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Abstract 

Systems software such as OS kernels, embedded sys- 

tems, and libraries must obey many rules for both 

correctness and performance. Common examples in- 

clude "accesses to variable A must be guarded by 

lock B," "system calls must check user pointers for 

validity before using them," and "message handlers 

should free their buffers as quickly as possible to al- 

low greater parallelism." Unfortunately, adherence 

to these rules is largely unchecked. 

This paper attacks this problem by showing how 

system implementors can use meta-level compilation 

(MC) to write simple, system-specific compiler exten- 

sions that automatically check their code for rule vio- 

lations. By melding domain-specific knowledge with 

the automatic machinery of compilers, MC brings the 

benefits of language-level checking and optimizing to 

the higher, "meta" level of the systems implemented 

in these languages. This paper demonstrates the ef- 

fectiveness of the MC approach by applying it to four 

complex, real systems: Linux, OpenBSD, the Xok 

exokernel, and the FLASH machine's embedded soft- 

ware. MC extensions found roughly 500 errors in 

these systems and led to numerous kernel patches. 

Most extensions were less than a hundred lines of 

code and written by implementors who had a limited 

understanding of the systems checked. 

1    Introduction 

Systems software must obey many rules such as "check 

user permissions before modifying kernel data struc- 

tures," "for speed, enforce mutual exclusion with spin 

locks rather than disabling interrupts," and "message 

handlers must free their buffer before completing." 
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Code that does not obey these rules can degrade per- 

formance or crash the system. 

There are several methods to find violations of 

system rules. A rigorous way is to build an abstract 

specification of the code and then use model check- 

ers [23, 32] or theorem provers/checkers [2, 11, 25] to 

check that the specification is internally consistent. 

When applicable, formal verification finds errors that 

are difficult to detect by other means. However, spec- 

ifications are difl[icult and costly to construct. Fur- 

ther, specifications do not necessarily mirror the code 

they abstract and, in practice, suffer from missing fea- 

tures and over-simplifications. While recent work has 

begun attacking these problems [6,14], it is extremely 

rare for software to be verified. 

The most common method used to detect rule vio- 

lations is testing. Testing is simpler than verification. 

It also avoids the mirroring problems of formal veri- 

fication by working with actual code rather than an 

abstraction of it. However, testing is dynamic, which 

has numerous disadvantages. First, the number of 

execution paths typically grows exponentially with 

code size. Thorough, precise testing requires writing 

many test cases to exercise these paths and drive the 

system into error states. The effort required to cre- 

ate these tests, and the time it takes to run them, 

scales with the amount of code. As a result, real sys- 

tems have many paths that are rarely or never hit by 

testing and errors that manifest themselves only af- 

ter days of continuous execution. Further, finding the 

cause of a test failure can be difficult, especially when 

the effect is a delayed system crash. Finally, testing 

requires running the tested code, which can create 

significant practical problems. For example, testing 

all device drivers in an OS requires acquiring possibly 

hundreds or thousands of devices and understanding 

how to thoroughly exercise them. 

Another common method to detect rule violations 

is manual inspection. This method has the strength 

that it can consider all semantic levels and adapt to 

ad hoc coding conventions and system rules. Unfor- 

tunately, many systems have millions of lines of code 
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with deep, complex code paths. Reasoning about 

a single path can take minutes or sometimes, when 

dealing with concurrency, hours. Further, the relia- 

bility of manual inspection is erratic. 

These methods leave implementors in an unfor- 

tunate situation. Verification is impractical for most 

systems. Testing misses many cases and makes di- 

agnosis difficult. Manual inspection is unreliable and 

tedious. One possible alternative is to use static com- 

piler analysis to find rule violations. Unlike verifica- 

tion, compilers work with the code itself, removing 

the need to write and maintain a specification. Un- 

like testing, static analysis can examine all execution 

paths for errors, even in code that cannot be conve- 

niently executed. Further, a compiler analysis pass 

reduces the need to construct numerous test cases 

and scales from a single function to an entire system 

with little increase in manual effort. 

Compilers can be used to enforce systems rules 

because many rules have a straightforward mapping 

to program source. Rule violations can be found by 

checking when source operations do not make sense 

at an abstract level. For example, ordering rules such 

as "interrupts must be enabled after being disabled" 

reduce to observing the order of function calls or id- 

iomatic sequences of statements (in this case, a call 

to a disable interrupt function must be followed by a 

re-enable call). 

The main barrier to a compiler checking or opti- 

mizing at this level is that while it must have a pre- 

cise understanding of the semantics of its input code, 

it typically has no idea of the "meta" semantics of 

the software system this code constructs. Thus, it 

cannot check many properties inexpressible (or just 

not expressed) in terms of the underlying language's 

type system. This leaves an unfortunate dichotomy. 

Implementors understand the semantics of the sys- 

tem operations they build and use but do not have 

the mechanisms to check or exploit these semantics 

automatically. Compilers have the machinery to do 

so, but their domain ignorance prevents them from 

exploiting it. 

This paper shows how to automatically check sys- 

tems rules using meta-level compilation (MC). MC 

attacks this problem by making it easy for implemen- 

tors to extend compilers with lightweight, system- 

specific checkers and optimizers. Because these ex- 

tensions can be written by system implementors them- 

selves, they can take into account the ad hoc (some- 

times bizarre) semantics of a system. Because they 

are compiler based, they also get the benefits of au- 

tomatic static analysis. 

In our MC system, implementors write extensions 

in a high-level state-machine language, metal. These 

extensions are dynamically linked into our extensible 

compiler, xg++, and applied down all flow paths in 

all functions in the program source input. They use 

language-based patterns to recognize operations that 

they care about. Then, when the input code matches 

these patterns, they detect rule violations by tran- 

sitioning between states that allow or disallow other 

operations. 

This paper's primary contribution is its demon- 

stration that MC is a general, effective approach for 

finding system errors. Our most important results 

are: 

1. MC checkers find serious errors in complex, real 

systems code. We present a series of exten- 

sions that found roughly 500 errors in four sys- 

tems: the Linux 2.3.99 kernel, OpenBSD, the 

Xok exokernel [16], and the FLASH machine's 

embedded cache controller code [20]. Many er- 

rors were the worst type of systems bugs: those 

that crash the system, but only after it has been 

running continuously for days. 

2. MC optimizers discover system-level opportu- 

nities that are difficult to find with manual in- 

spection. While the main focus of this paper 

is error checking, MC extensions can also be 

used for optimization. Section 8 describes three 

FLASH-specific, MC optimizers that found hun- 

dreds of system-level optimization opportuni- 

ties. 

3. MC extensions are simple. The extensions men- 

tioned above are typically less than a hundred 

lines of code. 

A practical result of our experience with MC is that 

the majority of our extensions were written by pro- 

grammers who had only a passing famiUarity with the 

systems that they checked. Although writing code 

that obeys system rules can be quite difficult, these 

rules are easy to express. Thus, writing checkers for 

many of them is relatively straightforward. 

This paper is laid out as follows. Section 2 dis- 

cusses related work. Section 3 gives an overview of 

MC and the system we use to implement it. Sec- 

tion 4 applies the approach to the C assert macro 

and shows that even in such a limited domain, MC 

provides non-trivial benefits. Section 5 shows how 

to use MC to enforce ordering constraints such as 

checking that kernels verify user pointers before using 

them. Section 6 extends this to global, system-wide 

constraints. Section 7 is a more detailed case study in 

how we used MC to check Linux locking and interrupt 

disabling/re-enabling disciplines. Section 8 describes 

our FLASH optimizers, and Section 9 concludes. 



