
Checking System Rules Using System-Specific,

Programmer-Written Compiler Extensions

Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem*

Computer Systems Laboratory

Stanford University

Stanford, CA 94305, U.S.A.

Abstract

Systems software such as OS kernels, embedded sys-

tems, and libraries must obey many rules for both

correctness and performance. Common examples in-

clude "accesses to variable A must be guarded by

lock B," "system calls must check user pointers for

validity before using them," and "message handlers

should free their buffers as quickly as possible to al-

low greater parallelism." Unfortunately, adherence

to these rules is largely unchecked.

This paper attacks this problem by showing how

system implementors can use meta-level compilation

(MC) to write simple, system-specific compiler exten-

sions that automatically check their code for rule vio-

lations. By melding domain-specific knowledge with

the automatic machinery of compilers, MC brings the

benefits of language-level checking and optimizing to

the higher, "meta" level of the systems implemented

in these languages. This paper demonstrates the ef-

fectiveness of the MC approach by applying it to four

complex, real systems: Linux, OpenBSD, the Xok

exokernel, and the FLASH machine's embedded soft-

ware. MC extensions found roughly 500 errors in

these systems and led to numerous kernel patches.

Most extensions were less than a hundred lines of

code and written by implementors who had a limited

understanding of the systems checked.

1 Introduction

Systems software must obey many rules such as "check

user permissions before modifying kernel data struc-

tures," "for speed, enforce mutual exclusion with spin

locks rather than disabling interrupts," and "message

handlers must free their buffer before completing."

•This reseaxch was supported in part by DARPA contract
MDA904-98-C-A933 and by a Terman Fellowship.

DISTRIBUTION STATEMEMT A
Approved for Public Release

Distribution Unlimited

Code that does not obey these rules can degrade per-

formance or crash the system.

There are several methods to find violations of

system rules. A rigorous way is to build an abstract

specification of the code and then use model check-

ers [23, 32] or theorem provers/checkers [2, 11, 25] to

check that the specification is internally consistent.

When applicable, formal verification finds errors that

are difficult to detect by other means. However, spec-

ifications are difl[icult and costly to construct. Fur-

ther, specifications do not necessarily mirror the code

they abstract and, in practice, suffer from missing fea-

tures and over-simplifications. While recent work has

begun attacking these problems [6,14], it is extremely

rare for software to be verified.

The most common method used to detect rule vio-

lations is testing. Testing is simpler than verification.

It also avoids the mirroring problems of formal veri-

fication by working with actual code rather than an

abstraction of it. However, testing is dynamic, which

has numerous disadvantages. First, the number of

execution paths typically grows exponentially with

code size. Thorough, precise testing requires writing

many test cases to exercise these paths and drive the

system into error states. The effort required to cre-

ate these tests, and the time it takes to run them,

scales with the amount of code. As a result, real sys-

tems have many paths that are rarely or never hit by

testing and errors that manifest themselves only af-

ter days of continuous execution. Further, finding the

cause of a test failure can be difficult, especially when

the effect is a delayed system crash. Finally, testing

requires running the tested code, which can create

significant practical problems. For example, testing

all device drivers in an OS requires acquiring possibly

hundreds or thousands of devices and understanding

how to thoroughly exercise them.

Another common method to detect rule violations

is manual inspection. This method has the strength

that it can consider all semantic levels and adapt to

ad hoc coding conventions and system rules. Unfor-

tunately, many systems have millions of lines of code

20040130 232

with deep, complex code paths. Reasoning about

a single path can take minutes or sometimes, when

dealing with concurrency, hours. Further, the relia-

bility of manual inspection is erratic.

These methods leave implementors in an unfor-

tunate situation. Verification is impractical for most

systems. Testing misses many cases and makes di-

agnosis difficult. Manual inspection is unreliable and

tedious. One possible alternative is to use static com-

piler analysis to find rule violations. Unlike verifica-

tion, compilers work with the code itself, removing

the need to write and maintain a specification. Un-

like testing, static analysis can examine all execution

paths for errors, even in code that cannot be conve-

niently executed. Further, a compiler analysis pass

reduces the need to construct numerous test cases

and scales from a single function to an entire system

with little increase in manual effort.

Compilers can be used to enforce systems rules

because many rules have a straightforward mapping

to program source. Rule violations can be found by

checking when source operations do not make sense

at an abstract level. For example, ordering rules such

as "interrupts must be enabled after being disabled"

reduce to observing the order of function calls or id-

iomatic sequences of statements (in this case, a call

to a disable interrupt function must be followed by a

re-enable call).

The main barrier to a compiler checking or opti-

mizing at this level is that while it must have a pre-

cise understanding of the semantics of its input code,

it typically has no idea of the "meta" semantics of

the software system this code constructs. Thus, it

cannot check many properties inexpressible (or just

not expressed) in terms of the underlying language's

type system. This leaves an unfortunate dichotomy.

Implementors understand the semantics of the sys-

tem operations they build and use but do not have

the mechanisms to check or exploit these semantics

automatically. Compilers have the machinery to do

so, but their domain ignorance prevents them from

exploiting it.

This paper shows how to automatically check sys-

tems rules using meta-level compilation (MC). MC

attacks this problem by making it easy for implemen-

tors to extend compilers with lightweight, system-

specific checkers and optimizers. Because these ex-

tensions can be written by system implementors them-

selves, they can take into account the ad hoc (some-

times bizarre) semantics of a system. Because they

are compiler based, they also get the benefits of au-

tomatic static analysis.

In our MC system, implementors write extensions

in a high-level state-machine language, metal. These

extensions are dynamically linked into our extensible

compiler, xg++, and applied down all flow paths in

all functions in the program source input. They use

language-based patterns to recognize operations that

they care about. Then, when the input code matches

these patterns, they detect rule violations by tran-

sitioning between states that allow or disallow other

operations.

This paper's primary contribution is its demon-

stration that MC is a general, effective approach for

finding system errors. Our most important results

are:

1. MC checkers find serious errors in complex, real

systems code. We present a series of exten-

sions that found roughly 500 errors in four sys-

tems: the Linux 2.3.99 kernel, OpenBSD, the

Xok exokernel [16], and the FLASH machine's

embedded cache controller code [20]. Many er-

rors were the worst type of systems bugs: those

that crash the system, but only after it has been

running continuously for days.

2. MC optimizers discover system-level opportu-

nities that are difficult to find with manual in-

spection. While the main focus of this paper

is error checking, MC extensions can also be

used for optimization. Section 8 describes three

FLASH-specific, MC optimizers that found hun-

dreds of system-level optimization opportuni-

ties.

3. MC extensions are simple. The extensions men-

tioned above are typically less than a hundred

lines of code.

A practical result of our experience with MC is that

the majority of our extensions were written by pro-

grammers who had only a passing famiUarity with the

systems that they checked. Although writing code

that obeys system rules can be quite difficult, these

rules are easy to express. Thus, writing checkers for

many of them is relatively straightforward.

This paper is laid out as follows. Section 2 dis-

cusses related work. Section 3 gives an overview of

MC and the system we use to implement it. Sec-

tion 4 applies the approach to the C assert macro

and shows that even in such a limited domain, MC

provides non-trivial benefits. Section 5 shows how

to use MC to enforce ordering constraints such as

checking that kernels verify user pointers before using

them. Section 6 extends this to global, system-wide

constraints. Section 7 is a more detailed case study in

how we used MC to check Linux locking and interrupt

disabling/re-enabling disciplines. Section 8 describes

our FLASH optimizers, and Section 9 concludes.

2 Related Work

We proposed the initial idea of MC in [9] and pro-

vided a simple system, magik (based on the Ice ANSI

C compiler [12]), for using it. While the original pa-

per had many examples, it provided no experimental

evaluation. This paper provides a more developed

view of MC, a significantly easier-to-use and more

powerful framework for building extensions, and an

experimental demonstration of its effectiveness. Con-

currently with this paper, we presented a detailed

case study of applying MC to the FLASH system [4].

