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Abstract

This paper de�nes conditions for a Signal Transi-
tion Graph to be implemented by an asynchronous cir-
cuit. A hierarchy of the implementability classes is
presented. Our main concern is the implementability
of the speci�cation under the restricted input-output
interface between the design and the environment, i.e.,
when no additional interface signals are allowed to
be added to the design. We develop algorithms and
present experimental results of using BDD-traversal
for checking STG implementability. These results
demonstrate e�ciency of the symbolic approach and
show a way of improving existing tools for STG-based
asynchronous circuit design.

1 Introduction

Synthesis frameworks for asynchronous circuits
based on STGs (see, e.g., [2, 6]) involve methods for
STG analysis and veri�cation. The main problem
here is to check if a given STG is implementable by
an asynchronous circuit. Although the existing lit-
erature de�nes such conditions (namely, Consistency
and Complete State Coding [2, 6, 10]), they do not
reect requirements to the interface between the cir-
cuit and its environment . Another shortcoming of the
existing analysis methods is that they are based on
explicit representation of the State Graph.Recent de-
velopements in using symbolic techniques for reach-
able state space traversal, based on Binary Decision
Diagrams(BDDs) [1, 9], can be applied to avoid state
space explosion.
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This paper tackles both these problems. First, we
de�ne STG implementability classes and the prop-
erties that must be checked in order to ensure that
a speed-independent circuit is derivable from the
STG (Sections 2 and 3). Secondly, we develop algo-
rithms and present experimental results of using BDD-
traversal approach for STG implementability veri�ca-
tion (Sections 4 to 6). These results demonstrate e�-
ciency of the symbolic approach.

2 STG implementability

Let N = hP; T; F;m0i be a Petri net (PN) [7],
where P is the set of places, T is the set of transitions,
F � (P � T ) [ (T � P ) is the ow relation, and m0

is the initial marking. A transition t 2 T is enabled
at marking m1 if all its input places are marked. An
enabled transition t may �re, producing a new mark-
ing m2 with one less token in each input place and one
more token in each output place (m1 ! m2). The sets
of input and output places of transition t are denoted
by �t and t�. Similar, �p and p� stand for the sets
of input and output transitions of place p. The set of
all markings reachable in N from the initial marking
m0 is called Reachability Set. Its graphical represen-
tation is called Reachability Graph. An example of
PN is shown in Figure 1,a.

Signal Transition Graphs (STGs) are PNs whose
transitions are interpreted as signal transitions. A sig-
nal transition can be represented by aj+ (or aj�) for
the j-th transition of signal a from 0 to 1 (or from 1
to 0), while aj� is a generic name for either a rising or
falling transition of a.

De�nition 2.1 [2] An STG D is a triple hN;SA; �i,
where N is a PN, SA is the set of signals that is a
union of three non-intersecting subsets: SI ; SO and
SH of input, output and internal (hidden) signals re-
spectively, and � : T ! SA�f1; 2; . . .g�f+;�g is the
labelling function.
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Figure 1: A two-user mutual exclusion element.

An STG example, which is the interpretation of
PN from Figure 1,a, is shown in Figure 1,b. STGs are
often shown in their shorthand form, where transitions
are denoted by their labels (instead of bars) and places
with only one input and output transition are omitted.

The behavior of an STG and a circuit can be com-
pared on the basis of the languages they realize.

De�nition 2.2 (Strong Equivalence) Circuit C
with a set of signals A is strongly equivalent to STG
D if: (1) there is one-to-one correspondence between
signals A of C and SA of D, and (2) for each trace of
signal transitions in C there is an equivalent trace of
transitions in D and vice versa.

If we somehow manage to check that the STG can
have a strongly equivalent circuit, then the logic equa-
tions for all gates of the circuit can be derived by the
STG in a conventional way [2, 3, 10]. This is why
the STG that has a strongly equivalent implementa-
tion will be called gate implementable. If there is no
circuit that is strongly equivalent to the STG speci�-
cation, it might be that an equivalent circuit can be
derived with some additional signals.

De�nition 2.3 (Projection) For a trace q over the
set of signals SA the projection of q on the set of sig-
nals SB; SB � SA, is a sequence q # SB which is
obtained from q by deleting all transitions whose sig-
nals are not in SB.

A projection of a set of traces of D (L(D)) on the
set of signals SB is the set of projections of all traces
from L(D) on SB (denoted by L(D) # SB).

