of queried keywords. As shown in
Figs. 11 and 12, when challenging 100 blocks and
one keyword, the TPA only needs 0.000054s to
generate the auditing challenge and 0.0085362s to
verify the auditing proof. When challenging 1,000
blocks and 5 keywords, the TPA needs 0.0026s to
generate the auditing challenge and 0.04233s to
verify the auditing proof. We can observe that the
challenge generation time and the proof verifica-
tion time are related to the number of challenged
blocks and the number of queried keywords.

6) The comparison among search, challenge generation and
proof verification We evaluate the scalability and the
practicality of the proposed scheme in a commonly

Fig. 10. The comparison between the search time and proof generation time.

Fig. 8. The RAL update time. Fig. 9. The proof generation time.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3785

used real-world dataset (Enron email dataset[22],
https://www.cs.cmu.edu/enron/) by comparing
search/challenge generation and proof verifica-
tion. This dataset contains 12,000 email files in
total. To evaluate the scalability of the proposed
scheme, we sample different number of files,
ranging from 1,000 to 10,000. As shown in Fig. 13,
when there are 1,000 files, the cloud needs 0.009s
to extract files that contain the queried keyword.
The TPA needs 0.000147s to generate the auditing
challenge and 0.00258s to verify the auditing
proof. When there are 10,000 files, the cloud needs
0.111s to extract files that contain the queried key-
word. The search time is linear to the number of
files. The computational overhead of the TPA is
independent of the number of files. Therefore, the

proposed scheme is practical and can be applied
to large-size data set.

7) Evaluation of the computation and the storage overhead of
the secure index The user needs to generate the secure
index for all files. As shown in Figs. 14 and 15, when
there are 1,000 files, the user needs 1.278s to generate
the secure index, and the size of the secure index is
16.64 MB. When there are 10,000 files, the user needs
30.918s to generate the secure index, and the size of
the secure index is 466.51 MB. We can observe that
the secure index generation time is related to the
number of files.

7 RELATED WORK

Cloud Data Auditing. Provable Data Possession (PDP)[6] and
Proof of Retrievability(POR) [23] are used to check the integ-
rity of users’ data without retrieving all of them. The data
stored in the cloud are often updated, supporting data
dynamic is an essential requirement in PDP/POR. Ateniese
et al. [24] proposed the first dynamic PDP scheme which
supports data deletion and modification. Wang et al. [13]
proposed a fully dynamic PDP scheme based on the Merkle
Hash Tree. This scheme supports all data dynamic opera-
tions including deletion, modification and insertion. Pro-
tecting the privacy is essential for PDP in some scenarios.
The TPA should not obtain the file content or the user iden-
tity because its duty is only to check the integrity of the
cloud file. To prevent the TPA from deducing the file con-
tent, Wang et al. [17] proposed the first privacy-preserving
PDP scheme by utilizing the random-masking technique.

Fig. 13. The computation overhead comparison.

Fig. 14. The secure index generation time.Fig. 11. The challenge generation time.

Fig. 12. The proof verification time. Fig. 15. The size of the secure index.

3786 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

https://www.cs.cmu.edu/enron/

To prevent the TPA from deducing the user identity, Wang
et al. designed two PDP schemes[25], [26] based on ring sig-
nature and group signature. In their schemes, TPA can per-
form the auditing task without knowing the user identity.
In the cloud data sharing scenario, users are often enrolled
or revoked from a group. Wang et al. [27] utilized proxy re-
signature technique to achieve user revocation in PDP.
Once the user is revoked from a group, the authenticators
generated by him should not be valid any more. Zhang et al.
[28] realized more efficient user revocation by updating the
non-revoked users signing key instead of their authentica-
tors. Wanget al. [29] addressed the data transfer problem in
PDP. In their scheme, the data transfer task can be securely
outsourced to the public cloud. Yu et al. [30], [31] addressed
the key-exposure problem in PDP. In their schemes, the
adversary cannot forge any authenticator before or after the
key-exposure period. All above-mentioned schemes are
designed for checking the integrity of the specified file
under the condition that the TPA provides the file name/
identity. Different from the existing schemes, the TPA could
check the integrity of all encrypted cloud files containing
the specific keyword only with the search trapdoor in our
proposed scheme. In other words, this paper initiates the
first study on how to achieve integrity auditing based on
the keyword for encrypted cloud files. In addition, our pro-
posed scheme achieves sensitive information privacy. The
TPA cannot deduce which files and how many files contain-
ing the queried keyword from the auditing proof in our pro-
posed scheme.