2    Related Work 

We proposed the initial idea of MC in [9] and pro- 

vided a simple system, magik (based on the Ice ANSI 

C compiler [12]), for using it. While the original pa- 

per had many examples, it provided no experimental 

evaluation. This paper provides a more developed 

view of MC, a significantly easier-to-use and more 

powerful framework for building extensions, and an 

experimental demonstration of its effectiveness. Con- 

currently with this paper, we presented a detailed 

case study of applying MC to the FLASH system [4]. 

The 8 compiler extensions presented in that paper 

discovered 34 errors in FLASH code that could po- 

tentially crash the machine, such as message handlers 

that lost or double freed hardware message buffers 

and buffer race conditions. This paper's main differ- 

ence is its demonstration that MC is a general tech- 

nique by applying it to a variety of systems. Because 

of this broader scope, it lacks the detail in [4], but 

finds roughly a factor of ten more errors. 

Below, we compare our work to efforts in high- 

level compilation, verification, and extensible com- 

pilers. 

Higher-level compilation. Many projects have 

hard wired application-level information in compil- 

ers. These projects include: compiler-directed man- 

agement of I/O [24]; the ERASER dynamic race de- 

tection checker [30]; ParaSoft's Insure-f-l- [19], which 

can check for Unix system call errors; the use of static 

analysis to check for security errors in privileged pro- 

grams [1]; and the GNU compilers' -Wall option, 

which warns about dangerous functions and question- 

able programming practices. Related to the checkers 

in this paper, Microsoft has an internal tool for find- 

ing a fixed set of coding violations in Windows device 

drivers [27] such as errors in handhng 64-bit code and 

missing user pointer validity checks. 

These projects use compiler support to analyze 

specific problems, whereas MC explicitly argues for 

the general use of compilers to check and optimize 

systems and provides an extensible framework for do- 

ing so. This extensibility enables detection of rule vi- 

olations that are impossible to find without system- 

specific knowledge. 

Systems for finding software errors. Most 

approaches to statically finding software errors cen- 

ter around either formal verification (as discussed in 

Section 1) or strong type checking. 

Verification uses stronger analysis than MC ex- 

tensions. However, MC extensions appear to be more 

generally effective. To the best of our knowledge, ver- 

ification papers tend to find a small number of errors 

(typically 0-2), whereas the MC checkers in this paper 

found hundreds. Verification's lower bug counts seem 

largely due to the difficulty in writing specifications, 

which scales with code size. As a consequence, only 

small pieces of code are verified. In contrast, because 

MC operates directly on source code, it (like tradi- 

tional compiler analyses) applies as easily to millions 

of lines of code as it does to only a few. 

Two recent strong-typing systems are the extended 

static type checking (ESC) project [8] and Intrinsa's 

PREfix [15]. Both of these systems use stronger anal- 

yses than our approach. However, they only check for 

a fixed set of low-level errors (e.g., buffer overruns and 

null pointer references). Their lack of extensibihty 

means that, with the exception of ESC's support for 

finding some class of race conditions, neither system 

can find the system-level errors that MC can detect. 

LCLint [10] statically checks programmer source 

annotations to detect coding errors and abstraction 

barrier violations. Like ESC and Intrinsa, LCLint 

is not extensible, which prevents it from finding the 

errors that MC can find. Further, the source an- 

notations that LCLint requires scale with code size, 

significantly increasing the manual effort needed to 

apply it. 
Extensible compilation. There have been a 

number of "open compiler" systems that allow pro- 

grammers to add analysis routines, usually modeled 

as extensions, that traverse the compiler's abstract 

syntax tree. These include Lord's ctool [22], which 

allows scheme extensions to walk over an abstract 

syntax tree for C, and Crew's Prolog-based AST- 

LOG [7], also used for C. 

Lamping et al. [21] and Kiczales et al. [17] argue 

for pushing domain-specific information into compi- 

lation. They use meta-object protocols (MOPs) to 

allow programs to be augmented with a "meta" part 

that controls the base [17]. Such protocols are typi- 

cally dynamic and have fairly limited analysis abili- 

ties. Shigeru Chiba's Open C++ [3] provides a static 

MOP that allows users to extend the compilation pro- 

cess. 

The extensions in these systems are mainly lim- 

ited to syntax-based tree traversal or transformation 

and do not have data flow information. As a re- 

sult, they seem to be both less powerful than MC 

extensions and more difficult to use. Our current, 

language-based approach is a dramatic improvement 

over our previous tree-based systems: extensions are 

2-4 times smaller, have less bugs, and handle more 

cases. Further, to the best of our knowledge, ctool, 

ASTLOG, and Open C++ provide no experimental re- 

sults, making it difficult to evaluate their effective- 

ness. 

At a lower-level, the ATOM object code modifi- 



cation system [31] gives users the ability to modify 

object code in a clean, simple manner. By focusing 

on machine code, ATOM can be used in more situa- 

tions than MC, which requires source code. However, 

while dynamic testing schemes [13, 30] are well served 

by object-level modifications, it would be difficult to 

perform our static checks without the semantic infor- 

mation available in the compiler. 

Concurrently with our original work [9], Kiczales 

et al. [18] proposed "aspect oriented programming" 

(AOP) as a way of combining code that manages 

"aspects," such as synchronization, with code that 

needs them. AOP has the advantage of being inte- 

grated within a traditional language framework. It 

has the disadvantage that aspects have more limited 

scope than MC extensions, which survey the entire 

system as well as check rules difficult to enforce with 

an AOP framework (e.g., preventing kernel code from 

using floating point). Further, because AOP requires 

source modifications, retro-fitting it on the systems 

we check would be non-trivial. 

{ #include "linnx-includes.h"  } 
sm check.interrupts { 

// Variables 
// used in patterns 
dec! {. unsigned } flags; 

// Patterns 
// to specify enable/disable ftmctions. 

pat enable = { stiO; } 
I { restore_flags(flags); } ; 

pat disable = { cliO; }; 

// States 
// The first state is the initial state. 

is_enabled: disable ==> is.disabled 

I enable ==> -C errC'double enable"); } 

is_disabled: enable ==> is_enabled 

I disable ==> { errC'double disable"); } 
// Special pattern that matches when the SM 

// hits the end of any path in this state. 

I $end_of_path$ ==> 
{ err("exiting w/intr disabled!"); > 

3    Meta-level Compilation 

Many systems constraints describe legal orderings of 

operations or specific contexts in which these oper- 

ations can or cannot occur. Since the actions rele- 

vant to these rules are visible in program source, an 

MC compiler extension can check them by searching 

for the corresponding operations and verifying that 

they obey the given ordering and/or contextual re- 

strictions. Table 1 gives a representative set of rule 

"templates" that can be checked in this manner along 

with examples. Many system rules that roughly fol- 

low these templates can be checked automatically. 

For example, an MC extension to enforce the con- 

textual rule, "for speed, if a shared variable is not 

modified, protect it with read locks," can search for 

each write-lock critical section, examine all variable 

uses, and, if no stores occur to protected variables, 

demote the locks or suggest alternative usage. 