De�nition 2.4 (Trace equivalence) Two STGs
D1 and D2 with signal sets SA1 and SA2 are trace
equivalent by the set of signals SB, SB � SA1 \ SA2,
if L(D1) # SB � L(D2) # SB.

Both STG and circuit behavior can be character-
ized by their trace sets. Thus, one can compare in
this way two di�erent STGs, or two circuits, or an
STG and a circuit.

De�nition 2.4 restricts the behavior of observable
signals (set SB); no change in their ordering is al-
lowed. For speci�cations (circuits) with external in-
puts and outputs an equivalence that preserves the
input-output (I/O) interface is needed.

De�nition 2.5 (I/O equivalence) Two STGs D1
and D2 with sets of signals SA1 and SA2 are I/O equiv-
alent by the set of signals SB, SB � SA1 \ SA2, if (1)
they are trace equivalent by SB and (2) for the input
and output signals of D1 and D2: SI1 = SI2 � SB
and SO1 = SO2 � SB.

Trace equivalence and I/O equivalence address dif-
ferent design tasks and conditions. If the task is to
implement a module, then typically the I/O interface
is �xed for the module and it is necessary to use the
I/O equivalence between the implementation and the
original speci�cation. However, it is often up to the
designer to decide how to decompose the module into
smaller blocks and what kind of interface to choose
for these blocks. For the module decomposition, only
trace equivalence may need to be ensured. In this pa-
per we are primarily interested in the conditions of
implementability when it is not allowed to change the
interface.

We have therefore distinguished the following (in
the descending order of hierarchy) levels in the STG
implementability:

De�nition 2.6 An STG D is called: (1) SI-
implementable if there is a logic circuit C trace equiv-
alent to D; (2) Input/Output SI-implementable (we
will simply denote it I/O-implementable) if there is
a logic circuit C I/O equivalent to D; (3) Gate-
implementable if there is a logic circuit C strongly
equivalent to D.

3 Properties of STGs

Our check of STG implementability will be based
on the BDD-based symbolic traversal of the reachable
set of states [1, 9]. This helps to avoid or to mitigate
state explosion.

SG is a directed graph whose vertices correspond to
the markings of the Reachability Graph. An SG ver-
tex is labeled with a boolean vector s = hs1; . . . ; sni,
representing the value of the STG signals (n is the
number of signals in the STG). This vector is called a
state. Two states s1 and s2 corresponding to markings
m1 and m2 are connected with an edge in the SG if
m2 is reachable from m1 by the �ring of some event

a� of the STG (s1
ai�! s2). This transition ai� is called

enabled in state s1. Signal a is called enabled in state
s if some transition ai� is enabled in s, otherwise a is
called stable or disabled.

In general, several states in the SG may corre-
spond to one marking. Therefore, �rst the full state
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Figure 2: State models

graph [11] is build. Each vertex in such a graph is la-
belled by a pair (marking, state). The SG is then ob-
tained by retaining only the state component in each
vertex label. Figure 2,a-c illustrates the three types of
state models: the reachability graph, the state graph
and the full state graph for the mutual exclusion ele-
ment.

3.1 Boundedness and consistency

The behavior of the circuit must be �nite. This
is guaranteed by boundedness of the underlying Petri
net. A PN (STG) is called k-bounded if for every reach-
able marking the number of tokens in any place is not
greater than k. A PN (STG) is called bounded if there
is such a �nite k for which it is k-bounded, and if
k = 1, then the PN (STG) is called safe. The STG
shown in Figure 1,b is safe.

Not every STG can be associated with a process
of switching the circuit gates. Let us assume, for ex-
ample, that the following sequence is feasible in an
STG: b1+; a+; b2+; . . .. After �ring b1+ signal b must
be at logical 1, and no correct interpretation can be
suggested to the following transition b2+. Such incor-
rectness can be formalized in the SG terms by state
assignment consistency .

De�nition 3.1 An SG has a consistent state assign-
ment (we call such an SG consistent) i� for each pair
of states s1 and s2 connected with the edge (s1 ! s2)
the following conditions are met: (1) if the edge is la-
beled by a+ transition, then signal a is equal to 0 in
s1 and to 1 in s2; (2) if the edge is labeled by a� tran-
sition, then signal a is equal to 1 in s1 and to 0 in s2;
(3) in all other cases the value of signal a in s1 and
s2 is the same.