The 8 compiler extensions presented in that paper

discovered 34 errors in FLASH code that could po-

tentially crash the machine, such as message handlers

that lost or double freed hardware message buffers

and buffer race conditions. This paper's main differ-

ence is its demonstration that MC is a general tech-

nique by applying it to a variety of systems. Because

of this broader scope, it lacks the detail in [4], but

finds roughly a factor of ten more errors.

Below, we compare our work to efforts in high-

level compilation, verification, and extensible com-

pilers.

Higher-level compilation. Many projects have

hard wired application-level information in compil-

ers. These projects include: compiler-directed man-

agement of I/O [24]; the ERASER dynamic race de-

tection checker [30]; ParaSoft's Insure-f-l- [19], which

can check for Unix system call errors; the use of static

analysis to check for security errors in privileged pro-

grams [1]; and the GNU compilers' -Wall option,

which warns about dangerous functions and question-

able programming practices. Related to the checkers

in this paper, Microsoft has an internal tool for find-

ing a fixed set of coding violations in Windows device

drivers [27] such as errors in handhng 64-bit code and

missing user pointer validity checks.

These projects use compiler support to analyze

specific problems, whereas MC explicitly argues for

the general use of compilers to check and optimize

systems and provides an extensible framework for do-

ing so. This extensibility enables detection of rule vi-

olations that are impossible to find without system-

specific knowledge.

Systems for finding software errors. Most

approaches to statically finding software errors cen-

ter around either formal verification (as discussed in

Section 1) or strong type checking.

Verification uses stronger analysis than MC ex-

tensions. However, MC extensions appear to be more

generally effective. To the best of our knowledge, ver-

ification papers tend to find a small number of errors

(typically 0-2), whereas the MC checkers in this paper

found hundreds. Verification's lower bug counts seem

largely due to the difficulty in writing specifications,

which scales with code size. As a consequence, only

small pieces of code are verified. In contrast, because

MC operates directly on source code, it (like tradi-

tional compiler analyses) applies as easily to millions

of lines of code as it does to only a few.

Two recent strong-typing systems are the extended

static type checking (ESC) project [8] and Intrinsa's

PREfix [15]. Both of these systems use stronger anal-

yses than our approach. However, they only check for

a fixed set of low-level errors (e.g., buffer overruns and

null pointer references). Their lack of extensibihty

means that, with the exception of ESC's support for

finding some class of race conditions, neither system

can find the system-level errors that MC can detect.

LCLint [10] statically checks programmer source

annotations to detect coding errors and abstraction

barrier violations. Like ESC and Intrinsa, LCLint

is not extensible, which prevents it from finding the

errors that MC can find. Further, the source an-

notations that LCLint requires scale with code size,

significantly increasing the manual effort needed to

apply it.
Extensible compilation. There have been a

number of "open compiler" systems that allow pro-

grammers to add analysis routines, usually modeled

as extensions, that traverse the compiler's abstract

syntax tree. These include Lord's ctool [22], which

allows scheme extensions to walk over an abstract

syntax tree for C, and Crew's Prolog-based AST-

LOG [7], also used for C.

Lamping et al. [21] and Kiczales et al. [17] argue

for pushing domain-specific information into compi-

lation. They use meta-object protocols (MOPs) to

allow programs to be augmented with a "meta" part

that controls the base [17]. Such protocols are typi-

cally dynamic and have fairly limited analysis abili-

ties. Shigeru Chiba's Open C++ [3] provides a static

MOP that allows users to extend the compilation pro-

cess.

The extensions in these systems are mainly lim-

ited to syntax-based tree traversal or transformation

and do not have data flow information. As a re-

sult, they seem to be both less powerful than MC

extensions and more difficult to use. Our current,

language-based approach is a dramatic improvement

over our previous tree-based systems: extensions are

2-4 times smaller, have less bugs, and handle more

cases. Further, to the best of our knowledge, ctool,

ASTLOG, and Open C++ provide no experimental re-

sults, making it difficult to evaluate their effective-

ness.

At a lower-level, the ATOM object code modifi-

cation system [31] gives users the ability to modify

object code in a clean, simple manner. By focusing

on machine code, ATOM can be used in more situa-

tions than MC, which requires source code. However,

while dynamic testing schemes [13, 30] are well served

by object-level modifications, it would be difficult to

perform our static checks without the semantic infor-

mation available in the compiler.

Concurrently with our original work [9], Kiczales

et al. [18] proposed "aspect oriented programming"

(AOP) as a way of combining code that manages

"aspects," such as synchronization, with code that

needs them. AOP has the advantage of being inte-

grated within a traditional language framework. It

has the disadvantage that aspects have more limited

scope than MC extensions, which survey the entire

system as well as check rules difficult to enforce with

an AOP framework (e.g., preventing kernel code from

using floating point). Further, because AOP requires

source modifications, retro-fitting it on the systems

we check would be non-trivial.

{ #include "linnx-includes.h" }
sm check.interrupts {

// Variables
// used in patterns
dec! {. unsigned } flags;

// Patterns
// to specify enable/disable ftmctions.

pat enable = { stiO; }
I { restore_flags(flags); } ;

pat disable = { cliO; };

// States
// The first state is the initial state.

is_enabled: disable ==> is.disabled

I enable ==> -C errC'double enable"); }

is_disabled: enable ==> is_enabled

I disable ==> { errC'double disable"); }
// Special pattern that matches when the SM

// hits the end of any path in this state.

I end_of_path ==>
{ err("exiting w/intr disabled!"); >

3 Meta-level Compilation

Many systems constraints describe legal orderings of

operations or specific contexts in which these oper-

ations can or cannot occur. Since the actions rele-

vant to these rules are visible in program source, an

MC compiler extension can check them by searching

for the corresponding operations and verifying that

they obey the given ordering and/or contextual re-

strictions. Table 1 gives a representative set of rule

"templates" that can be checked in this manner along

with examples. Many system rules that roughly fol-

low these templates can be checked automatically.

For example, an MC extension to enforce the con-

textual rule, "for speed, if a shared variable is not

modified, protect it with read locks," can search for

each write-lock critical section, examine all variable

uses, and, if no stores occur to protected variables,

demote the locks or suggest alternative usage.

3.1 Language Overview

In our implementation of MC, compiler extensions

are written in a high-level, state-machine language,

metal [5]. These extensions are dynamically linked

into our extensible compiler, xg++(\iSS,eA on the GNU

g++ compiler). After xg++ translates each input func-

tion into its internal representation, the extensions

are applied down every possible execution path in

that function. The state machine part of the lan-

guage can be viewed as syntactically similar to a

"yacc" specification. Typically, SMs use patterns

Figure 1: A metal SM to detect (1) when interrupts

disabled using cli are not re-enabled using either sti

or restoreJlags and (2) duplicate enable/disable

calls.

to search for interesting source code features, which,

when matched, cause transitions between states. Pat-

terns are written in an extended version of the base

language {C++), and can match almost arbitrary

language constructs such as declarations, expressions,

and statements. Expressing patterns in the base lan-

guage makes them both flexible and easy to use, since

they closely mirror the source constructs they de-

scribe.

Figure 1 shows a stripped-down metal extension

for Linux that checks that disabled interrupts are re-

enabled or restored to their initial state upon exit-

ing a function. Interrupts are disabled by calUng the

cli() procedure; they are enabled by calling sti()

or restored using restorejflags(flags), where the

flags variable holds the interrupt state before the

cliO was issued. Conceptually, the extension finds

violations by checking that each call to disable in-

terrupts has a matching enable call on all outgoing

paths. As refinements, the extension warns of du-

plicate calls to these functions or non-sequitur calls

(e.g., re-enabling without disabling). A more com-

plete version of this checker, described in Section 7,

found 82 errors in Linux code.