3.1    Language Overview 

In our implementation of MC, compiler extensions 

are written in a high-level, state-machine language, 

metal [5]. These extensions are dynamically linked 

into our extensible compiler, xg++(\iSS,eA on the GNU 

g++ compiler). After xg++ translates each input func- 

tion into its internal representation, the extensions 

are applied down every possible execution path in 

that function. The state machine part of the lan- 

guage can be viewed as syntactically similar to a 

"yacc" specification.    Typically, SMs use patterns 

Figure 1: A metal SM to detect (1) when interrupts 

disabled using cli are not re-enabled using either sti 

or restoreJlags and (2) duplicate enable/disable 

calls. 

to search for interesting source code features, which, 

when matched, cause transitions between states. Pat- 

terns are written in an extended version of the base 

language {C++), and can match almost arbitrary 

language constructs such as declarations, expressions, 

and statements. Expressing patterns in the base lan- 

guage makes them both flexible and easy to use, since 

they closely mirror the source constructs they de- 

scribe. 

Figure 1 shows a stripped-down metal extension 

for Linux that checks that disabled interrupts are re- 

enabled or restored to their initial state upon exit- 

ing a function. Interrupts are disabled by calUng the 

cli() procedure; they are enabled by calling sti() 

or restored using restorejflags(flags), where the 

flags variable holds the interrupt state before the 

cliO was issued. Conceptually, the extension finds 

violations by checking that each call to disable in- 

terrupts has a matching enable call on all outgoing 

paths. As refinements, the extension warns of du- 

plicate calls to these functions or non-sequitur calls 

(e.g., re-enabling without disabling). A more com- 

plete version of this checker, described in Section 7, 

found 82 errors in Linux code. 

The extension tracks the interrupt status using 



Rule template 

"Never/always 

doX" 

"Do   X    rather 

than Y" 

"Always   do   X 

before/after Y" 

"Never do X be- 

fore/after Y" 

"In situation X, 

do (not do) Y" 

"In situation X, 

do Y rather than 

Z" 

Examples 

"Do not use floating point in the kernel."  {§ 4.3) "Do not allocate large variables 

on the 6K byte kernel stack."  (§ 4.3) "Do not send more than two messages per 

virtual network lane." "Allocate as much storage as an object needs." (§ 5.2) 

"Use memory mapped I/O rather than copying."     "Avoid globally disabhng 

interrupts." 
"Check user pointers before using them in the kernel." (§ 5.1) "Handle operations 

that can fail (e.g., memory, disk block, virtual interrupt allocation)." (§ 5.2) 

"Re-enable interrupts after disabling them." (§ 7) "Release locks after acquiring 

them." (§ 7) "Check user permissions before modifying kernel data structures." 

"Do not acquire lock A before B." "Do not use memory that has been freed." (§ 5.2) 

"Do not (deallocate an object, acquire/release a lock) twice." (§ 5.2 § 7) "Do not 

increment a module's reference count after calling a function that can sleep." (§ 6.3) 

"Protect all variable mutations with write locks." "If a system call fails, reverse all 

side-effect operations (deallocate memory, disk blocks, pages, unincrement reference 

counters)." (§ 5.2 § 6.3) "To avoid deadlock, while interrupts are disabled, do not 

call functions that can sleep." (§ 6.2) 

"If a variable is not modified, protect it with read locks." "If code does not share 

data with interrupt handlers, then use spin locks rather than the more expensive 

interrupt disabling." "To save an instruction when setting a message opcode, xor 

in the new and old opcode rather than using assignment." (§ 8)  

Table 1: Sample system rule templates and examples. Checkers for the rule are denoted by section number. 

/* From Linux 2.3.99 drivers/block/raidB.c  */ 
static struct buffer_head * 
get.free.buffer(struct  stripe.head *sh, 

int b.size)   {. 
struct buffer.head *bh; 
unsigned long flags; 

savG.flags(flags); 

cliO; 
if ((bh = sh->buffer.pool) == NULL) 

return NULL; 
sh->buffer.pool = bh->b.nGxt; 

bh->b.size = b.size; 

restore.flags(flags); 

return bh; 

} 

Figure 2: Example code from the Linux 2.3.99 Raid 

5 driver illustrating a real error caught by the exten- 

sion. The SM will be applied down both paths in 

this function. The path ending with a return of bh is 

well formed and will be accepted. The path ending 

with the return of NULL is not, and will get a warning 

about not re-enabling interrupts. 

two states, is.enabled and is.disabled. SMs start 

in the state mentioned in the first transition defi- 

nition (here, is-enabled). Each state has a set of 

rules specifying a pattern, an optional state transi- 

tion, and an optional action. Actions can be arbi- 

trary C-l—I- code. For a given state, metal checks 

pattern rules in lexical order. If any code matches 

the specified patterns, metal processes this matching 

code, sets the state to the new state (the token af- 

ter the ==> operator), and executes the action. In 

this example, is.enabled has two rules. The first, 

actionless rule searches for functions that disable in- 

terrupts using the disable pattern and transitions to 

the is.disabled state. The second rule searches for 

calls to functions that enable interrupts and gives a 

warning. Since it does not specify a transition state, 

the SM remains in the is .enabled state. If no pat- 

tern matches, the SM remains in the same state and 

continues down the current code path. The flags 

variable is a wild card that matches any expression 

of type unsigned. When it is matched, metal will put 

the matching expression in flag, which can then be 

used in an action. We use this feature in an extension 

discussed in Section 4. 

To run this SM, it is first compiled with mcc, 

our metal compiler. It is then dynamically linked 

into xg++ using a compile-time, command-line flag. 

When run on the Linux "RAID 5" driver buffer allo- 

cation code in Figure 2, it is pushed down both paths 



in the function. The first path returns NULL when 

the buffer pool is empty (i.e., when the if statement 

fails); the other returns a buffer on successful alloca- 

tion. The first path fails to re-enable interrupts, and 

this error ^ is caught and reported by the extension. 

One way to get a feel for how costly it would be to 

manually perform the check our SM does automati- 

cally is that even when we showed an experienced 

Linux programmer the exact error in Figure 2, it took 

him over 20 minutes to examine a single call chain out 

of the nine leading to this function. Performing sim- 

ilar analysis for the other hundreds of thousands of 

lines of driver and kernel code seems impractical. 

3.2    Practical issues 

Metal SMs can specify whether they should be ap- 

plied either down all paths (i.e., fiow-sensitive) or lin- 

early through the code (i.e., flow-insensitive). A sim- 

ple implementation of flow-sensitive SMs could take 

exponential time in some cases. We use aggressive 

caching to prune redundant code paths where SM 

instances follow paths that join (e.g., if statements, 

loops) and reach the join point in the same state. Our 

caching is based on the fact that a deterministic SM 

applied to the same input in the same internal state 

must compute the same result. The system represents 

the state of an SM as a vector holding the value of 

its variables. For each node in the input flow-graph, 

it records the set of states in which it has been vis- 

ited. If an SM arrives at a node in the same state as 

a previous instance, the system prunes it. 

While caching was originally motivated by speed, 

perhaps its most important feature is that it provides 

a clean framework for computing loop "fixed points" 

transparently. When an SM has exhausted the set of 

states reachable within the loop (typically with two 

iterations), metal automatically stops traversing the 

loop. This fixed-point behavior depends on the SM 

having a finite (and small) number of states. We do 

not currently enforce this restriction. 

The current xg++ system does not integrate global 

analysis with the SM framework. Instead, it pro- 

vides a library of routines to emit client-annotated 

flow graphs to a file, which can then be read and tra- 

versed. Section 6 gives an example of how we used 

this framework to compute the transitive closure of 

all possibly-sleeping functions. We are integrating 

these two passes. 

^Amusingly, this interrupt disable bug would be masked 
by an immediate kernel segmentation fault since callers of 
this function dereference the returned pointer without checking 
whether the allocation succeeded. 