An STGD is SI-implementable only if it is bounded
and its SG is consistent[2, 5]. The speci�c feature
of speed-independent implementation is captured by
persistency .

3.2 Persistency

Persistency means that if a circuit signal is enabled
it has to �re independently from the �ring of other
signals. However, one should distinguish between in-
put and non-input signals. For inputs, which are con-
trolled by the environment, it is possible to have a
non-deterministic choice, which is represented in STG
and SG models by conicts, i.e., disabling of one input
signal by another input signal. Such conicts are al-
ways interpreted as choice and therefore do not lead to
hazardous behavior. For non-input signals, which are
produced by circuit gates, signal transition disabling
may lead to a hazardous spike at the output of the
gate, making the circuit behavior dependent on the
gate delays. In the case phrased as \input is disabled
by the output", we assume that these two signals are
controlled independently, one by the environment and
the other by the circuit. If the environment is ready to
change the input while the circuit is ready to change
the output of a gate, then these two processes, un-
der a speed-independent interaction, cannot inuence
each other. Therefore this is also a potential source of
hazards and delay-dependence.

De�nition 3.2 SG G is persistent if: (1) any non-
input signal cannot be disabled by another signal1 and
(2) any input signal cannot be disabled by a non-input
signal.

The following proposition (similar to the one proved
in [4]) shows that persistency is a necessary condition
for the SI-implementability of STGs.

Proposition 3.1 An STG is I/O-implementable only
if the corresponding SG is persistent.

Let us re�ne the potential sources of persistency vio-
lation.

De�nition 3.3 (1) Transition ti is non-persistent in
a PN N if ti enabled in some reachable marking m
becomes disabled after the �ring of another transition
tj enabled in m. Non-persistency of ti with respect to
tj is also called a direct conict between ti and tj. (2)
Signal a is non-persistent in an STG D if a is enabled
in some reachable state s of the corresponding SG and
it becomes disabled after the �ring of another signal b
also enabled in s.

Signal persistency and transition persistency are
closely related. Clearly, the only source of non-
persistency of a signal a is the non-persistency of
some transition labelled with ai�. Yet not any non-
persistency of ai� leads to the violation of persistency
by signal a. In Figure 3,a transitions labelled with a1+

1To deal with non-deterministic circuits (like arbiters) we
can soften the requirement and allow the disabling of non-input
signals in arbitration points.



and b2+ are both non-persistent. However, signals a
and b are persistent in the corresponding SG in Figure
3,c. Although the �ring of, e.g., a1+ disables b2+ it
also enables transition b1+. So, both before and after
the �ring of a1+, signal b remains enabled. By the
trace equivalence (De�nition 2.4) such a behavior of
signals a and b is equivalent to the concurrent �ring of
a+ and b+[6]. Therefore, both STG D1 and D2 have
the same SG (Figure 3,c). One can conclude that for
signal b the conict of the transition b2+ is "fake".
Fake conicts are discussed further in Section 3.5.
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Figure 3: Transition and signal non-persistency

3.3 Complete state coding

SG descriptions are convenient for the derivation of
the logic functions of signals.

Unfortunately, this procedure is not always immedi-
ately possible even for �nite, consistent and persistent
SGs. The problem is with the state encoding, which
may sometimes de�ne the on- and o�-sets of the logic
functions [2, 3, 6] not uniquely.

De�nition 3.4 A state graph is said to satisfy the
Complete State Coding requirement if and only if (1)
each state has a unique binary code, or (2) for pairs
of states that have identical binary codes, the set of
enabled non-input signals is identical.

The CSC requirement is the necessary condition
for the gate implementabilty. It is also the su�cient
condition for the implementation on complex gates[2].
Given an STG speci�cation that does not obey the
CSC requirement, the following question arises: Is it
possible to equivalently transform this speci�cation to
another STG for which the CSC requirement is met
and therefore it is gate implementable? For the SI-
implementability when it is allowed to change the in-
terface of the design the answer to the question is pos-
itive, and any of the known methods can be employed
to insert additional signals into the STG [3, 10, 6].
However, for I/O-implementability with the �xed in-
terface of the design CSC-violations can be classi-
�ed into reducible and irreducible. Reducible CSC-
violations can be solved by adding new non-input sig-
nals, irreducible violations require changes in the in-
terface between the circuit and the environment.