The extension tracks the interrupt status using

Rule template

"Never/always

doX"

"Do X rather

than Y"

"Always do X

before/after Y"

"Never do X be-

fore/after Y"

"In situation X,

do (not do) Y"

"In situation X,

do Y rather than

Z"

Examples

"Do not use floating point in the kernel." {§ 4.3) "Do not allocate large variables

on the 6K byte kernel stack." (§ 4.3) "Do not send more than two messages per

virtual network lane." "Allocate as much storage as an object needs." (§ 5.2)

"Use memory mapped I/O rather than copying." "Avoid globally disabhng

interrupts."
"Check user pointers before using them in the kernel." (§ 5.1) "Handle operations

that can fail (e.g., memory, disk block, virtual interrupt allocation)." (§ 5.2)

"Re-enable interrupts after disabling them." (§ 7) "Release locks after acquiring

them." (§ 7) "Check user permissions before modifying kernel data structures."

"Do not acquire lock A before B." "Do not use memory that has been freed." (§ 5.2)

"Do not (deallocate an object, acquire/release a lock) twice." (§ 5.2 § 7) "Do not

increment a module's reference count after calling a function that can sleep." (§ 6.3)

"Protect all variable mutations with write locks." "If a system call fails, reverse all

side-effect operations (deallocate memory, disk blocks, pages, unincrement reference

counters)." (§ 5.2 § 6.3) "To avoid deadlock, while interrupts are disabled, do not

call functions that can sleep." (§ 6.2)

"If a variable is not modified, protect it with read locks." "If code does not share

data with interrupt handlers, then use spin locks rather than the more expensive

interrupt disabling." "To save an instruction when setting a message opcode, xor

in the new and old opcode rather than using assignment." (§ 8)

Table 1: Sample system rule templates and examples. Checkers for the rule are denoted by section number.

/* From Linux 2.3.99 drivers/block/raidB.c */
static struct buffer_head *
get.free.buffer(struct stripe.head *sh,

int b.size) {.
struct buffer.head *bh;
unsigned long flags;

savG.flags(flags);

cliO;
if ((bh = sh->buffer.pool) == NULL)

return NULL;
sh->buffer.pool = bh->b.nGxt;

bh->b.size = b.size;

restore.flags(flags);

return bh;

}

Figure 2: Example code from the Linux 2.3.99 Raid

5 driver illustrating a real error caught by the exten-

sion. The SM will be applied down both paths in

this function. The path ending with a return of bh is

well formed and will be accepted. The path ending

with the return of NULL is not, and will get a warning

about not re-enabling interrupts.

two states, is.enabled and is.disabled. SMs start

in the state mentioned in the first transition defi-

nition (here, is-enabled). Each state has a set of

rules specifying a pattern, an optional state transi-

tion, and an optional action. Actions can be arbi-

trary C-l—I- code. For a given state, metal checks

pattern rules in lexical order. If any code matches

the specified patterns, metal processes this matching

code, sets the state to the new state (the token af-

ter the ==> operator), and executes the action. In

this example, is.enabled has two rules. The first,

actionless rule searches for functions that disable in-

terrupts using the disable pattern and transitions to

the is.disabled state. The second rule searches for

calls to functions that enable interrupts and gives a

warning. Since it does not specify a transition state,

the SM remains in the is .enabled state. If no pat-

tern matches, the SM remains in the same state and

continues down the current code path. The flags

variable is a wild card that matches any expression

of type unsigned. When it is matched, metal will put

the matching expression in flag, which can then be

used in an action. We use this feature in an extension

discussed in Section 4.

To run this SM, it is first compiled with mcc,

our metal compiler. It is then dynamically linked

into xg++ using a compile-time, command-line flag.

When run on the Linux "RAID 5" driver buffer allo-

cation code in Figure 2, it is pushed down both paths

in the function. The first path returns NULL when

the buffer pool is empty (i.e., when the if statement

fails); the other returns a buffer on successful alloca-

tion. The first path fails to re-enable interrupts, and

this error ^ is caught and reported by the extension.

One way to get a feel for how costly it would be to

manually perform the check our SM does automati-

cally is that even when we showed an experienced

Linux programmer the exact error in Figure 2, it took

him over 20 minutes to examine a single call chain out

of the nine leading to this function. Performing sim-

ilar analysis for the other hundreds of thousands of

lines of driver and kernel code seems impractical.

3.2 Practical issues

Metal SMs can specify whether they should be ap-

plied either down all paths (i.e., fiow-sensitive) or lin-

early through the code (i.e., flow-insensitive). A sim-

ple implementation of flow-sensitive SMs could take

exponential time in some cases. We use aggressive

caching to prune redundant code paths where SM

instances follow paths that join (e.g., if statements,

loops) and reach the join point in the same state. Our

caching is based on the fact that a deterministic SM

applied to the same input in the same internal state

must compute the same result. The system represents

the state of an SM as a vector holding the value of

its variables. For each node in the input flow-graph,

it records the set of states in which it has been vis-

ited. If an SM arrives at a node in the same state as

a previous instance, the system prunes it.

While caching was originally motivated by speed,

perhaps its most important feature is that it provides

a clean framework for computing loop "fixed points"

transparently. When an SM has exhausted the set of

states reachable within the loop (typically with two

iterations), metal automatically stops traversing the

loop. This fixed-point behavior depends on the SM

having a finite (and small) number of states. We do

not currently enforce this restriction.

The current xg++ system does not integrate global

analysis with the SM framework. Instead, it pro-

vides a library of routines to emit client-annotated

flow graphs to a file, which can then be read and tra-

versed. Section 6 gives an example of how we used

this framework to compute the transitive closure of

all possibly-sleeping functions. We are integrating

these two passes.

^Amusingly, this interrupt disable bug would be masked
by an immediate kernel segmentation fault since callers of
this function dereference the returned pointer without checking
whether the allocation succeeded.

3.3 Caveats

Most of our extensions are checkers rather than veri-

fiers: they find bugs, but do not guarantee their ab-

sence. For example, their ignorance of aliases pre-

vents them from asserting that many actions "can-

not happen." In general, many compiler problems

are undecidable, which places hard limits on the ef-

fectiveness of static analysis. Despite these limita-

tions, as our results show, MC extensions are quite

effective. We are currently investigating how to turn

some classes of checkers into verifiers.

We mainly check systems we did not build. As

a result, some rule violations we found might not be

bugs because the code could use a non-obvious system

feature that works correctly in a specific situation.

We countered this danger in two ways. First, we sent

our error logs to the system implementors of Linux,

FLASH, and Xok for confirmation. However, while

we got feedback on many errors, their sheer number

meant that many did not receive careful examina-

tion. Second, we conservatively did not count many

cases that were difficult to reason about. While our

results may still contain mis-diagnoses, we would be

surprised if these caused more than a few percentage

points difference.

Several of our checkers produce a number of false

positives (in the worst case, in Section 7, up to three

per error). These are due to the Umitations of both

static analysis and our checkers, which primarily use

simple local analyses. Usually these numbers can

be reduced significantly by adding some amount of

global analysis or system-specific knowledge. In al-

most all cases, each false positive can be suppressed

with a single source annotation. Extensions can pro-

vide annotations by supplying a set of reserved func-

tions that clients call to indicate that a specific source-

level warning should be suppressed. As a refinement,

checkers can detect bogus or erroneous annotations

by warning when they are not needed.

Basing our MC system on a C-l—I- compiler has

caused difficulties when applying it to Linux and Xok.

These systems aggressively assume C's more relaxed

type system and use GNU extensions that are illegal

in g++. Thus, while in theory MC can be applied

to a system transparently, we had to modify Xok and'

Linux to remove GNU C constructs that are illegal in

C-l—1-. We also modified the g++ front-end to relax its

type checking. To avoid this labor for other systems,

we are currently finishing a gcc-based implementa-

tion of xg++. More generally, since the metal lan-

guage has been designed to be shielded from both the

underlying language and compiler, we plan to port it

other languages and other compilers.

The remainder of this paper describes the exten-

sions we implemented using metal and xg++ and the

results of applying the concept of meta-level compi-

lation to real systems.