3.3    Caveats 

Most of our extensions are checkers rather than veri- 

fiers: they find bugs, but do not guarantee their ab- 

sence. For example, their ignorance of aliases pre- 

vents them from asserting that many actions "can- 

not happen." In general, many compiler problems 

are undecidable, which places hard limits on the ef- 

fectiveness of static analysis. Despite these limita- 

tions, as our results show, MC extensions are quite 

effective. We are currently investigating how to turn 

some classes of checkers into verifiers. 

We mainly check systems we did not build. As 

a result, some rule violations we found might not be 

bugs because the code could use a non-obvious system 

feature that works correctly in a specific situation. 

We countered this danger in two ways. First, we sent 

our error logs to the system implementors of Linux, 

FLASH, and Xok for confirmation. However, while 

we got feedback on many errors, their sheer number 

meant that many did not receive careful examina- 

tion. Second, we conservatively did not count many 

cases that were difficult to reason about. While our 

results may still contain mis-diagnoses, we would be 

surprised if these caused more than a few percentage 

points difference. 

Several of our checkers produce a number of false 

positives (in the worst case, in Section 7, up to three 

per error). These are due to the Umitations of both 

static analysis and our checkers, which primarily use 

simple local analyses. Usually these numbers can 

be reduced significantly by adding some amount of 

global analysis or system-specific knowledge. In al- 

most all cases, each false positive can be suppressed 

with a single source annotation. Extensions can pro- 

vide annotations by supplying a set of reserved func- 

tions that clients call to indicate that a specific source- 

level warning should be suppressed. As a refinement, 

checkers can detect bogus or erroneous annotations 

by warning when they are not needed. 

Basing our MC system on a C-l—I- compiler has 

caused difficulties when applying it to Linux and Xok. 

These systems aggressively assume C's more relaxed 

type system and use GNU extensions that are illegal 

in g++. Thus, while in theory MC can be applied 

to a system transparently, we had to modify Xok and' 

Linux to remove GNU C constructs that are illegal in 

C-l—1-. We also modified the g++ front-end to relax its 

type checking. To avoid this labor for other systems, 

we are currently finishing a gcc-based implementa- 

tion of xg++. More generally, since the metal lan- 

guage has been designed to be shielded from both the 

underlying language and compiler, we plan to port it 

other languages and other compilers. 



The remainder of this paper describes the exten- 

sions we implemented using metal and xg++ and the 

results of applying the concept of meta-level compi- 

lation to real systems. 

4    A Simple Meta-language 

The C assert macro takes a single condition as its ar- 

gument, checks this condition at runtime, and aborts 

execution if the condition is false. This macro defines 

one of the simplest meta-languages possible: it has 

no state and a single operation. This section shows 

how MC can help even such simple interfaces by pre- 

senting two extensions that check the following two 

assertion invariants: 

1. Assertions should not have non-debugging side- 

effects. Frequently, assert is used only for de- 

velopment and turned off in production code. If 

an assert condition has important side-effects, 

these will disappear and the program will be- 

have incorrectly. 

2. Assertion conditions should not fail. Program- 

mers use assertions to check for conditions that 

should not happen. Any code path leading to 

an assertion that causes its boolean expression 

to fail is probably a bug. 

4.1    Checking assertion side-effects 

Figure 3 presents a metal checker that inspects as- 

sertion expressions for side-effects. The directive, 

"flow_insensitive," tells metal to apply the exten- 

sion linearly over input functions rather than down 

all paths, improving speed and error reporting (since 

there will be exactly one message per violation). The 

SM begins in the initial state, start, and uses the 

literal metal pattern "{assert (expr);}" to find all 

assert uses. ^ On each match, metal stores the 

assert expression in the variable, expr. It then 

runs start's action, which uses the metal procedure 

mgk_exprjrecurse to recursively apply the SM to 

the expression in expr in the in_assert state. The 

in_assert state uses metals generic type "any" to 

match assignments, and pointer increments and decre- 

ments of any type. Note that the assignment operator 

will also detect uses of C's infix operators (e.g., +=, 

-=, etc.). The extension matches any function call 

with any set of arguments using the extended types 

■^ Since patterns can match nearly arbitrary C code, it does 
not matter if assert is a function or a macro; we have modified 
the pre-processor to ignore line and file directives. 

{ #include <assert.h> } 

// Apply SM ignoring control flow 

sm Assert flow_insensitive { 

// Match expressions of  "any"  type 

decl { any } expr.  x, y,  z; 

// Used in combination to match all 

// calls with any arguments 

decl { any_call } any_fcall; 

decl { any.args  } args; 

// Find all assert calls. Then apply 

// SM to "expr" in state "in.assert." 

start:   { assert(expr);   } ==> 

{ mgk_expr_recurse(expr,   in_assert);   }  ; 

// Find all side-effects 

in_assert: 

// Match all calls 

{ any_fcall(eirgs)   } ==> 

{ err("function call");   } 

// Match any assignment   (including 

// the operators  +=,  -=,  etc.) 

I   •[ X = y )■    ==> { err("assignment");   } 

// Match all increments and decrements 

// —z and ++Z ommited for brevity 

I   i Z++ } ==> { err("post-increment");   } 

I   { z— } ==> { err("post-decrement");   }   ; 

} 

Figure 3:  A metal SM that warns of side-effects in 

assert uses. 

any-call and any_args in combination. To assist de- 

velopers in writing extensions, metal provides a set of 

generic types for matching different classes of types 

(e.g., scalars, pointers, floats), and different program- 

ming constructs (e.g., case labels, indirections). 
When apphed to Xok's ExOS library operating 

system, this 25 line extension found 16 violations 
in 199 assert uses. Two were false positives trig- 
gered by debugging functions. These could be sup- 
pressed by wrapping such calls in a diflFerently named, 
unchecked assertion macro. The remaining fourteen 
cases were errors in crucial system code that would 
function incorrectly if the assertion was removed. The 
underlying cause of these errors was assert's use as 
shorthand for checking the result of possibly-failing 
operations such as insertion of page table entries and 
deallocation of shared memory regions. A typical ex- 
ample is the following snippet from the ExOS "mmap" 
code to insert a page table entry: 

/* libexos/os/mmap.c:mmap_fault_handler:410 */ 
assert(_exos_self.insert_pte(0, PG_PI 

PG_U|PG_W, PGROUNDDOWN(va), 0, NULL) == 0); 

The effect of removing the assert condition (and hence 

these calls) would be mysterious virtual memory er- 

rors. 



4.2 Checking assertions statically 

Assertions specify conditions that the programmer 

believes must hold. Without MC, compilers are obliv- 

ious to this fact, so assert checks can only occur dy- 

namically. With MC, it is possible to find errors by 

evaluating these conditions statically, thereby quickly 

and precisely finding errors. 

We wrote such an extension on top of xg++. At a 

high level, it uses xg++'s dataflow routines to track 

the values of scalar variables. At each assert use, it 

evaluates the assertion expression against these known 

set of values. If the expression could fail, it emits a 

warning. Currently, xg++ only performs primitive 

analysis that tracks the set of constant assignments 

to scalar variables on a given path. The set of possi- 

ble values for a variable is then just the union of con- 

stant assignments to that variable before it is used. 

If any non-constant assignments occur, the value is 

considered "unknown." Returning the set of possi- 

ble values allows the effectiveness of the checker to 

transparently increase as our analysis in xg++ be- 

comes more powerful. As a practical refinement, we 

eliminate a large class of false positives by ignoring 

assertions of the constant "0" (which always fails) 

since this is an idiomatic method for programmers to 

terminate execution in "impossible" situations. 