Searchable Encryption(SE). Song et al. [32] proposed the
first symmetric searchable encryption with two-layered
encryption structure. However, the search time is linearly
related to the number of files in the cloud. To improve effi-
ciency and achieve data update in SE, Kamara et al. [33]
proposed a dynamic SE scheme based on the inverted
index. This approach can achieve sub-linear search time.
Due to the spelling errors, the keyword queried by the
user may not exactly match the one stored in the cloud. Li
et al. [34] proposed the first fuzzy SE scheme over
encrypted data. Their scheme utilizes edit distance to eval-
uate the similarity between two keywords. In order to
retrieve files in a ranked order, Wang et al. [35] proposed
the first ranked SE scheme. However, the above-mentioned
schemes cannot guarantee the correctness and the com-
pleteness of search results. In other words, the malicious
cloud could just return partial search results which do not
contain all of the required files. Besides, the file contents
can also be tampered. Verifiable Searchable Encryption
(VSE) [36] has been proposed to address these issues. Zhu
et al. [37] proposed the first generic VSE in multi-user
mode. They also applied Merkle Patricia Tree to support
data dynamic. In order to realize the search results verifi-
ability and defend the keyword guessing attack[38], Miao
et al. [39] proposed a verifiable searchable encryption
scheme. They also extended it to support data dynamic,
multi-keyword query and multi-key encryption. Miaoet al.
[40] proposed a VSE scheme based on enhanced vector
commitment. They also extended it to support database
dynamic and conjunctive keyword search. The conjunctive
keyword search scheme proposed by Wang et al. [41] can
achieve the verification of the search result even if this

result is an empty set. Ge et al. [11] designed the Accumu-
lative Authentication Tag(AAT) to achieve dynamic VSE.
Since the AAT is based on symmetric-key cryptography, it
is more efficient than RSA accumulator[10] and bilinear
map accumulator[5]. Data dynamic operations for SE may
lead to some secure issues, such as leakage-abuse attacks
[18], [19]. In this attack scenario, the cloud could deduce
whether the newly added file matches the previously
searched keyword. Forward secure SSE[9] was proposed to
address this security issue. Zhang et al. [42] first considered
the verification for forward secure SSE, and proposed an
efficient forward secure VSE scheme based on multiset
hash functions. Compared with other related works, their
scheme achieves superior efficiency of search and data
update. Li et al. [43] proposed a forward and backward
secure keyword search scheme with flexible keyword
shielding and un-shielding. They provided the formal
security proof for the proposed scheme. Wang et al. [44]
proposed a spatial dynamic searchable encryption scheme.
Besides, they gave an improved scheme to ensure the for-
ward privacy. Li et al. [45] extended the notation of for-
ward privacy, and proposed a new notation called forward
search privacy. It ensures that the query on newly added
files does not leak any information about past queries.

8 DISCUSSION AND FUTURE WORK

Our scheme enables the TPA to audit the integrity of all
encrypted cloud files containing one specific keyword with-
out exposing sensitive information. In the future, the follow-
ing problems can be further explored.

Enriching the Functions. The proposed scheme in this
paper only supports integrity auditing based on one key-
word. In order to enrich the functions, we will further
explore how to enable the TPA to perform the integrity
auditing based on complex query conditions, such as multi-
ple keywords query[12], [40], [46] and the SQL-like query
[47], [48], [49]. Existing approaches of verifiable multiple
keywords search schemes and verifiable rich query schemes
might be good candidates. However, these approaches can-
not be directly applied to the cloud data auditing as they
expose sensitive information to the TPA. Therefore, it is
interesting to design new forms of RAL for supporting com-
plex functions in these scenarios.