4 A Simple Meta-language

The C assert macro takes a single condition as its ar-

gument, checks this condition at runtime, and aborts

execution if the condition is false. This macro defines

one of the simplest meta-languages possible: it has

no state and a single operation. This section shows

how MC can help even such simple interfaces by pre-

senting two extensions that check the following two

assertion invariants:

1. Assertions should not have non-debugging side-

effects. Frequently, assert is used only for de-

velopment and turned off in production code. If

an assert condition has important side-effects,

these will disappear and the program will be-

have incorrectly.

2. Assertion conditions should not fail. Program-

mers use assertions to check for conditions that

should not happen. Any code path leading to

an assertion that causes its boolean expression

to fail is probably a bug.

4.1 Checking assertion side-effects

Figure 3 presents a metal checker that inspects as-

sertion expressions for side-effects. The directive,

"flow_insensitive," tells metal to apply the exten-

sion linearly over input functions rather than down

all paths, improving speed and error reporting (since

there will be exactly one message per violation). The

SM begins in the initial state, start, and uses the

literal metal pattern "{assert (expr);}" to find all

assert uses. ^ On each match, metal stores the

assert expression in the variable, expr. It then

runs start's action, which uses the metal procedure

mgk_exprjrecurse to recursively apply the SM to

the expression in expr in the in_assert state. The

in_assert state uses metals generic type "any" to

match assignments, and pointer increments and decre-

ments of any type. Note that the assignment operator

will also detect uses of C's infix operators (e.g., +=,

-=, etc.). The extension matches any function call

with any set of arguments using the extended types

■^ Since patterns can match nearly arbitrary C code, it does
not matter if assert is a function or a macro; we have modified
the pre-processor to ignore line and file directives.

{ #include <assert.h> }

// Apply SM ignoring control flow

sm Assert flow_insensitive {

// Match expressions of "any" type

decl { any } expr. x, y, z;

// Used in combination to match all

// calls with any arguments

decl { any_call } any_fcall;

decl { any.args } args;

// Find all assert calls. Then apply

// SM to "expr" in state "in.assert."

start: { assert(expr); } ==>

{ mgk_expr_recurse(expr, in_assert); } ;

// Find all side-effects

in_assert:

// Match all calls

{ any_fcall(eirgs) } ==>

{ err("function call"); }

// Match any assignment (including

// the operators +=, -=, etc.)

I •[X = y)■ ==> { err("assignment"); }

// Match all increments and decrements

// —z and ++Z ommited for brevity

I i Z++ } ==> { err("post-increment"); }

I { z— } ==> { err("post-decrement"); } ;

}

Figure 3: A metal SM that warns of side-effects in

assert uses.

any-call and any_args in combination. To assist de-

velopers in writing extensions, metal provides a set of

generic types for matching different classes of types

(e.g., scalars, pointers, floats), and different program-

ming constructs (e.g., case labels, indirections).
When apphed to Xok's ExOS library operating

system, this 25 line extension found 16 violations
in 199 assert uses. Two were false positives trig-
gered by debugging functions. These could be sup-
pressed by wrapping such calls in a diflFerently named,
unchecked assertion macro. The remaining fourteen
cases were errors in crucial system code that would
function incorrectly if the assertion was removed. The
underlying cause of these errors was assert's use as
shorthand for checking the result of possibly-failing
operations such as insertion of page table entries and
deallocation of shared memory regions. A typical ex-
ample is the following snippet from the ExOS "mmap"
code to insert a page table entry:

/* libexos/os/mmap.c:mmap_fault_handler:410 */
assert(_exos_self.insert_pte(0, PG_PI

PG_U|PG_W, PGROUNDDOWN(va), 0, NULL) == 0);

The effect of removing the assert condition (and hence

these calls) would be mysterious virtual memory er-

rors.

4.2 Checking assertions statically

Assertions specify conditions that the programmer

believes must hold. Without MC, compilers are obliv-

ious to this fact, so assert checks can only occur dy-

namically. With MC, it is possible to find errors by

evaluating these conditions statically, thereby quickly

and precisely finding errors.

We wrote such an extension on top of xg++. At a

high level, it uses xg++'s dataflow routines to track

the values of scalar variables. At each assert use, it

evaluates the assertion expression against these known

set of values. If the expression could fail, it emits a

warning. Currently, xg++ only performs primitive

analysis that tracks the set of constant assignments

to scalar variables on a given path. The set of possi-

ble values for a variable is then just the union of con-

stant assignments to that variable before it is used.

If any non-constant assignments occur, the value is

considered "unknown." Returning the set of possi-

ble values allows the effectiveness of the checker to

transparently increase as our analysis in xg++ be-

comes more powerful. As a practical refinement, we

eliminate a large class of false positives by ignoring

assertions of the constant "0" (which always fails)

since this is an idiomatic method for programmers to

terminate execution in "impossible" situations.

When applied to the FLASH cache coherence code

(discussed more in Section 8) the 100 line extension

found five errors that could have crashed the system.

These errors underscore the value of static evalua-

tion, since they were in code that had been heavily

tested for over five years. They had been missed be-

cause the length and complexity of typical FLASH

code paths caused them to only occur sporadically.

This complexity also makes manual detection of er-

rors difficult. On one path, the assignment and the

assertion that it violated were 300 lines apart and

separated by 20 if statements, 6 else clauses, and 10

conditional compilation directives. Another case beat

this by having 21 if statements, 4 else clauses, and 29

conditional compilations! Even given the exact situ-

ation that leads to the error, inspecting such paths is

mind-numbing.

4.3 Discussion

Library implementations cannot inspect the context

in which they are used or how they are invoked. MC

can be used to attack these blindnesses. Our first ex-

tension used MC to to detect illegal actions in assert

uses, something that an assert implementation can-

not otherwise do either dynamically or statically. Our

second extension used context knowledge to push dy-

namically evaluated conditions to compile time. A

similar approach can be used to make certain dy-

namic error checks static or to improve performance

by allowing implementations to specialize themselves

to a given context, such as a memory allocator that

generates specialized inline allocations for constant

size allocation requests.

The restriction on side-effects in assertion condi-

tions is a miniature example of a more general pat-

tern of "language subsetting," where systems impose

an execution context more restrictive than the base

language in which code is written. We have built two

other extensions that enforce system-specific execu-

tion restrictions. The first warns when kernel code

uses floating point. It found one case where a Linux

graphics driver assumes that floating point calcula-

tions will be evaluated at compile time. Using a

compiler other than gcc or lower optimization lev-

els could violate this assumption. The second checks

for stack overflow. It found 10 places where Linux

code allocated variables larger than 3K on the 6K

kernel stack, and numerous IK or larger allocations.

Most of these led to patches by kernel maintainers.

It also found a similar case in Xok where an inno-

cent looking stack-allocated structure turned out to

be over 8K bytes.

In addition to checking, systems can use restric-

tion checkers for optimization by detecting when an

application's actions are more limited than the gen-

eral case. For example, a threads package can use

smaller stack sizes than the default if it can derive an

upper bound on stack usage.

5 Temporal Orderings

Many system operations must (or must not) happen

in sequence. Sequencing rules are well-suited for com-

piler checking since sequences are frequently encoded

as literal procedure calls in code. This allows a metal

extension to find violations by searching for opera-

tions and transitioning to states that allow, disallow,

or require other operations. This section discusses

two such extensions. The first enforces an "X be-

fore Y" rule that system calls properly check applica-

tion pointers passed to them for validity before using

them. The second checks that code obeys a set of or-

dering rules for memory allocation and deallocation.