3.4 CSC reducibility

With every sequence q feasible in SG we will as-
sociate the unbalanced set of q that contains all the
signals for which the numbers of their + and � tran-
sitions in q are not equal.

De�nition 3.5 (1) An SG is called deterministic
with respect to signal transition a� if for any state

s there is at most one state s1 such that s
a�
! s1.

The SG is deterministic if it is deterministic for all
signal transitions. (2) An SG is called commutative
with respect to signal transitions a� and b� if for any

states s; s1; s2; s3; s4 such that s
a�
! s1

b�
! s3 and

s
b�
! s2

a�
! s4, s3 is equal to s4. The SG is com-

mutative if it is commutative for all pairs of signal
transitions. (3) An SG has mutually complementary
input sequences if there is a state s which gives rise to
two distinct �nite sequences of input transitions which
have the same unbalanced sets and which lead to two
di�erent states.

It might be shown that a consistent and persistent
SG of a bounded STG is CSC-reducible if it is deter-
ministic, commutative and free from mutually comple-
mentary input sequences. The following proposition
shows the list of properties necessary and su�cient
for the I/O-implementability of STGs.

Proposition 3.2 An STG is I/O-implementable i�
it is bounded and its SG is consistent, persistent and
CSC-reducible.

Obviously, if an STG has a SG that obeys CSC
requirement, then the STG is gate-implementable.

3.5 Fake conicts

In this section we demonstrate another property of
STG, of a well-formedness type, which can be helpful
in two ways. Firstly, it will provide a useful mechanism
for performing e�cient veri�cation of commutativity
and persistency within the BDD-framework, where the
SG is not available in its explicit form. Secondly, it
can assist the designer in optimising the initial STG
description.

De�nition 3.6 (Fake conict) [5] A direct conict
between two signal transitions ai� and bj� is called
fake if the �ring of one of them does not disable the
signal of the other.

Figure 4 shows two types of fake conicts: asym-
metric and symmetric. Obviously, if the STG has
a commutative SG, then each symmetric fake con-
ict must correspond to the commutative subgraphs
of the STG and the SG, and can therefore be always
transformed to the equivalent parallel subgraphs of the



a)

m

m m

mm

2

*a

*b

*b

*a

i

r

1

43

j

k

m

m m

mm

2

*a

*b

*b

*a

i

r

b)

3 4

1

k

j

Figure 4: Fake conicts

STG and SG as exempli�ed in Figure 3. Asymmet-
ric fake conicts involving at least one non-input sig-
nal always contradict one of the persistency conditions
in De�nition 3.2 and therefore lead to the violations
of SI-implementability. Asymmetric fake conicts be-
tween two input signals are not dangerous, since they
are interpreted as a choice between two alternative
traces.

An STG is called fake-free STG if there are no sym-
metric fake conicts and there are no asymmetric fake
conicts involving a non-input signal. The following
properties [5] illustrate use of fake conicts: (1) If an
STG has the persistent and commutative SG, then it
can always be transformed to the equivalent fake-free
STG. (2) A fake-free STG is commutative. (3) A fake-
free STG has a persistent SG i� all transitions labelled
with non-input signals are persistent.

Therefore, one can either exclude fake conicts by
an equivalent transformation of the STG or the STG
(and its SG) is not persistent and hence not I/O-
implementable. Therefore, in the analysis of imple-
mentability we always reject STG speci�cations with
symmetric fake conicts and non-input asymmetric
fake conicts. Fake conicts can be analyzed by the
structure of the STG and that is much simpler than
the check for commutativity.

4 Modeling Petri nets and STGs with
logic functions

Given an n-variable logic function f : Bn ! B, the
functions fxi = f(x1; . . . ; xi�1; 1; xi+1; . . . ; xn) and
fx0

i
= f(x1; . . . ; xi�1; 0; xi+1; . . . ; xn) are called the

positive and negative cofactors of f with respect to
xi. The de�nition of cofactor can be extended to cubes
(sets of literals). The existential abstraction of f with
respect to xi is de�ned as: 9xif = fxi + fx0

i
.