When applied to the FLASH cache coherence code 

(discussed more in Section 8) the 100 line extension 

found five errors that could have crashed the system. 

These errors underscore the value of static evalua- 

tion, since they were in code that had been heavily 

tested for over five years. They had been missed be- 

cause the length and complexity of typical FLASH 

code paths caused them to only occur sporadically. 

This complexity also makes manual detection of er- 

rors difficult. On one path, the assignment and the 

assertion that it violated were 300 lines apart and 

separated by 20 if statements, 6 else clauses, and 10 

conditional compilation directives. Another case beat 

this by having 21 if statements, 4 else clauses, and 29 

conditional compilations! Even given the exact situ- 

ation that leads to the error, inspecting such paths is 

mind-numbing. 

4.3 Discussion 

Library implementations cannot inspect the context 

in which they are used or how they are invoked. MC 

can be used to attack these blindnesses. Our first ex- 

tension used MC to to detect illegal actions in assert 

uses, something that an assert implementation can- 

not otherwise do either dynamically or statically. Our 

second extension used context knowledge to push dy- 

namically evaluated conditions to compile time.   A 

similar approach can be used to make certain dy- 

namic error checks static or to improve performance 

by allowing implementations to specialize themselves 

to a given context, such as a memory allocator that 

generates specialized inline allocations for constant 

size allocation requests. 

The restriction on side-effects in assertion condi- 

tions is a miniature example of a more general pat- 

tern of "language subsetting," where systems impose 

an execution context more restrictive than the base 

language in which code is written. We have built two 

other extensions that enforce system-specific execu- 

tion restrictions. The first warns when kernel code 

uses floating point. It found one case where a Linux 

graphics driver assumes that floating point calcula- 

tions will be evaluated at compile time. Using a 

compiler other than gcc or lower optimization lev- 

els could violate this assumption. The second checks 

for stack overflow. It found 10 places where Linux 

code allocated variables larger than 3K on the 6K 

kernel stack, and numerous IK or larger allocations. 

Most of these led to patches by kernel maintainers. 

It also found a similar case in Xok where an inno- 

cent looking stack-allocated structure turned out to 

be over 8K bytes. 

In addition to checking, systems can use restric- 

tion checkers for optimization by detecting when an 

application's actions are more limited than the gen- 

eral case. For example, a threads package can use 

smaller stack sizes than the default if it can derive an 

upper bound on stack usage. 

5    Temporal Orderings 

Many system operations must (or must not) happen 

in sequence. Sequencing rules are well-suited for com- 

piler checking since sequences are frequently encoded 

as literal procedure calls in code. This allows a metal 

extension to find violations by searching for opera- 

tions and transitioning to states that allow, disallow, 

or require other operations. This section discusses 

two such extensions. The first enforces an "X be- 

fore Y" rule that system calls properly check applica- 

tion pointers passed to them for validity before using 

them. The second checks that code obeys a set of or- 

dering rules for memory allocation and deallocation. 

5.1    Checking copyin/copyout 

Most operating systems guard against application cor- 

ruption of kernel memory by, in part, using special 

routines to check system call input pointers and to 

move data between user and kernel space. We present 

an MC extension that finds errors in such code by 



finding paths where an application pointer is used be- 

fore passing through such routines. At each system 

call definition, the extension uses a special metal pat- 

tern to find every pointer parameter, which it binds 

to a tainted state. (The use of per-variable state 

differs from the previous checkers that used a single, 

global state per path.) The only legal operations on 

a tainted variable are being (1) killed by an assign- 

ment or (2) passed as an argument to functions ex- 

pecting tainted inputs (e.g, data movement routines 

or output functions such as kprintf). All other uses 

will be signaled as an error. 
We tailored a version of this checker for the Xok 

exokernel code. It detects which procedures are sys- 
tem calls using the exokernel naming convention that 
such routine names begin with the prefix "sys_." As 
a refinement, the checker warns when any non-system- 
call routines use "paranoid" user-data routines. It 
examined 187 distinct user pointers in the exokernel 
proper and device code and found 18 errors. A typical 
error is this command to issue disk requests: 

/* from sys/kern/disk.c  */ 

int  sys_disk_request   (u_int  sn,   struct Xn_name 

*xn_user,  struct buf tregbp,  u.int k)   { 

/♦ bypass for direct scsi  commands  ♦/ 

if  (reqbp->b_flags & B.SCSICMD) 

return sys_disk_scsicmd   (sn,  k,  reqbp); 

Here, the pointer, reqbp, is passed in from user space 

and dereferenced in the if statement without being 

checked. 
This extension also signalled 15 false positives. 

Four of these were due to a stylized use where non- 

null pointers were verified using standard routines, 

but null ones were allowed through (they would be 

handled correctly by lower levels). Three others were 

due to kernel backdoors used to let system calls call 

other system calls with unchecked parameters. The 

remaining were due to the checker's lack of global 

analysis and its disallowing of tainted variable copies. 

5.2    Checking memory management 

Most kernel code uses memory managers based loosely 

on the C procedures malloc and free. We present 

an extension that checks four common rules: 

1. Since memory allocation can fail, kernel code 

must check whether the returned pointer is valid 

(i.e., not null) before using it. 

2. Memory cannot be used after it has been freed. 

3. Paths that allocate memory and then abort with 

an error should typically deallocate this mem- 

ory before returning. 

Violation 

Linux 

Bug     False 

OpenRSD 

Bug     False 

No check 

Error leak 

Use after Free 

Underflow 

79 

44 

7 

2 

9 

49 

3 

0 

49 

3 

0 

0 

2 

1 

0 

0 

Total 132 61 52 3 

Table 2: Error counts for Linux and OpenBSD. The 

checker was applied 4268 times in Linux and 464 

times in OpenBSD. 

4. The size of allocated memory cannot be less 

than the size of the object the assigned pointer 

holds. 

Figure 4 shows a stripped-down extension that 

checks these rules. For space, the size check and most 

error reporting code is omitted. This extension, hke 

the previous one, associates each variable with a state 

encoding what operations are legal on it. Pointers to 

allocated storage can be in exactly one of four states: 

unknown, null, not_null, or freed. A variable is 

bound to the unknown state at every allocation site. 

When an unknown variable is compared to null (e.g., 

in C, "0") the extension sets the variable's state on 

the true (null) path to null and on the false (non- 

null) path to notjiull. When the variable is com- 

pared to non-null, these two cases are reversed. The 

two initial patterns recognize C's check-and-compare 

allocation idiom and combine these transitions with 

the initial variable binding. Pointers passed to free 

transition to the freed state. As a minor refinement, 

when variables are overwritten, the extension stops 

following them by transitioning to the special metal 

state, stop. 
The checker only allows dereferences of notjiull 

pointers. This restriction catches instances when mem- 

ory is used before being checked, on null paths, or 

after being freed. It catches double-firee errors by 

warning when freed pointers are passed to free. It 

catches cases when error paths do not free allocated 

memory by warning when any non_null or unchecked 

variable reaches a return of a negative integer, which 

idiomatically signals an error path. 

The full version of the checker is 60 lines of code. 