5.1 Checking copyin/copyout

Most operating systems guard against application cor-

ruption of kernel memory by, in part, using special

routines to check system call input pointers and to

move data between user and kernel space. We present

an MC extension that finds errors in such code by

finding paths where an application pointer is used be-

fore passing through such routines. At each system

call definition, the extension uses a special metal pat-

tern to find every pointer parameter, which it binds

to a tainted state. (The use of per-variable state

differs from the previous checkers that used a single,

global state per path.) The only legal operations on

a tainted variable are being (1) killed by an assign-

ment or (2) passed as an argument to functions ex-

pecting tainted inputs (e.g, data movement routines

or output functions such as kprintf). All other uses

will be signaled as an error.
We tailored a version of this checker for the Xok

exokernel code. It detects which procedures are sys-
tem calls using the exokernel naming convention that
such routine names begin with the prefix "sys_." As
a refinement, the checker warns when any non-system-
call routines use "paranoid" user-data routines. It
examined 187 distinct user pointers in the exokernel
proper and device code and found 18 errors. A typical
error is this command to issue disk requests:

/* from sys/kern/disk.c */

int sys_disk_request (u_int sn, struct Xn_name

*xn_user, struct buf tregbp, u.int k) {

/♦ bypass for direct scsi commands ♦/

if (reqbp->b_flags & B.SCSICMD)

return sys_disk_scsicmd (sn, k, reqbp);

Here, the pointer, reqbp, is passed in from user space

and dereferenced in the if statement without being

checked.
This extension also signalled 15 false positives.

Four of these were due to a stylized use where non-

null pointers were verified using standard routines,

but null ones were allowed through (they would be

handled correctly by lower levels). Three others were

due to kernel backdoors used to let system calls call

other system calls with unchecked parameters. The

remaining were due to the checker's lack of global

analysis and its disallowing of tainted variable copies.

5.2 Checking memory management

Most kernel code uses memory managers based loosely

on the C procedures malloc and free. We present

an extension that checks four common rules:

1. Since memory allocation can fail, kernel code

must check whether the returned pointer is valid

(i.e., not null) before using it.

2. Memory cannot be used after it has been freed.

3. Paths that allocate memory and then abort with

an error should typically deallocate this mem-

ory before returning.

Violation

Linux

Bug False

OpenRSD

Bug False

No check

Error leak

Use after Free

Underflow

79

44

7

2

9

49

3

0

49

3

0

0

2

1

0

0

Total 132 61 52 3

Table 2: Error counts for Linux and OpenBSD. The

checker was applied 4268 times in Linux and 464

times in OpenBSD.

4. The size of allocated memory cannot be less

than the size of the object the assigned pointer

holds.

Figure 4 shows a stripped-down extension that

checks these rules. For space, the size check and most

error reporting code is omitted. This extension, hke

the previous one, associates each variable with a state

encoding what operations are legal on it. Pointers to

allocated storage can be in exactly one of four states:

unknown, null, not_null, or freed. A variable is

bound to the unknown state at every allocation site.

When an unknown variable is compared to null (e.g.,

in C, "0") the extension sets the variable's state on

the true (null) path to null and on the false (non-

null) path to notjiull. When the variable is com-

pared to non-null, these two cases are reversed. The

two initial patterns recognize C's check-and-compare

allocation idiom and combine these transitions with

the initial variable binding. Pointers passed to free

transition to the freed state. As a minor refinement,

when variables are overwritten, the extension stops

following them by transitioning to the special metal

state, stop.
The checker only allows dereferences of notjiull

pointers. This restriction catches instances when mem-

ory is used before being checked, on null paths, or

after being freed. It catches double-firee errors by

warning when freed pointers are passed to free. It

catches cases when error paths do not free allocated

memory by warning when any non_null or unchecked

variable reaches a return of a negative integer, which

idiomatically signals an error path.

The full version of the checker is 60 lines of code.

We get a lot for so little: the extension implements a

flow-sensitive compiler analysis pass that checks for

rules on all paths and takes into consideration the

observations furnished by passing through condition-

als. As Table 2 shows, the extension found 132 errors

in Linux and 51 errors in OpenBSD. It turned up

61 and 3 false positives respectively, most due to not

handling variable copies, or not detecting when allo-

cated memory would be freed by a cleanup routine.
The most common error was not checking the

result of memory allocation: 79 cases in Linux, 49
in OpenBSD. In Linux, the single largest source of
these errors was an allocation macro, CODA_ALLOC,
which was widely used throughout the Coda file sys-
tem code. It contains the unfortunate code:

/* include/linux/coda_linux.h:CODA_ALLOC */

ptr = (cast)vmalloc((unsigned long) size);

if (ptr == 0)

printk("kernel malloc returns 0 at '/,s:'/.d\n",

__FILE__,__LINE__);

meniset(ptr, 0, size);

While this code prints a helpful message on every

failed allocation, the initialization using memset will

immediately cause a kernel segmentation fault.

The next most common error was not freeing mem-

ory on error paths (44 in Linux, 3 in OpenBSD). A

typical not-freeing error is given in Figure 5. An id-

iomatic mistake was to have many exit points from a

function, but forgetting to free the memory at all of

these points.
The seven use-after-freeing errors could cause non-

deterministic bugs if another thread re-allocated the
freed memory. The most common case was five cut-
and-paste uses of the code:

/* drivers/isdn/pcbit:pcbit_init_dev */

kfree(dev);
iounmap((unsigned char*)dev->sh_mem);

release_mem_region(dev->ph_mem, 4096);

Here, the memory pointed to by dev is freed and then

immediately used in two subsequent function calls.
Additionally, the checker discovered two under-

allocation errors. These were particularly dangerous,
since they could cause memory corruption whenever
a routine is used, rather than only failing under high
load. One was caused by an apparent typo where
the size of the memory needed for a structure of type
struct atm_mpoa_qos (92 bytes) was computed us-
ing the size of a structure of type struct atm.qos

(84 bytes):

/* net/atm/mpc.c:169:atm_mpoa_add_qos */

struct atm_mpoa_qos ♦entry;

entry = kmalloc(sizeof(struct atm.qos),

GFP.KERNEL);

The other error reversed kmalloc's size and inter-

rupt level arguments, specifying that 7 (the value of

GFP-KERNEL) bytes of storage to be allocated instead

of 16. Currently, both errors are harmless, since the

kernel uses a power-of-two memory allocator with a

minimum allocation unit of 32 bytes. However, they

are latent time bombs if a more space efficient allo-

cator is ever used.

sm null_checker i

decl { scalar)• sz; // match any scalaur

decl { const int } retv; // match const ints

decl { any.ptr } vl; // match any ptr

// 'state' specifies 'v' will have a state

state decl { any_ptr } v;

// Associate allocated memory with unknown

// state until compared to null,

start, v.all:
// set v's state on true path to "null",

// on false path to "not_null"

{ ((v = (any)malloc(sz)) == 0) }

==> true=v.null, false=v.not_null

// vice versa
I { ((v = (any)malloc(sz)) != 0) }

==> true=v.not_null, false=v.null

// unknown state until observed.

I { v = (any)malloc(sz) > ==> v.unknown;

// Allow comparisions on variables in

// states "unknown", "null", and "not_null."

V.unknown, v.null, v.not_null:

■C (v == 0) } ==>
true = v.null, false = v.not.null

I { (v != 0) } ==>
true = v.not_null, false = v.null;

// Catch error path leciks by warning when
// a non-null, non-freed variable gets to a

// return of a negative integer.
V.unknown, v.not_null: -[return retv; } ==>

i if(mgk_int_cst(retv) < 0)

err("Error path leak!"); };

// No dereferences of null or unknown ptrs.

v.null, V.unknown: { *(amy *)v } ==>
{ err("Using ptr illegally!"); >;

// Allow free of all non-freed variables.

V.unknown, v.null, v.not_null:
{ free(v); > ==> v.freed;

// Check for double free and use after free.

V.freed:
{ free(v) } ==> { err("Dup free!"); }

I { V } ==> { err("Use-after-free!"); };

// Overwriting v's value kills its state

v.all: { v = vl } ==> v.ok;

>

Figure 4: Metal extension that checks that allocated

memory is (1) checked before use, (2) not used after

a free, (3) not double freed, and (4) always freed on

error paths (those returning a negative integer).