Improving Computation and Storage Efficiency. In the pro-
posed scheme, the user needs to compute one RAL for each
keyword and each data block. The cloud also needs to store
all of these RALs along with the secure index. The computa-
tion overhead and storage overhead of the RAL is OðWNÞ,
where W is the number of keywords and N is the number
of data blocks. It is a challenge to further reduce the compu-
tation overhead and the storage overhead to make the com-
plexity independent ofW or N .

Protecting Forward and Backward Privacy. The proposed
scheme supports data dynamic updates. It is efficient for
the user to update the data, the authenticator and the RAL
in this scheme. Note that data dynamics may lead to some
secure issues, such as the leakage-abuse attacks. We do not
consider forward and backward privacy for them in this
paper. It is very valuable to design new schemes to protect
forward and backward privacy.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3787

9 CONCLUSION

In this paper, we address a new problem of how to achieve
cloud data integrity auditing based on the keyword with
sensitive information privacy. We design a new label called
RAL, which is used to not only authenticate the relation that
files contain the queried keyword but also generate the
auditing proof without exposing any identity of file contain-
ing the queried keyword. We prove the security of the pro-
posed scheme and evaluate the practical effectiveness by
comprehensive experiments.

ACKNOWLEDGMENTS

This research was supported in part by the National Natural
Science Foundation of China under Grants 62172245,
61572267, 61941116, 61572086, and 62076042, in part by the
Joint Found of the National Natural Science Foundation of
China under Grant U1905211, in part by the Major Scientific
and Technological Innovation project of Shandong Province
under Grant 2020CXGC010114, in part by the Key Research
and Development Project of Qingdao under Grant 21-1-2-
21-XX, in part by the Sichuan Science and Technology Pro-
gram under Grants 21SYSX0082 and 2017JY0168, and in
part by the ChengDu Science and Technology Program
under Grant 2019-YF05-02028-GX.

REFERENCES

[1] By 2020, there will be 5,200 GB of data for every person on earth.
Accessed: Aug. 2021. [Online]. Available: https://www.
computerworld.com/article/2493701/

[2] X. Ge, J. Yu, C. Hu, H. Zhang, and R. Hao, “Enabling efficient veri-
fiable fuzzy keyword search over encrypted data in cloud
computing,” IEEE Access, vol. 6, pp. 45725–45739, 2018.

[3] R. Curtmola, J. A. Garay, S. Kamara, and R. Ostrovsky,
“Searchable symmetric encryption: Improved definitions and effi-
cient constructions,” J. Comput. Secur., vol. 19, no. 5, pp. 895–934,
2011.

[4] S. Kamara and C. Papamanthou, “Parallel and dynamic search-
able symmetric encryption,” in Proc. Int. Conf. Financial Cryptogra-
phy Data Secur., 2013, pp. 258–274.

[5] W. Sun, X. Liu, W. Lou, Y. T. Hou, and H. Li, “Catch you if you lie
to me: Efficient verifiable conjunctive keyword search over large
dynamic encrypted cloud data,” in Proc. IEEE Conf. Comput. Com-
mun., 2015, pp. 2110–2118.

[6] G. Ateniese et al.“Provable data possession at untrusted stores,” in
Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 598–609.

[7] G. Yang, J. Yu, W. Shen, Q. Su, Z. Fu, and R. Hao, “Enabling pub-
lic auditing for shared data in cloud storage supporting identity
privacy and traceability,” J. Syst. Softw., vol. 113, pp. 130–139,
2016.

[8] Y. Yu, J. Ni, M. H. Au, Y. Mu, B. Wang, and H. Li, “Comments on
a public auditing mechanism for shared cloud data service,” IEEE
Trans. Serv. Comput., vol. 8, no. 6, pp. 998–999, Nov./Dec. 2015.