Let N = hP; T; F;m0i be a safe Petri net and MP

the set of all markings of N (n = jP j; jMP j = 2n).
A marking can be represented by a boolean vec-
tor m = (p1; . . . ; pn), where pi = 1 (pi = 0) de-
notes that pi is marked (not marked) 2. Each set of

2Unsafe k-bounded places can be represented by several
boolean variables [9].

markings M 2 2MP has a characteristic logic func-
tion �M : Bn ! B, that equals 1 for those ver-
tices that correspond to markings in M . For exam-
ple, given the Petri net depicted in Figure 1,a , the
characteristic function of the set of markings M =

f(0,1,0,0,1,0,0,0,0), (0,1,1,0,1,0,0,0,0), (1,1,0,0,1,0,0,0,0),

(1,1,1,0,1,0,0,0,0), (1,1,1,1,1,0,0,0,0) g is calculated as
the disjunction of boolean vectors m 2 M . The re-
sulting function is �M = p1p4p

0

5
p0
6
p0
7
p0
8
(p0p2 + p0

3
).

The transition function of a Petri net is a function
�N : 2MP � T �! 2MP ; that transforms, for each
transition, a set of markings M1 into a new set of
markings M2 as follows: M2 = �N (M1; t) = fm2 2

MP : 9m1 2 M1;m1

t
! m2g. Computation of the

transition function can be e�ciently implemented by
using the topological information of the PN. Let us
present the characteristic function of some important
sets related to a transition t 2 T :

E(t) =
^
pi2�t

pi (t enabled),

ASM(t) =
^
pi2t

�

pi (all successors marked),

NPM(t) =
^
pi2�t

p0i (no predecessor marked),

NSM(t) =
^
pi2t�

p0i (no successor marked).

Given these characteristic functions, the transition
function can be computed as follows:

�N (M; t) = (ME(t)
�NPM(t))NSM(t) �ASM(t):

Assume that in the example of Figure 1,we calcu-
lateM1 = �N (M; t1) given the setM = p0p1p

0

2
(p5p

0

6
+

p0
5
p6) + p0

1
p3p5p

0

6
p0
7
: First, ME(t1)

(cofactor of M

with respect to E(t1) = p1) selects those markings
in which t1 is enabled and removes its predecessor
places from the characteristic function (ME(t1)

=

p0p
0

2
(p5p

0

6
+p0

5
p6)). Then the product with NPM(t1) =

p0
1
eliminates the tokens from the predecessor places

(ME(t1)
� NPM(t1) = p0p

0

1
p0
2
(p5p

0

6
+ p0

5
p6)). Next,

the cofactor with respect to NSM(t1) = p0
2

re-
moves all the successor places, obtaining (ME(t1)

�

NPM(t1))NSM(t1)
= p0p

0

1
(p5p

0

6
+ p0

5
p6). Finally, the

product with ASM(t1) = p2 adds a token in all the
successor places of t1 (M1 = p0p

0

1
p2(p5p

0

6
+ p0

5
p6)).

Let D = hN;SA; �i be an STG with N as underly-
ing Petri net. Let G be the SG corresponding to the
STG D, and C the set of labels (state codes) of the
states of G. Since there is a correspondence between
markings of N and states of G, we represent the full
state of the STG by the vector y = (m; s), where m
is a marking of N and s the state code of the corre-
sponding state in G, respectively.

The transition function can now be extended for
STGs as a function �D : 2(MP�C) � T �! 2(MP�C).



For a set of full states MF , �D is de�ned as follows:

�D(MF ; t) =

�
(�N (MF ; t))a0 � a if �(t) = ai+
(�N (MF ; t))a � a

0 if �(t) = ai�

5 Veri�cation of implementability con-
ditions

STG implementability properties can be veri�ed by
calculating all reachable markings (states) of the STG.
Given the initial marking m0 of N and the initial val-
ues of the signals s0, the set of states of an STG can
be calculated by using symbolic traversal techniques,
similar to those used for the veri�cation of �nite state
machines.

Figure 5 describes an algorithm for symbolic traver-
sal. It starts from an initial full state (m0; s0). For
each outermost iteration, all transitions of the Petri
net are visited and �red from all the new states found
so far. The algorithm halts when a �xed point is
reached (no new states are generated).

traverse STG (D) f
Reached = From = f(m0; s0)g;
repeat

for each t 2 T do
To = �D( From; t);
From = From [ To;

endfor
New = From� Reached;
Reached = Reached [ New;
From = New;

until ( New = ;);
return Reached; /* The set of reachable states of D */
g

Figure 5: Algorithm for symbolic traversal of an STG

5.1 Boundedness and consistency

The check that an STG (PN) is k-bounded or safe
can be done within the BDD-framework by means of
the technique described in [9].