We get a lot for so little: the extension implements a 

flow-sensitive compiler analysis pass that checks for 

rules on all paths and takes into consideration the 

observations furnished by passing through condition- 

als. As Table 2 shows, the extension found 132 errors 

in Linux and 51 errors in OpenBSD. It turned up 

61 and 3 false positives respectively, most due to not 



handling variable copies, or not detecting when allo- 

cated memory would be freed by a cleanup routine. 
The most common error was not checking the 

result of memory allocation: 79 cases in Linux, 49 
in OpenBSD. In Linux, the single largest source of 
these errors was an allocation macro, CODA_ALLOC, 
which was widely used throughout the Coda file sys- 
tem code. It contains the unfortunate code: 

/* include/linux/coda_linux.h:CODA_ALLOC */ 

ptr =  (cast)vmalloc((unsigned  long)   size); 

if  (ptr == 0) 

printk("kernel malloc returns 0 at '/,s:'/.d\n", 

__FILE__,__LINE__); 

meniset( ptr,  0,  size ); 

While this code prints a helpful message on every 

failed allocation, the initialization using memset will 

immediately cause a kernel segmentation fault. 

The next most common error was not freeing mem- 

ory on error paths (44 in Linux, 3 in OpenBSD). A 

typical not-freeing error is given in Figure 5. An id- 

iomatic mistake was to have many exit points from a 

function, but forgetting to free the memory at all of 

these points. 
The seven use-after-freeing errors could cause non- 

deterministic bugs if another thread re-allocated the 
freed memory. The most common case was five cut- 
and-paste uses of the code: 

/* drivers/isdn/pcbit:pcbit_init_dev */ 

kfree(dev); 
iounmap((unsigned char*)dev->sh_mem); 

release_mem_region(dev->ph_mem,   4096); 

Here, the memory pointed to by dev is freed and then 

immediately used in two subsequent function calls. 
Additionally, the checker discovered two under- 

allocation errors. These were particularly dangerous, 
since they could cause memory corruption whenever 
a routine is used, rather than only failing under high 
load. One was caused by an apparent typo where 
the size of the memory needed for a structure of type 
struct atm_mpoa_qos (92 bytes) was computed us- 
ing the size of a structure of type struct atm.qos 

(84 bytes): 

/* net/atm/mpc.c:169:atm_mpoa_add_qos */ 

struct atm_mpoa_qos ♦entry; 

entry = kmalloc(sizeof(struct atm.qos), 

GFP.KERNEL); 

The other error reversed kmalloc's size and inter- 

rupt level arguments, specifying that 7 (the value of 

GFP-KERNEL) bytes of storage to be allocated instead 

of 16. Currently, both errors are harmless, since the 

kernel uses a power-of-two memory allocator with a 

minimum allocation unit of 32 bytes. However, they 

are latent time bombs if a more space efficient allo- 

cator is ever used. 

sm null_checker i 

decl { scalar )• sz;     // match any scalaur 

decl { const int } retv; // match const ints 

decl { any.ptr } vl;    // match any ptr 

// 'state' specifies 'v' will have a state 

state decl { any_ptr } v; 

// Associate allocated memory with unknown 

// state until compared to null, 

start, v.all: 
// set v's state on true path to "null", 

// on false path to "not_null" 

{ ((v = (any)malloc(sz)) == 0) } 

==> true=v.null, false=v.not_null 

// vice versa 
I { ((v = (any)malloc(sz)) != 0) } 

==> true=v.not_null, false=v.null 

// unknown state until observed. 

I { v = (any)malloc(sz) > ==> v.unknown; 

// Allow comparisions on variables in 

// states "unknown", "null", and "not_null." 

V.unknown, v.null, v.not_null: 

■C (v == 0) } ==> 
true = v.null, false = v.not.null 

I { (v != 0) } ==> 
true = v.not_null, false = v.null; 

// Catch error path leciks by warning when 
// a non-null, non-freed variable gets to a 

// return of a negative integer. 
V.unknown, v.not_null: -[ return retv; } ==> 

i  if(mgk_int_cst(retv) < 0) 

err("Error path leak!"); }; 

// No dereferences of null or unknown ptrs. 

v.null, V.unknown: { *(amy *)v } ==> 
{ err("Using ptr illegally!"); >; 

// Allow free of all non-freed variables. 

V.unknown, v.null, v.not_null: 
{ free(v); > ==> v.freed; 

// Check for double free and use after free. 

V.freed: 
{ free(v) } ==> { err("Dup free!"); } 

I { V } ==> { err("Use-after-free!"); }; 

// Overwriting v's value kills its state 

v.all: { v = vl } ==> v.ok; 

> 

Figure 4: Metal extension that checks that allocated 

memory is (1) checked before use, (2) not used after 

a free, (3) not double freed, and (4) always freed on 

error paths (those returning a negative integer). 



/♦ from drivers/char/tea6300.c */ 

static int tea6300_attach(...) { 

client = kmallocCsizeof ♦client,GFP.KERNEL); 

if (!client) 

return -ENOMEM; 

tea = kmalloc (sizeof ♦tea, GFP.KERNEL); 

if (!tea) 
return -ENOMEM; 

MOD_INC_USE_COUNT; 

Figure 5: Code with two errors: (1) not freeing mem- 

ory (client) on an error path and (2) (discussed 

in Section 6) calling MOD_INC-USE_COUNT after poten- 

tially blocking memory allocation calls. 

While these checks focus on raw byte memory 

management, the general extension template can be 

retrofitted to check similar rules for other, higher- 

level objects. A modified version of this extension 

found 15 probable errors in Linux "IRQ" allocation 

code where allocations were not checked for errors, 

and IRQ's were not deallocated on error paths. 

6    Enforcing Rules Globally 

The extensions described thus far have been imple- 

mented as local analyses. However, many systems 

rules are context dependent and apply globally across 

functions in a given call chain. This section presents 

two extensions that use xg++'s global analysis frame- 

work to check the following Linux rules: 

1. Kernel code cannot call blocking functions with 

interrupts disabled or while holding a spin lock. 

Violating this rule can lead to deadlock [28]. 

2. A dynamically loaded kernel module cannot call 

blocking functions until the module's reference 

count has been properly set. Violating this 

rule leads to a race condition where the module 

could be unloaded while still in use [26]. 

We first describe a global analysis pass that computes 

a transitive closure of all potentially blocking rou- 

tines. Then, we discuss how the two extensions use 

this result. 

6,1    Computing blocking routines 

We build a list of possibly blocking functions in two 

passes. The first, local pass, is a metal extension that 

Check Local Global False Pos 

Interrupts 

Spin Lock 

Module 

18 

21 

22 

42 

42 

~53 

4 

4 

~2 

Total 61 ~ 137 -10 

Table 3: Results for checking if kernel routines block 

(1) with interrupts disabled ("Interrupts"), (2) while 

holding a spin lock ("Spin Lock"), or (3) in a way 

that causes a module race ("Module"). We divide er- 

rors into whether they needed local or global analysis. 

Local errors were due to direct calls to blocking func- 

tions; global errors reached a blocking routine via a 

multi-level call chain. The global analysis results for 

Module are marked as approximate since they have 

not been manually confirmed. 

traverses over every kernel routine, marking it if it 

calls functions known to potentially block. In Linux, 

blocking functions are primarily (1) kernel memory 

allocators called without the GFP-ATOMIC flag (which 

specifies not to sleep when the request cannot be ful- 

filled) or (2) routines to move data to or from user 

space (these block on a page fault). After process- 

ing each routine, the extension calls xg++ support 

routines to emit the routine's flow graph to a file. 

The flow graph contains (1) the routine's annota- 

tion (if any) and (2) all procedures the routine calls. 