[9] R. Bost, P.-A. Fouque, and D. Pointcheval, “Verifiable dynamic
symmetric searchable encryption: Optimality and forward
security,” IACR, Lyon, France, Rep. 2016/062, 2016.

[10] X. Zhu, Q. Liu, and G. Wang, “A novel verifiable and dynamic
fuzzy keyword search scheme over encrypted data in cloud
computing,” in Proc. IEEE Trustcom/BigDataSE/ISPA, 2016,
pp. 845–851.

[11] X. Ge et al., “Towards achieving keyword search over dynamic
encrypted cloud data with symmetric-key based verification,”
IEEE Trans. Dependable Secure Comput., vol. 18, no. 1, pp. 490–504,
Jan./Feb. 2021.

[12] J. Mao, Y. Zhang, P. Li, T. Li, Q. Wu, and J. Liu, “A position-aware
merkle tree for dynamic cloud data integrity verification,” Soft
Comput., vol. 21, no. 8, pp. 2151–2164, 2017.

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling pub-
lic verifiability and data dynamics for storage security in
cloud computing,” in Proc. Eur. Symp. Res. Comput. Secur.,
2009, pp. 355–370.

[14] D. Cash, A. K€upç€u, and D. Wichs, “Dynamic proofs of retrievabil-
ity via oblivious RAM,” J. Cryptol., vol. 30, no. 1, pp. 22–57, 2017.

[15] C. C. Erway, A. K€upç€u, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” ACM Trans. Inf. Syst. Secur.,
vol. 17, no. 4, pp. 1–29, 2015.

[16] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An efficient
public auditing protocol with novel dynamic structure for cloud
data,” IEEE Trans. Inf. Forensics Secur., vol. 12, no. 10, pp. 2402–
2415, Oct. 2017.

[17] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving pub-
lic auditing for data storage security in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–9.

[18] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern dis-
closure on searchable encryption: Ramification, attack and miti-
gation,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2012, pp. 1–15.

[19] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-abuse
attacks against searchable encryption,” in Proc. 22nd ACM SIGSAC
Conf. Comput. Commun. Secur., 2015, pp. 668–679.

[20] The GNU multiple precision arithmetic library (GMP). Accessed:
Aug. 2021. [Online]. Available: http://gmplib.org/

[21] B. Lynn, “Pbc library.” Accessed: Aug. 2021. [Online]. Available:
http://crypto.stanford.edu/pbc

[22] Enron email dataset. Accessed: Aug. 2021. [Online]. Available:
https://www.cs.cmu.edu/enron/

[23] H. Shacham and B. Waters, “Compact proofs of retrievability,” in
Proc. Int. Conf. Theory Appl. Cryptol. Inf. Secur., 2008, pp. 90–107.

[24] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proc. 4th Int. Conf.
Secur. Privacy Commun. Netw., 2008, pp. 1–10.

[25] B. Wang, B. Li, and H. Li, “Oruta: Privacy-preserving public
auditing for shared data in the cloud,” IEEE Trans. Cloud Comput.,
vol. 2, no. 1, pp. 43–56, Jan.–Mar. 2014.

[26] B. Wang, B. Li, and H. Li, “Knox: Privacy-preserving auditing for
shared data with large groups in the cloud,” in Proc. Int. Conf.
Appl. Cryptogr. Netw. Secur., 2012, pp. 507–525.

[27] B. Wang, B. Li, and H. Li, “Panda: Public auditing for shared data
with efficient user revocation in the cloud,” IEEE Trans. Serv. Com-
put., vol. 8, no. 1, pp. 92–106, Jan./Feb. 2015.

[28] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling efficient
user revocation in identity-based cloud storage auditing for
shared big data,” IEEE Trans. Dependable Secure Comput., vol. 17,
no. 3, pp. 608–619, May/Jun. 2020.