Verifying that the STG is consistent can be done
during the traversal, by checking the consistency of
the new generated states. We �rst de�ne the following
characteristic function:

E(a�) =
_

t:�(t)=a�

E(t) (a� is enabled)

The characteristic function of the states with in-
consistent assignment is derived according to De�ni-
tion 3.1:

Inconsistent(a+) = E(a+) � a(a+ enabled and a = 1)

Inconsistent(a�) = E(a�) � a0(a� enabled and a = 0)

Inconsistent(a) = Inconsistent(a+) + Inconsistent(a�)

Inconsistent(D) =
_

a2SA

Inconsistent(a)

Let us call R(D) the set of reachable states (markings
and binary codes) of the STG D. D is inconsistent if
R(D)\ Inconsistent(D) 6= ;.

An additional problem may appear in case the state
assignment of the initial marking is unknown. A simple
solution for that is to initially assign a \don't care" value
for all signals (or equivalently, to not encode signals in the
initial marking). As soon as a marking with some ai+
enabled is generated, all reachable markings obtained so
far are encoded with a = 0 (similarly for ai�).

5.2 Persistency

A transition can only be non-persistent if some of its in-
put places is a conict place (more than one predecessor).
For some classes of Petri nets persistency is guaranteed by
the structure of the net, e.g. marked graphs are always
persistent since all places have only one successor transi-
tion [7].

An algorithm to check transition persistency is shown
in Figure 6(a). Only pairs (ti; tj) of transitions with some
common predecessor place are analyzed. Let R(N) be the
set of reachable markings ofN . The set of markings with ti
enabled are calculated. Next, the set of markings reachable
in one step by �ring some transition tj 6= ti are obtained.
If ti is not enabled in any of those markings, then ti is
not persistent. A similar algorithm to check the signal
persistency is given in Fig. 6(b).

5.3 Complete State Coding

The CSC requirement can be checked for each non-
input signal by de�ning the following characteristic func-
tions:

ER(a+) = 9P (R(D) � E(a+))

ER(a�) = 9P (R(D) � E(a�))

QR(a+) = 9P (R(D) � a� E(a�))

QR(a�) = 9P
�
R(D) � a0 � E(a+)

�

ER(a�) is the set of binary codes that correspond to
states in which some ai� is enabled (a set of excitation
regions). It is obtained by abstracting the places (9P )
from the states of the excitation region. QR(a+) (a set of
quiescent regions) is the set of binary codes that correspond
to states in which a = 1 but a� is not enabled (similarly
for QR(a�)).

The CSC requirement for non-input signal a can now
be checked as follows [8]:

CSC(a) = (ER(a+)\QR(a�) = ;)^(ER(a�)\QR(a+) = ;)



transition persistency (N) f
for each p 2 P , jp�j > 1 do

for each ti 2 p� do
Enabled = R(N) � E(ti);
for each tj 2 p�; ti 6= tj do

if (�N( Enabled; tj) \E(ti)
0 6= ;)

error (\ti disabled by tj");
end for

end for
end for

g

(a)

signal persistency (N) f
for each p 2 P , jp�j > 1 do

for each ti 2 p� do
Enabled = R(N) � E(ti);
for each tj 2 p�; ti 6= tj do

/* Let �(ti) = ai� and �(tj) = bj� */
if (�N( Enabled; tj) \ E(a�)0 6= ;)
error (\a� disabled by b�");

end for
end for

end for
g

(b)

Figure 6: Algorithms to verify persistency

CSC(D) =
^

a2SO[SH

CSC(a)

The CSC-irreducibility check can draw upon the results
of the above CSC analysis. To check the existence of mu-
tually complementary input sequences, we can proceed for
each non-input in the following way:

Let CONT (a) be the set of contradictory states for non-
input a, de�ned by CONT (a) = (ER(a+) \ QR(a�)) [
(ER(a�) \ QR(a+)). We �rst take all the states in
(QR(a+)[QR(a�))\CONT (a), and then traverse the net
backward with \frozen" non-inputs (i.e., �ring only input
signals) until the �xed point is reached. Then the for-
ward traversal with frozen non-input signals is performed
from the set of states obtained by the backward traver-
sal. As a result, the set ReachedFrozen is obtained. If
ReachedFrozen\ (ER(a�) [ ER(a+)) \ CONT (a) 6= ;,
then there is a CSC problem for a with a mutually com-
plementary input sequences.