/♦ from drivers/char/tea6300.c */

static int tea6300_attach(...) {

client = kmallocCsizeof ♦client,GFP.KERNEL);

if (!client)

return -ENOMEM;

tea = kmalloc (sizeof ♦tea, GFP.KERNEL);

if (!tea)
return -ENOMEM;

MOD_INC_USE_COUNT;

Figure 5: Code with two errors: (1) not freeing mem-

ory (client) on an error path and (2) (discussed

in Section 6) calling MOD_INC-USE_COUNT after poten-

tially blocking memory allocation calls.

While these checks focus on raw byte memory

management, the general extension template can be

retrofitted to check similar rules for other, higher-

level objects. A modified version of this extension

found 15 probable errors in Linux "IRQ" allocation

code where allocations were not checked for errors,

and IRQ's were not deallocated on error paths.

6 Enforcing Rules Globally

The extensions described thus far have been imple-

mented as local analyses. However, many systems

rules are context dependent and apply globally across

functions in a given call chain. This section presents

two extensions that use xg++'s global analysis frame-

work to check the following Linux rules:

1. Kernel code cannot call blocking functions with

interrupts disabled or while holding a spin lock.

Violating this rule can lead to deadlock [28].

2. A dynamically loaded kernel module cannot call

blocking functions until the module's reference

count has been properly set. Violating this

rule leads to a race condition where the module

could be unloaded while still in use [26].

We first describe a global analysis pass that computes

a transitive closure of all potentially blocking rou-

tines. Then, we discuss how the two extensions use

this result.

6,1 Computing blocking routines

We build a list of possibly blocking functions in two

passes. The first, local pass, is a metal extension that

Check Local Global False Pos

Interrupts

Spin Lock

Module

18

21

22

42

42

~53

4

4

~2

Total 61 ~ 137 -10

Table 3: Results for checking if kernel routines block

(1) with interrupts disabled ("Interrupts"), (2) while

holding a spin lock ("Spin Lock"), or (3) in a way

that causes a module race ("Module"). We divide er-

rors into whether they needed local or global analysis.

Local errors were due to direct calls to blocking func-

tions; global errors reached a blocking routine via a

multi-level call chain. The global analysis results for

Module are marked as approximate since they have

not been manually confirmed.

traverses over every kernel routine, marking it if it

calls functions known to potentially block. In Linux,

blocking functions are primarily (1) kernel memory

allocators called without the GFP-ATOMIC flag (which

specifies not to sleep when the request cannot be ful-

filled) or (2) routines to move data to or from user

space (these block on a page fault). After process-

ing each routine, the extension calls xg++ support

routines to emit the routine's flow graph to a file.

The flow graph contains (1) the routine's annota-

tion (if any) and (2) all procedures the routine calls.

After the entire kernel has been processed, each in-

put source file will have a corresponding emitted flow

graph file. The second, global pass, uses xg++ rou-

tines to fink together all these files into a global call

graph for the entire kernel. The global pass then

uses xg++ routines to perform a depth first traversal

over this call graph calculating which routines have

any path to a potentially blocking function. The out-

put of this pass is a text file containing the names of

all functions that could ever call a blocking function.

Running the global analysis on the Linux kernel gives

roughly 3000 functions that could potentially sleep.

6.2 Checking for blocking deadlock

Linux, like many OSes, uses a combination of inter-

rupt disabling and spin locks for mutual exclusion.

Interrupt disabling imposes an implicit rule: a thread

running with interrupts disabled cannot block, since

if it was the last runnable thread, the system will

deadlock. Similarly, because of the implementation of

Linux kernel thread scheduhng, threads holding spin

locks cannot block. Doing so causes deadlock when

a sleeping thread holds a spin lock that a thread on

the same CPU is trying to acquire.

Our metal extension checks both rules by assum-

ing each routine starts in a "clean" state with inter-

rupts enabled and no locks held. As it traverses each

code path, if it hits a statement that disables inter-

rupts, it goes to a disabled state; an enable interrupt

call returns it to the original state. Similarly, if it hits

a function that acquires a spin lock, it traverses to a

locked state; an unlock call returns it to the clean

state. While in either of these states (or their compo-

sition), the extension examines all function calls and

reports an error if the call is to a function in the Ust

of potentially blocking routines.
Despite the simplicity of these rules, real code vi-

olates it in numerous places. The extension found
123 errors in Linux. Of those errors, 79 could lead
to deadlock. The remaining 44 were calls to kmalloc
with interrupts disabled. Possibly motivated by the
frequency of this error, the kmalloc code checks if it
is called with interrupts disabled, and, if so, it prints
a warning and re-enables interrupts. In situations
where interrupt disabling was used for synchroniza-
tion, this leads to race conditions. The following code
snippet is representative of a typical error (the mis-
take has been annotated in the source but not fixed):

/* drivers/sound/midibuf.c ♦/

save_flags(flags);

cliO;

while (c < count)

for (i = 0; i < n; i++)

/* BROKE BROKE-CANT DO THIS WITH CLI! ! */

copy_from.user((char *)&tmp_data,

&(buf)[c],l):
QUEUE.BYTE(midi_out_buf[dev], tmp.data);

C++;

}
restore_flags(flags);

The call to copyJrom_user can implicitly sleep, but

is called after interrupts have been disabled with the

call to cli.

The local errors seem to be caused by driver im-

plementors not having a clear picture of either (1)

the rules they have to follow and (2) that user data

movement routines can block. The global errors seem

to be caused by the fact that it is often hard to tell

if a function can potentially block without tediously

tracing through several function calls in different files,

or without a considerable amount of a priori Linux

kernel knowledge.

The checker produced eight false positives. Six

were because the global calculation of blocking func-

tions does not check if a called function would re-

enable interrupts before calling a blocking function.

Two others were caused by name conflicts where a

file defined and called a function with the same name

as a blocking function.

The approach of this section also applies to other

operating systems. Another implementor used our

system to write an extension for the OpenBSD sys-

tem that checked if interrupt handling code called a

blocking operation. He found one bug where an in-

terrupt handler could call a page allocation routine

that in turn called a blocking memory allocator [29].

6.3 Checking module reference counts

Linux allows kernel subsystems to be dynamically

loaded and unloaded. Modules have a reference count

tracking the number of kernel subsystems using them.

Modules increment this count during loading (using

MOD_INC_USE_COUNT) and decrement it during unload-

ing (using MODJDEC-USE-COUNT). The kernel can un-

load modules with a zero reference count at any time.

A module must protect against being unloaded while

sleeping by incrementing its reference count before

calling a blocking function. Similarly, during unload-

ing, it cannot block after decrementing its count. Fi-

nally, if the module aborts installation after incre-

menting its reference count, it must decrement the

count to restore it to its original value.

Our extension checks for load race conditions by

tracking if a potentially blocking function has been

called and flagging subsequent MOD.INCs. Conversely,

it checks for unload race conditions by tracking if a

MODJ)EC has been performed and flagging subsequent

calls to potentially blocking functions. It finds dan-

gling references by emitting an error when a MOD_INC

has not been reversed along a path that returns a neg-

ative integer (which idiomatically signals an error).

As Table 3 shows, a local version of the extension

that did not use the global Ust of blocking functions

found 22 rule violations, whereas the global version

found 53 cases (we have not yet confirmed the global

errors).

7 Linux Mutual Exclusion

The complexity of dealing with concurrency leads

most of the Linux kernel and its device drivers to fol-

low a localized strategy where critical sections begin

and end within the same function body. Despite this

stylized use, the size of the code and implementors'

imperfect understanding leads to errors. We wrote an

extended version of the interrupt checker described in

Section 3 to check that each kernel function conforms

to the following conditions:

Condition Applied Bug False Pos

Holding lock ~5400 29 113 (90)

Double lock - 1 3

Double unlock - 1 20 (18)

Intr disabled ~5800 44 (43) 63 (54)

Bottom half ~ 180 4 12

Bogus flags ~3200 4 49 (24)

Total - 83 (82) 260 (201)

Table 4: Results of running the Linux synchroniza-

tion primitives checker on kernel version 2.3.99. The

Applied column is an estimate of the number of

times the check was applied. We skipped twelve

warnings that were difficult to classify. The paren-

thesized numbers show the changes when the two files

with the most false positives are ignored.