[29] H. Wang, D. He, A. Fu, Q. Li, and Q. Wang, “Provable data pos-
session with outsourced data transfer,” IEEE Trans. Serv. Comput.,
to be published, doi: 10.1109/TSC.2019.2892095.

[30] J. Yu and H. Wang, “Strong key-exposure resilient auditing for
secure cloud storage,” IEEE Trans. Inf. Forensics Secur., vol. 12,
no. 8, pp. 1931–1940, Aug. 2017.

[31] J. Yu, K. Ren, C. Wang, and V. Varadharajan, “Enabling cloud
storage auditing with key-exposure resistance,” IEEE Trans. Inf.
Forensics Secur., vol. 10, no. 6, pp. 1167–1179, Jun. 2015.

[32] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Proc. IEEE Symp. Secur. Privacy,
2000, pp. 44–55.

[33] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable
symmetric encryption,” in Proc. ACM Conf. Comput. Commun.
Secur., 2012, pp. 965–976.

[34] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy key-
word search over encrypted data in cloud computing,” in Proc.
IEEE INFOCOM, 2010, pp. 1–5.

[35] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked key-
word search over encrypted cloud data,” in Proc. 30th Int. Conf.
Distrib. Comput. Syst., 2010, pp. 253–262.

[36] A. Soleimanian and S. Khazaei, “Publicly verifiable searchable
symmetric encryption based on efficient cryptographic
components,” Des, Codes Cryptogr., vol. 87, no. 1, pp. 123–147,
2019.

[37] J. Zhu, Q. Li, C. Wang, X. Yuan, Q. Wang, and K. Ren, “Enabling
generic, verifiable, and secure data search in cloud services,” IEEE
Trans. Parallel Distrib. Syst., vol. 29, no. 8, pp. 1721–1735, Aug.
2018.

3788 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 19, NO. 6, NOVEMBER/DECEMBER 2022

https://www.computerworld.com/article/2493701/
https://www.computerworld.com/article/2493701/
http://gmplib.org/
http://crypto.stanford.edu/pbc
https://www.cs.cmu.edu/enron/
http://dx.doi.org/10.1109/TSC.2019.2892095

[38] J. W. Byun, H. S. Rhee, H.-A. Park, and D. H. Lee, “Off-line key-
word guessing attacks on recent keyword search schemes over
encrypted data,” in Proc. Workshop Secure Data Manage., 2006,
pp. 75–83.

[39] Y. Miao, Q. Tong, R. Deng, K.-K. R. Choo, X. Liu, and H. Li,
“Verifiable searchable encryption framework against insider key-
word-guessing attack in cloud storage,” IEEE Trans. Cloud Com-
put., to be published, doi: 10.1109/TCC.2020.2989296.

[40] M. Miao, J. Wang, S. Wen, and J. Ma, “Publicly verifiable database
scheme with efficient keyword search,” Inf. Sci., vol. 475, pp. 18–28,
2019.

[41] J. Wang, X. Chen, S.-F. Sun, J. K. Liu, M. H. Au, and Z.-H. Zhan,
“Towards efficient verifiable conjunctive keyword search for large
encrypted database,” in Proc. Eur. Symp. Res. Comput. Secur., 2018,
pp. 83–100.

[42] Z. Zhang, J. Wang, Y. Wang, Y. Su, and X. Chen, “Towards effi-
cient verifiable forward secure searchable symmetric encryption,”
in Proc. Eur. Symp. Res. Comput. Secur., 2019, pp. 304–321.

[43] Z. Li, J. Ma, Y. Miao, X. Liu, and K. K. R. Choo, “Forward and
backward secure keyword search with flexible keyword
shielding,” Inf. Sci., vol. 576, pp. 507–521, 2021.

[44] X. Wang, J. Ma, X. Liu, Y. Miao, and D. Zhu, “Spatial dynamic
searchable encryption with forward security,” in Proc. Int. Conf.
Database Syst. Adv. Appl., 2020, pp. 746–762.