After the entire kernel has been processed, each in- 

put source file will have a corresponding emitted flow 

graph file. The second, global pass, uses xg++ rou- 

tines to fink together all these files into a global call 

graph for the entire kernel. The global pass then 

uses xg++ routines to perform a depth first traversal 

over this call graph calculating which routines have 

any path to a potentially blocking function. The out- 

put of this pass is a text file containing the names of 

all functions that could ever call a blocking function. 

Running the global analysis on the Linux kernel gives 

roughly 3000 functions that could potentially sleep. 

6.2    Checking for blocking deadlock 

Linux, like many OSes, uses a combination of inter- 

rupt disabling and spin locks for mutual exclusion. 

Interrupt disabling imposes an implicit rule: a thread 

running with interrupts disabled cannot block, since 

if it was the last runnable thread, the system will 

deadlock. Similarly, because of the implementation of 

Linux kernel thread scheduhng, threads holding spin 

locks cannot block. Doing so causes deadlock when 

a sleeping thread holds a spin lock that a thread on 



the same CPU is trying to acquire. 

Our metal extension checks both rules by assum- 

ing each routine starts in a "clean" state with inter- 

rupts enabled and no locks held. As it traverses each 

code path, if it hits a statement that disables inter- 

rupts, it goes to a disabled state; an enable interrupt 

call returns it to the original state. Similarly, if it hits 

a function that acquires a spin lock, it traverses to a 

locked state; an unlock call returns it to the clean 

state. While in either of these states (or their compo- 

sition), the extension examines all function calls and 

reports an error if the call is to a function in the Ust 

of potentially blocking routines. 
Despite the simplicity of these rules, real code vi- 

olates it in numerous places. The extension found 
123 errors in Linux. Of those errors, 79 could lead 
to deadlock. The remaining 44 were calls to kmalloc 
with interrupts disabled. Possibly motivated by the 
frequency of this error, the kmalloc code checks if it 
is called with interrupts disabled, and, if so, it prints 
a warning and re-enables interrupts. In situations 
where interrupt disabling was used for synchroniza- 
tion, this leads to race conditions. The following code 
snippet is representative of a typical error (the mis- 
take has been annotated in the source but not fixed): 

/* drivers/sound/midibuf.c  ♦/ 

save_flags(flags); 

cliO; 

while   (c < count) 

for  (i = 0;   i < n;   i++) 

/* BROKE BROKE-CANT DO THIS WITH CLI! !   */ 

copy_from.user((char *)&tmp_data, 

&(buf)[c],l): 
QUEUE.BYTE(midi_out_buf[dev],   tmp.data); 

C++; 

} 
restore_flags(flags); 

The call to copyJrom_user can implicitly sleep, but 

is called after interrupts have been disabled with the 

call to cli. 

The local errors seem to be caused by driver im- 

plementors not having a clear picture of either (1) 

the rules they have to follow and (2) that user data 

movement routines can block. The global errors seem 

to be caused by the fact that it is often hard to tell 

if a function can potentially block without tediously 

tracing through several function calls in different files, 

or without a considerable amount of a priori Linux 

kernel knowledge. 

The checker produced eight false positives. Six 

were because the global calculation of blocking func- 

tions does not check if a called function would re- 

enable interrupts before calling a blocking function. 

Two others were caused by name conflicts where a 

file defined and called a function with the same name 

as a blocking function. 

The approach of this section also applies to other 

operating systems. Another implementor used our 

system to write an extension for the OpenBSD sys- 

tem that checked if interrupt handling code called a 

blocking operation. He found one bug where an in- 

terrupt handler could call a page allocation routine 

that in turn called a blocking memory allocator [29]. 

6.3    Checking module reference counts 

Linux allows kernel subsystems to be dynamically 

loaded and unloaded. Modules have a reference count 

tracking the number of kernel subsystems using them. 

Modules increment this count during loading (using 

MOD_INC_USE_COUNT) and decrement it during unload- 

ing (using MODJDEC-USE-COUNT). The kernel can un- 

load modules with a zero reference count at any time. 

A module must protect against being unloaded while 

sleeping by incrementing its reference count before 

calling a blocking function. Similarly, during unload- 

ing, it cannot block after decrementing its count. Fi- 

nally, if the module aborts installation after incre- 

menting its reference count, it must decrement the 

count to restore it to its original value. 

Our extension checks for load race conditions by 

tracking if a potentially blocking function has been 

called and flagging subsequent MOD.INCs. Conversely, 

it checks for unload race conditions by tracking if a 

MODJ)EC has been performed and flagging subsequent 

calls to potentially blocking functions. It finds dan- 

gling references by emitting an error when a MOD_INC 

has not been reversed along a path that returns a neg- 

ative integer (which idiomatically signals an error). 

As Table 3 shows, a local version of the extension 

that did not use the global Ust of blocking functions 

found 22 rule violations, whereas the global version 

found 53 cases (we have not yet confirmed the global 

errors). 

7    Linux Mutual Exclusion 

The complexity of dealing with concurrency leads 

most of the Linux kernel and its device drivers to fol- 

low a localized strategy where critical sections begin 

and end within the same function body. Despite this 

stylized use, the size of the code and implementors' 

imperfect understanding leads to errors. We wrote an 

extended version of the interrupt checker described in 

Section 3 to check that each kernel function conforms 

to the following conditions: 



Condition Applied Bug False Pos 

Holding lock ~5400 29 113 (90) 

Double lock - 1 3 

Double unlock - 1 20 (18) 

Intr disabled ~5800 44 (43) 63 (54) 

Bottom half ~ 180 4 12 

Bogus flags ~3200 4 49 (24) 

Total - 83 (82) 260 (201) 

Table 4: Results of running the Linux synchroniza- 

tion primitives checker on kernel version 2.3.99. The 

Applied column is an estimate of the number of 

times the check was applied. We skipped twelve 

warnings that were difficult to classify. The paren- 

thesized numbers show the changes when the two files 

with the most false positives are ignored. 

1. All locks acquired within the function body are 

released before exiting. 

2. No execution paths attempt to lock or unlock 

the same lock twice. 

3. Upon exiting, interrupts are either enabled or 

restored to their initial state. 

4. The "bottom halves" of interrupt handlers are 

not disabled upon exiting. 

5. Interrupt flags are saved before they are re- 

stored. 

Table 4 shows the results of running the exten- 

sion on Linux. The "Applied" column is an estimate 

of the number of times each check was applied. Two 

device drivers account for a large number of false pos- 

itives because they use macros that consult runtime 

state before locking or unlocking. The parenthesized 

numbers show the changes in the false positive results 

(over 20%) when these two files are ignored. 
The most common bugs are either holding a lock 

or leaving interrupts disabled on function exit. These 
bugs often occur when detecting an error condition 
after which the function returns immediately. For 
example, the checker found this bug in a device driver 

for PCMCIA card services 

/* drivers/pcmcia/cs.c: 
pcmcia_deregister_client */ 

spin_lock_irqsave(&s->lock, flags); 

client = fts->clients; 
while ((*client) &&  ((*client) != handle)) 

client = ft(*client)->next; 

if (♦client == NULL) 
/* forgot about &s->lock, flags! */ 
return CS_BAD.HANDLE; 

The checks for Linux locking conventions have re- 

sulted in seven kernel patches, including a fix for the 

error shown above. All seven patches fix cases where 

a lock is mistakenly held when exiting a function, and 

six of the seven are in device drivers (the last patch 

was to an implementation of ipv4 network filters). We 

have not been able to confirm many of the other po- 

tential bugs with kernel or device driver developers, 

though several strong OS implementors have exam- 

ined them and consider them to be at least suspicious. 