The set of states violating nondeterminism for signal
change a� is trivially de�ned by:S

ti;tj2T; �(ti)=�(tj )=a�
E(ti) \E(tj).

Instead of the relatively complex commutativity check,
which must be performed individually for each state with
more than one enabled signal, we check the freedom from
the fake conicts.

5.4 Fake conicts

One can simplify the check of both SG commutativity
(another case for CSC-irreducibility) and persistency by
checking for fake-freedom and transition persistency. An
outline of the procedure which determines if there is any
fake conict in an STG D (N is the underlying PN) with
respect to a signal transition ti is as follows:

We start with the set of reachable states in which ti is
enabled: Enabled = R(N) \ E(ti). Then for each tj ; tk 2
T such that 9p 2 P : ti; tj 2 p�; ti 6= tj ; tk 6= ti; tk 6=
tj ; �(tk) = �(ti) = a�, we check if the set of states reached
from Enabled by �ring tj contains at least one such state
that enables tk, which is labelled with a� as ti (formally,
if �N(Enabled; tj) \ E(tk) 6= ;). If all these checks return
false, the STG is fake-free with respect to ti. The check
for symmetric and asymmetric fake conicts is a simple
modi�cation of this basic technique.

6 Experimental results

Several examples have been used to evaluate the ef-
�ciency of the proposed algorithms. Most examples are
scalable, in such a way that the number of states of the
system can be exponentially increased by iteratively re-
peating a basic pattern. Despite the regularity of these
scalable examples, we have found that BDDs may have
an exponential size if appropriate heuristics for variable
ordering are not used.

Table 1 shows the obtained results. CPU time for
each algorithm is presented. First, STG traversal and
consistent state assignment are executed simultaneously
(T+C). Next, non-input persistence (NI-p) and commu-
tativity (Com) are veri�ed by using the set of reachable
states. Finally, CSC is veri�ed. Since the master-read and
Muller's pipeline examples are marked graphs (no conict
places), the CPU time to check persistency and commu-
tativity is negligible. The BDD sizes reported in Table 1
correspond to the size of the Reached set in the traversal
algorithm. The number of variables of the BDD is the
number of places plus the number of signals. The results
show how STGs with a high degree of parallelism and an
extremely vast state space can be veri�ed in moderate CPU
times.

7 Conclusion

We have presented formal conditions for an STG to be
implemented by a speed-independent circuit under three
di�erent notions of behavioral equivalence. The most prac-
tical one is Input-Output implementability, which takes
into account speci�c requirements about the interface be-
tween the circuit and its environment. This is reected in
the notions of persistency and CSC-reducibility. Consis-
tency is also de�ned in a more general form than before
{ for a full state graph, thus covering the case when one
marking of an STG may correspond to several di�erent
states.

We have developed and implemented algorithms for
checking these properties using symbolic rather than tradi-



# of # of # of BDD size CPU (seconds)
Example n places signals states peak �nal T+C NI-p CSC Total

master-read - 36 13 8932 437 225 1 0 0 1

n dining 10 90 30 6:0� 107 2134 913 34 3 14 51

philosophers 20 180 60 3:7� 1015 8557 2019 765 142 18 927
30 270 90 2:2� 1023 28002 3381 3296 551 45 3897

n-stage 30 120 30 6:0� 107 7897 4784 132 0 38 170

Muller's 45 180 45 6:9� 1011 23590 10634 740 0 120 860
pipeline 60 240 60 8:4� 1015 53446 18788 3210 0 315 3525

n-user 20 81 40 2:2� 107 1688 1688 9 2 2 13

DME 40 161 80 4:5� 1013 6568 6568 82 17 16 117
arbiter 60 241 120 7:0� 1019 14648 14648 286 56 56 403

Table 1: Experimental results

tional explicit state-enumeration techniques. Such an ap-
proach generates and explores the set of reachable states
in the form of their boolean characteristic functions rep-
resented by BDDs. Experimental results show that this
method greatly reduces time spent on STG veri�cation,
thus improving the overall performance of the STG-based
synthesis process.
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