[45] J. Li et al., “Searchable symmetric encryption with forward search
privacy,” IEEE Trans. Dependable Secure Comput., vol. 18, no. 1, pp.
460–474, Jan./Feb. 2021.

[46] J. Li, J. Ma, Y. Miao, Y. Ruikang, X. Liu, and K.-K. R. Choo,
“Practical multi-keyword ranked search with access control over
encrypted cloud data,” IEEE Trans. Cloud Comput., to be pub-
lished, doi: 10.1109/TCC.2020.3024226.

[47] Y. Zhang, J. Katz, and C. Papamanthou, “IntegriDB: Verifiable
SQL for outsourced databases,” in Proc. 22nd ACM SIGSAC Conf.
Comput. Commun. Secur., 2015, pp. 1480–1491.

[48] T. Xiang, X. Li, F. Chen, S. Guo, and Y. Yang, “Processing secure,
verifiable and efficient SQL over outsourced database,” Inf. Sci.,
vol. 348, pp. 163–178, 2016.

[49] Y. Zhang, D. Genkin, J. Katz, D. Papadopoulos, and C. Papaman-
thou, “vSQL: Verifying arbitrary SQL queries over dynamic out-
sourced databases,” in Proc. IEEE Symp. Secur. Privacy, 2017,
pp. 863–880.

Xiang Gao received the BEng degree from the
School of CyberSecurity, Chengdu University of
Information and Technology, in 2018. He is cur-
rently working toward the master’s degree with
Qingdao University. His research interests include
security and application of the blockchain and
other security fields, which are cloud security and
quantum cryptography.

Jia Yu (Member, IEEE) received the BS and MS
degrees from the School of Computer Science
and Technology and the PhD degree from the
Institute of Network Security, Shandong Univer-
sity, China, in 2000, 2003, and 2006, respectively.
Since 2012, he has been a full professor and the
department director of information security with
Qingdao University, China. From 2013 to 2014,
he was a visiting professor with the Department
of Computer Science and Engineering, State Uni-
versity of New York at Buffalo. He has authored or

coauthored more than 150 academic papers in many international jour-
nals and conferences, including the IEEE Transactions on Dependable
and Secure Computing, IEEE Transactions on Information Forensics
and Security, and IEEE Transactions on Service Computing. His
research interests include applied cryptography, cloud computing secu-
rity, big data security, and network security.

Yan Chang received the PhD degree in informa-
tion security from the University of Electronic Sci-
ence and Technology of China in 2016. She is
currently a professor with the School of CyberSe-
curity, Chengdu University of Information Tech-
nology. Her research interests include quantum
information, information security, big data, and
cloud computing.

Huaqun Wang received the BS degree in mathe-
matics education from Shandong Normal Univer-
sity, China, in 1997, the MS degree in applied
mathematics from East China Normal University,
China, in 2000, and the PhD degree in informa-
tion security from the Nanjing University of Posts
and Telecommunications, China, in 2006. He is
currently a professor with the Nanjing University
of Posts and Telecommunications. His research
interests include applied cryptography, network
security, and cloud computing security.

Jianxi Fan received the BS degree in computer
science from Shandong Normal University in
1988, the MS degree in computer science from
Jinan, Shandong University, Jinan, in 1991, and
the PhD degree in computer science from the
City University of Hong Kong, Hong Kong, in
2006. He is currently a professor with the School
of Computer Science and Technology, Soochow
University, Suzhou. From May 2017 to August
2017, he was a visiting scholar with the Depart-
ment of Computer Science, Montclair State Uni-

versity. From May 2012 to August 2012, he was a senior research fellow
with the Department of Computer Science, City University of Hong
Kong. His research interests include parallel and distributed systems,
interconnection architectures, data center networks, and graph theory.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

GAO ETAL.: CHECKING ONLY WHEN IT IS NECESSARY: ENABLING INTEGRITYAUDITING BASED ON THE KEYWORDWITH... 3789

http://dx.doi.org/10.1109/TCC.2020.2989296
http://dx.doi.org/10.1109/TCC.2020.3024226

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