Most of the potential bugs are in device drivers and 

networking code - this is not surprising since much 

of this code is written by developers throughout the 

world with varying degrees of familiarity with the 

Linux kernel. 

The false positives mostly come from three sources. 

Code that intentionally violates the convention for 

the sake of efficiency or modularity accounts for 90 

false positives. For example, sometimes a family of 

related device drivers will define an interface that 

breaks the conventions. Another large source of false 

positives (48) is caused by the fact that our checker 

only performs local analysis. Some drivers implement 

their own locking functions using the basic primitives 

provided by the system. The checker will warn when 

these functions exit holding a lock or with interrupts 

disabled, which is exactly what they are supposed to 

do. Global analysis could eliminate many of these 

false positives. Finally, the fact that our system does 

not prune simple, impossible paths accounts for 35 

false positives. A typical example of this is when ker- 

nel code conditionally acquires a lock, performs an 

action, and then releases the lock based on the same 

condition. There are only two possible paths through 

this code, not the four that our system thinks exist. 

The remaining 21 false positives could be elim- 

inated by extending the checker's notion of locking 

functions and changing our system to prune the false 

branch of loop conditionals of the form "f or (;;)." 

8    Optimizing FLASH 

In addition to checking, MC can be used for opti- 

mization. Below, we describe three extensions writ- 

ten to find system-level optimization opportunities 

in the FLASH machine's cache coherence code [20]. 

This code must be fast because it implements func- 

tionaUty (cache coherence) that is usually placed in 

hardware. Eliminating even a single instruction is 

considered beneficial. Several of the protocols ex- 

amined here have been aggressively tuned for years 

due to their use in numerous performance papers as 

evidence for the effectiveness of software-controlled 



Optimization Number False Pos LOG 

Buffer Free 

Message Length 

XOR Opcode 

11 

40 

hundreds 

9 

0 

~10 

30 

32 

400(*) 

Table 5: MC-based FLASH optimizer results. Num- 

ber counts how many optimization opportunities 

were found. The XOR checker is written in an old 

version of the system — a version written in metal 

would be several factors smaller. 

cache coherence. Despite this effort, MC optimizers 

found hundreds of optimization opportunities, mostly 

due to the difficulty in manually performing equiva- 

lent searches across FLASH'S deeply nested paths. 

Buffer-free optimization. Each time a FLASH 

node receives a message, it invokes a customized mes- 

sage protocol handler that determines how to sat- 

isfy the request and update the protocol state. Han- 

dlers use the incoming message buffer to send out- 

going data messages, and must free it before exit- 

ing. Handlers can send data messages, which need 

a buffer, aind control messages, which do not. Many 

handlers send more than one message when respond- 

ing to a request. To minimize the chance of losing 

a buffer, implementors are typically conservative and 

defer buffer freeing until the last handler send, ir- 

respective of whether the last send(s) was a control 

message and therefore did not need a buffer. Unfor- 

tunately, while this strategy simplifies handler code, 

it increases buffer contention under high load. 

Our extension indicates when buffer frees can oc- 

cur earlier in the code. It traces all sends on each path 

through the function, and by looking at send argu- 

ments, detects if the send (1) needs a buffer and (2) 

frees its buffer. It gives a suggestion for any path that 

has an active buffer that ends with a "suffix" of con- 

trol sends. The extension is 56 lines long, and found 

11 instances in a large FLASH protocol, "dyn.ptr," 

where the buffer could be safely freed earlier. Each of 

these optimizations could be implemented by chang- 

ing only two hues of code. The extension also pro- 

duced nine false positives. Most of these were cases 

where the execution path was too complex to opti- 

mize without major code restructuring. 

Redundant length assignments. Our second, 

lower-level optimization extension detects redundant 

assignments to a message buffer's length field. For 

speed, when sending multiple messages, implemen- 

tors set a buffer's message length early in a handler 

and then try to reuse this setting across multiple mes- 

sages. Long path lengths make it easy to miss redun- 

dant assignments. Our checker detects redundancies 

by recording the last assignment on every path and 

warning if there are two assignments of the same con- 

stant. It discovered 40 redundant assignments in the 

FLASH protocol code. 

Efficient opcode setting. Message headers must 

specify the message's opcode (type). Opcode assign- 

ment costs two instructions. However, if the handler 

knows what opcode is currently in a header, it can 

change the opcode in one instruction by xoring the 

message header with the xor of the new and current 

opcode. Our extension detects such cases by com- 

puting when a message header, with known opcode, 

is assigned a new opcode. Both the old and new op- 

codes must be the same on all incoming paths. The 

extension determines the initial header value by look- 

ing in an automatically-built list of all opcodes a han- 

dler might receive. If there is only one possible op- 

code value, the extension records it and starts in a 

"known" state. Otherwise, the checker starts in an 

"unknown" state. It transitions from this state to 

the "known" state after the first opcode assignment. 

Each assignment encountered in the known state is 

annotated with the current opcode value. A second 

pass then checks every assignment and, if all paths 

reached it in the known state with the same opcode, 

emits a warning to the user that xor could be used to 

save an instruction. This checker found hundreds of 

such cases. 

9    Conclusion 

Systems are pervaded with restrictions of what ac- 

tions programmers must always or never perform, 

how they must order events, and which actions are 

legal in a given context. In many cases, these re- 

strictions link together the entire system, creating a 

fragile, intricate mess. Currently, systems builders 

obey these restrictions as well as they can. Unfortu- 

nately, system complexity makes such obedience dif- 

ficult to sustain. Programmers make mistakes, and 

often they have only an approximate understanding 

of important system restrictions. Such mistakes can 

easily evade testing, which rarely exercises all cases. 

We have shown that many system restrictions can 

be automatically checked and exploited using meta- 

level compilation (MC). MC makes it easy for imple- 

mentors to extend compilers with lightweight system- 

specific checkers and optimizers. Currently, a system 

rule must be understood by all implementors. MC 

allows one implementor, who understands this rule, 

to write a check that is enforced on everyone's code. 

This leverage exerts tremendous practical force on 

the development of complex systems. 



Check Errors False Positives Uses LOG 

Side-eflFects(§ 4.1) 14 2 199 25 

Static assert (§ 4.2) 5 0 1759 100 

Stack check(§ 4.3) 10+ 0 332K 53 

User-ptr(§ 5.1) 18 15 187 68 

Allocation(§ 5.2) 184 64 4732 60 

Block(§ 6.2) 123 8 - 131 

Module(§ 6.3) ~75 2 - 133 

Mutex(§ 7) 82 201 14K 64 

Total -511 ~292 - 669 

Table 6: The results of MC-based checkers summarized over all checks. Error is the number of errors found, 

False Positives is the number of false positives, Uses is the number of times the check was applied, and 

LOG is the number of lines of metal code for the extension (including comments and whitespace). 

MC is a general approach, scaling from simple 

cases such as checking assertions up to global strate- 

gies for mutual exclusion and deadlock avoidance. We 

have demonstrated MC's power by using it to check 

four real, heavily-used, and tested systems. It found 

bugs in all of them — roughly 500 in all — many 

of which would be difficult to find with testing or 

manual inspection. Further, these extensions typi- 

cally required less than a day and a hundred lines 

of code to implement. Curiously, writing code to 

check restrictions is significantly easier than writing 

code that obeys them. With few exceptions, our ex- 

tensions were written by programmers who, at best, 

only had a passing familiarity with the systems to 

which they were applied. We believe that these re- 

sults show that the use of meta-level compilation can 

significantly aid system construction. 
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