1. All locks acquired within the function body are

released before exiting.

2. No execution paths attempt to lock or unlock

the same lock twice.

3. Upon exiting, interrupts are either enabled or

restored to their initial state.

4. The "bottom halves" of interrupt handlers are

not disabled upon exiting.

5. Interrupt flags are saved before they are re-

stored.

Table 4 shows the results of running the exten-

sion on Linux. The "Applied" column is an estimate

of the number of times each check was applied. Two

device drivers account for a large number of false pos-

itives because they use macros that consult runtime

state before locking or unlocking. The parenthesized

numbers show the changes in the false positive results

(over 20%) when these two files are ignored.
The most common bugs are either holding a lock

or leaving interrupts disabled on function exit. These
bugs often occur when detecting an error condition
after which the function returns immediately. For
example, the checker found this bug in a device driver

for PCMCIA card services

/* drivers/pcmcia/cs.c:
pcmcia_deregister_client */

spin_lock_irqsave(&s->lock, flags);

client = fts->clients;
while ((*client) && ((*client) != handle))

client = ft(*client)->next;

if (♦client == NULL)
/* forgot about &s->lock, flags! */
return CS_BAD.HANDLE;

The checks for Linux locking conventions have re-

sulted in seven kernel patches, including a fix for the

error shown above. All seven patches fix cases where

a lock is mistakenly held when exiting a function, and

six of the seven are in device drivers (the last patch

was to an implementation of ipv4 network filters). We

have not been able to confirm many of the other po-

tential bugs with kernel or device driver developers,

though several strong OS implementors have exam-

ined them and consider them to be at least suspicious.

Most of the potential bugs are in device drivers and

networking code - this is not surprising since much

of this code is written by developers throughout the

world with varying degrees of familiarity with the

Linux kernel.

The false positives mostly come from three sources.

Code that intentionally violates the convention for

the sake of efficiency or modularity accounts for 90

false positives. For example, sometimes a family of

related device drivers will define an interface that

breaks the conventions. Another large source of false

positives (48) is caused by the fact that our checker

only performs local analysis. Some drivers implement

their own locking functions using the basic primitives

provided by the system. The checker will warn when

these functions exit holding a lock or with interrupts

disabled, which is exactly what they are supposed to

do. Global analysis could eliminate many of these

false positives. Finally, the fact that our system does

not prune simple, impossible paths accounts for 35

false positives. A typical example of this is when ker-

nel code conditionally acquires a lock, performs an

action, and then releases the lock based on the same

condition. There are only two possible paths through

this code, not the four that our system thinks exist.

The remaining 21 false positives could be elim-

inated by extending the checker's notion of locking

functions and changing our system to prune the false

branch of loop conditionals of the form "f or (;;)."

8 Optimizing FLASH

In addition to checking, MC can be used for opti-

mization. Below, we describe three extensions writ-

ten to find system-level optimization opportunities

in the FLASH machine's cache coherence code [20].

This code must be fast because it implements func-

tionaUty (cache coherence) that is usually placed in

hardware. Eliminating even a single instruction is

considered beneficial. Several of the protocols ex-

amined here have been aggressively tuned for years

due to their use in numerous performance papers as

evidence for the effectiveness of software-controlled

Optimization Number False Pos LOG

Buffer Free

Message Length

XOR Opcode

11

40

hundreds

9

0

~10

30

32

400(*)

Table 5: MC-based FLASH optimizer results. Num-

ber counts how many optimization opportunities

were found. The XOR checker is written in an old

version of the system — a version written in metal

would be several factors smaller.

cache coherence. Despite this effort, MC optimizers

found hundreds of optimization opportunities, mostly

due to the difficulty in manually performing equiva-

lent searches across FLASH'S deeply nested paths.

Buffer-free optimization. Each time a FLASH

node receives a message, it invokes a customized mes-

sage protocol handler that determines how to sat-

isfy the request and update the protocol state. Han-

dlers use the incoming message buffer to send out-

going data messages, and must free it before exit-

ing. Handlers can send data messages, which need

a buffer, aind control messages, which do not. Many

handlers send more than one message when respond-

ing to a request. To minimize the chance of losing

a buffer, implementors are typically conservative and

defer buffer freeing until the last handler send, ir-

respective of whether the last send(s) was a control

message and therefore did not need a buffer. Unfor-

tunately, while this strategy simplifies handler code,

it increases buffer contention under high load.

Our extension indicates when buffer frees can oc-

cur earlier in the code. It traces all sends on each path

through the function, and by looking at send argu-

ments, detects if the send (1) needs a buffer and (2)

frees its buffer. It gives a suggestion for any path that

has an active buffer that ends with a "suffix" of con-

trol sends. The extension is 56 lines long, and found

11 instances in a large FLASH protocol, "dyn.ptr,"

where the buffer could be safely freed earlier. Each of

these optimizations could be implemented by chang-

ing only two hues of code. The extension also pro-

duced nine false positives. Most of these were cases

where the execution path was too complex to opti-

mize without major code restructuring.

Redundant length assignments. Our second,

lower-level optimization extension detects redundant

assignments to a message buffer's length field. For

speed, when sending multiple messages, implemen-

tors set a buffer's message length early in a handler

and then try to reuse this setting across multiple mes-

sages. Long path lengths make it easy to miss redun-

dant assignments. Our checker detects redundancies

by recording the last assignment on every path and

warning if there are two assignments of the same con-

stant. It discovered 40 redundant assignments in the

FLASH protocol code.

Efficient opcode setting. Message headers must

specify the message's opcode (type). Opcode assign-

ment costs two instructions. However, if the handler

knows what opcode is currently in a header, it can

change the opcode in one instruction by xoring the

message header with the xor of the new and current

opcode. Our extension detects such cases by com-

puting when a message header, with known opcode,

is assigned a new opcode. Both the old and new op-

codes must be the same on all incoming paths. The

extension determines the initial header value by look-

ing in an automatically-built list of all opcodes a han-

dler might receive. If there is only one possible op-

code value, the extension records it and starts in a

"known" state. Otherwise, the checker starts in an

"unknown" state. It transitions from this state to

the "known" state after the first opcode assignment.

Each assignment encountered in the known state is

annotated with the current opcode value. A second

pass then checks every assignment and, if all paths

reached it in the known state with the same opcode,

emits a warning to the user that xor could be used to

save an instruction. This checker found hundreds of

such cases.

9 Conclusion

Systems are pervaded with restrictions of what ac-

tions programmers must always or never perform,

how they must order events, and which actions are

legal in a given context. In many cases, these re-

strictions link together the entire system, creating a

fragile, intricate mess. Currently, systems builders

obey these restrictions as well as they can. Unfortu-

nately, system complexity makes such obedience dif-

ficult to sustain. Programmers make mistakes, and

often they have only an approximate understanding

of important system restrictions. Such mistakes can

easily evade testing, which rarely exercises all cases.

We have shown that many system restrictions can

be automatically checked and exploited using meta-

level compilation (MC). MC makes it easy for imple-

mentors to extend compilers with lightweight system-

specific checkers and optimizers. Currently, a system

rule must be understood by all implementors. MC

allows one implementor, who understands this rule,

to write a check that is enforced on everyone's code.

This leverage exerts tremendous practical force on

the development of complex systems.

Check Errors False Positives Uses LOG

Side-eflFects(§ 4.1) 14 2 199 25

Static assert (§ 4.2) 5 0 1759 100

Stack check(§ 4.3) 10+ 0 332K 53

User-ptr(§ 5.1) 18 15 187 68

Allocation(§ 5.2) 184 64 4732 60

Block(§ 6.2) 123 8 - 131

Module(§ 6.3) ~75 2 - 133

Mutex(§ 7) 82 201 14K 64

Total -511 ~292 - 669

Table 6: The results of MC-based checkers summarized over all checks. Error is the number of errors found,

False Positives is the number of false positives, Uses is the number of times the check was applied, and

LOG is the number of lines of metal code for the extension (including comments and whitespace).

MC is a general approach, scaling from simple

cases such as checking assertions up to global strate-

gies for mutual exclusion and deadlock avoidance. We

have demonstrated MC's power by using it to check

four real, heavily-used, and tested systems. It found

bugs in all of them — roughly 500 in all — many

of which would be difficult to find with testing or

manual inspection. Further, these extensions typi-

cally required less than a day and a hundred lines

of code to implement. Curiously, writing code to

check restrictions is significantly easier than writing

code that obeys them. With few exceptions, our ex-

tensions were written by programmers who, at best,

only had a passing familiarity with the systems to

which they were applied. We believe that these re-

sults show that the use of meta-level compilation can

significantly aid system construction.

10 Acknowledgements

We thank David Dill for many discussions on software

checking, Wilson Hsieh for discussions about the ini-

tial metal language, Mark Heinrich for his willingness

to validate our FLASH results. Wallace Huang and

Yu Ping Hu verified many of the error messages from

the null checker in Section 5. Rusty Russell, Tim

Waugh, Alan Cox, and David Miller answered nu-

merous Linux questions and gave feedback on error

reports. Additionally, we thank the other generous

readers of linux-kernel for their feedback and sup-

port. We thank Mark Horowitz for his support, and

the initial suggestion of looking at FLASH, which led

to numerous other interesting directions. Finally, we

thank David Dill, Wilson Hsieh, Mark Horowitz, the

anonymous reviewers and especially Andrew Myers

for valuable feedback on the paper.

References

[1] M. Bishop and M. Dilger. Checking for race con-
ditions in file accesses. Computing systems, pages
131-152, Spring 1996.

[2] R. S. Boyer and Y. Yu. Automated proofs of object
code for a widely used microprocessor. Journal of
the ACM, 1(43):166-192, January 1996.

[3] S. Chiba. A metaobject protocol for C-I-I-. In OOP-
SLA 1995 Conference Proceedings Object-oriented
programming systems, languages, and applications,
pages 285-299, October 1995.

[4] A. Chou, B. Chelf, D.R. Engler, and M. Heinrich.
Using meta-level compilation to check FLASH pro-
tocol code. To appear in ASPLOS 2000, November

2000.

[5] A. Chou and D.R. Engler. Metal: A language and
system for building lightweight, system-specific soft-
ware checkers, analyzers and optimizers. Available
upon request: acc@cs.stanford.edu, 2000.

[6] J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Laubach,
C.S. Pasareanu, Robby, and H. Zheng. Bandera: Ex-
tracting finite-state models from Java source code. In
ICSE 2000, 2000.

[7] R. F. Crew. ASTLOG: A language for examining ab-
stract syntax trees. In Proceedings of the First Con-
ference on Domain Specific Languages, pages 229-
242, October 1997.

[8] D.L. Detlefs, R.M. Leino, G. Nelson, and J.B. Saxe.
Extended static checking. TR SRC-159, COMPAQ
SRC, December 1998.

[9] D.R. Engler. Incorporating application semantics
and control into compilation. In Proceedings of the
First Conference on Domain Specific Languages, Oc-
tober 1997. An extended version "Interface Compila-
tion: Steps toward Compiling Program Interfaces as
Languages" was selected to appear in IEEE Trans-
actions on Software Engineering, May/June, 1999,
Volume 25, Number 3, p 387-400.

[10] D. Evans, J. Guttag, J. Horning, and Y.M. Tan.

Lclint: A tool for using specifications to check code.

In Proceedings of the ACM SIGSOFT Symposium on

the Foundations of Software Engineering, December

1994.

[11] R. W. Floyd. Assigning meanings to programs, pages

19-32. J.T. Schwartz, Ed. American Mathematical

Society, 1967.

[12] C. W. Eraser and D. R. Hanson. A retargetahle

C compiler: design and implementation. Ben-

jamin/Cummings Publishing Co., Redwood City,

CA, 1995.

[13] Reed Hastings and Bob Joyce. Purify: Fast detection

of memory leaks and access errors. In Proceedings of

the Winter USENIX Conference, December 1992.

[14] G. Holzmann and M. Smith. Software model check-

ing: Extracting verification models from source

code. In Invited Paper. Proc. PSTV/FORTE99 Publ.

Kluwer, 1999.

[15] Intrinsa. A technical introduction to PRE-

fix/Enterprise. Technical report, Intrinsa Corpora-

tion, 1998.

[16] M.F. Kaashoek, D.R. Engler, G.R. Ganger, H.M.

Briceno, R. Hunt, D. Mazieres, T. Pinckney,

R. Grimm, J. Jannotti, and K. Mackenzie. Appli-

cation performance and flexibility on exokernel sys-

tems. In Proceedings of the Sixteenth ACM Sym-

posium on Operating Systems Principles, October

1997.

[17] G. Kiczales, J. des Rivieres, and D.G. Bobrow. The

Art of the Metaobject Protocol. MIT Press, 1991.

[18] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C.V. Lopes, J. Loingtier, and J. Irwin. Aspect-

oriented programming. In European Conference on

Object-Oriented Programming (ECOOP), June 1997.

[19] A. Kolawa and A. Hicken. Insure-I—1-: A tool to

support total quality software, www.parasoft.com/

insure/papers/tech.htm.

[20] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-

moni, K. Gharachorloo, J. Chapin, D. Nakahira,

J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,

and J. Hennessy. The Stanford FLASH multiproces-

sor. In Proceedings of the 21st International Sympo-

sium on Computer Architecture, April 1994.

[21] J. Lamping, G. Kiczales, L.H. Rodriguez Jr., and

E. Ruf. An architecture for an open compiler. In

Proceedings of the IMSA '92 workshop on reflection

and meta-level architectures, 1992.

[22] T. Lord. Application specific static code checking

for C programs: Ctool. In 'twaddle: A Digital Zine

(version 1.0), 1997.

[23] K.L. McMillan and J. Schwalbe. Formal veri-

fication of the gigamax cache consistency proto-

col. In Proceedings of the International Symposium

on Shared Memory Multiprocessing, pages 242-51.

Tokyo, Japan Inf. Process. Soc, 1991.

[24] T.C. Mowry, A.K. Demke, and O. Krieger. Auto-

matic compiler-inserted I/O prefetching for out-of-

core applications. In Proceedings of the Second Sym-

posium on Operating Systems Design and Implemen-

tation, 1996.

[25] G. Nelson. Techniques for program verification.

Available as Xerox PARC Research Report CSL-81-

10, June, 1981, Stanford University, 1981.

[26] K. Owens. "Please review all modules for unload

races". Sent to linux-kernelQvger.rutgers.edu.

Gives protocol to follow to prevent module unload

races., 2000.

[27] R. Rashid. Personal communication. Microsoft's in-

ternal tool used to check violations in Windows de-

vice drivers., July 2000.

[28] P. Russell (rusty@linuxcare.com). Unreliable guide

to hacking the Linux kernel. Distributed with the

2.3.99 Linux RedHat Kernel, 2000.

[29] C.P. Sapuntzakis. Personal communication. Bug

in OpenBSD where an interrupt context could call

blocking memory allocator, April 2000.

[30] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and

T.E. Anderson. Ereiser: A dynamic data race detec-

tor for multithreaded programming. ACM Transac-

tions on Computer Systems, 15(4):391-411, 1997.

[31] A. Srivastava and A. Eustace. ATOM — a sys-

tem for building customized program analysis tools.

In Proceedings of the SIGPLAN '94 Conference on

Programming Language Design and Implementation,

1994.

[32] U. Stern and D.L. Dill. Automatic verification of the

SCI cache coherence protocol. In Correct Hardware

Design and Verification Methods: IFIP WG10.5 Ad-

vanced Research Working Conference Proceedings,

1995.

