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Abstract 

We present an algorithm for checking satisfiabil- 
ity of a linear time temporal logic formula over a finite 
state concurrent program. The running time of the al- 
gorithm is exponential in the size of the formula but lin- 
ear in the size of the checked program. The algorithm 
yields also a formal proof in case the formula is valid 
over the program. The algorithm has four versions that 
check satisfiability by unrestricted, impartial, just and 
fair computations of the given program. 

Introduction 

Even though there exists a general concensus 
among a large group of theoreticians and practitioners 
about the utility and appropriateness of temporal logic 
as a specification and veriiication tool for concurrent 
programs, there is still a major controversy between 
the advocates of the linear time version and the believ- 
ers in the branching time version of temporal logic. 

Some of the arguments offered by the supporters 
of the linear time logic ([MPl], [Ll], [L2]) are better ex- 
pressibility, in particular of fairness and liveness prop- 
erties. Properties that are better expressed by branch- 
ing time logic such as the possibility of some computa- 
tion arc claimed by them (us) to be of no interest lo 
the specifiers or verifiers of concurrent systems. 

Some of the advantages pointed out by the branch- 
ing time logic advocates ([CEl], [QSl], (QSfl], (EH]) are 
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precisely this ability to express the possibility of a com- 
putation, and representing the branching structure of 
a computation. 

A strong argument in favor of branching time logic 
has been its better efficiency (lower complexity) for au- 
tomatic verification. It is not difficult to see that if 
we restrict our attention to finite state programs, i.e. 
concurrent programs in which the program variables 
range over finite domains, then the whole program can 
bc rcprcsentcd as a finite graph consisting of states and 
transitions connecting the states. Each state contains 
truth evaluation of a set of atomic properties that can 
be represented by propositions. Consequently a finite 
state program can be viewed as a finite model over 
which propositional temporal formulas can be evalu- 
ated. An important observation is that the majority of 
commuuication protocols and examples of distributed 
and coucurrcnt systems studied in the literature can be 
represented as linite slate programs. The verification 
of such systems relative to an appropriate propositional 
temporal logic spccilication is thus reduced LO the prob- 
lem of model-checking, i.e. checking that a given finite 
model satisfies a given temporal formula. Apriori this 
seems an easier problem than the satisfiability prob- 
lem which is to check whether a given temporal for- 
mula is satisfied by any model at all. It is also clear 
that model-checking as a verification tool subsumes and 
greatly improves on all the ad-hoc methods using finite 
state representation for the analysis of protocols. These 
methods, such as (ZWRCU] usually present separate 
algorithms for checking different classes of properties 
such as safety, reachability, etc. In contrast, an efficient 
model-checking procedure presents a single algorithm 
for checking all the properties that can be expressed in 
temporal logic. 

The work in [SC] analyses the complexity of some 
of the decision problems in both versions of temporal 
logic. It finds that the satisfiability problem (and hence 
checking for general validity) is intractable for both 
versions, being PSPACE-complete for the linear ver- 
sion and EXPTIME-complete for the branching ver- 
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sion. On the other hand when we consider the more 
practical model-checking problem we find that for the 
linear version it is still PSPACE-complete, while for the 
branching version it .is polynomial. 

As a result several systems have been constructed 
to perform model checking of branching-time specifica- 
tions. These include the systems reported in [CES] and 
(QSl]. In both cases it was realized that the language is 
not strong enough to express some of the fairness prop- 
erties, and attempts to partially repair this were incor- 
porated in [CES] by considering only restricted paths 
in the model. 

In this paper we present a prrrcticol (so we claim) 
general algorithm for model-checking of linear time 
specification, and therefore suggest that efficient model 
checking procedures is an advantage now shared by 
both versions, and that the expressibility issue should 
be the determining factor in preferring one version to 
the other. 

To explain how this claim is still consistent with 
the lower bound derived in [SC] we should recollect 
that in model-checking we are given a model A4 and 
a formula p. Hence the complexity of the decision pro- 
cedure should refer to ]Af] and (‘p], the respective sizes 
of both objects. Branching time model-checking is in- 
deed polynomial in ]M] . ]p]. The algorithm we present 
here for linear model-checking runs in worst time C * 
]iV]. Zab’I for some constants C and a. Hence it is still 
not better than PSPACEhard in ]p] but it is linear in 
]M]. Consequently for relatively small ‘p’s we obtain a 
very e5cient model-checking procedure. We should re- 
mind the readers that the most interesting properties, 
namely aafetg, livenese and precedence ([MPl], [MP2]) 
are expressible by temporal formulas of small size. 

Indeed, in [MP2] we presented three separate algo- 
rithms for model-checking of properties in the safety, 
liveness and precedence classes respectively, all of 
which run in time linear in ]M]. ]~p]. The present work 
generalizes these results by presenting a uniform algo- 
rithm that reduces to one of these specific algorithms 
when presented with a formula belonging to the corre- 
sponding class. 

We believe that the algorithm presented in this 
paper opens the way to the construction of practical 
finite state automatic verifiers of linear time temporal 
logic specifications. 

Programs and Computations 

Let II be a set of propositional variables. A con- 
current finite state program P over II consists of the 
following components: 

s- A finite set of states ul , . . . ,8,, . 

Pl,...,P* - A finite set of processes. Each process 
Pi: S + 2’ maps each state 8 E S to 
Pi(a) the set of its succebaors under Pi. 

I:S+2 l-l - An evaluation mapping each state 8 to 
the set of propositions l(8) C II that are 
true in 6. 

If Pi(a) # 0 we say that Pi is enabled on U. A 
state 8 is terminol if for every i = 1,. . , ,m, Pi(B) = 0. 
We augment the set of processes by the idle process PO, 
defined by: 

PO(~) = if terminal(a) then(e) eke 0. 

This leads to the situation that every state 8 has Borne 
process Pi, i = 0, 1, . . . , m that is enabled on u. 

A computation of P ie an infinite sequence of states 

pto Pf 
f7= So + 61 -t 82 + * - - 

such that for every j 2 0 8j+l E Pi,(aj). An 8- 
computation of P is a computation u such that se = 
8. 

Given a computation u we define for every k 2 0 
the k-shifted computation: 

U(k) 4 Pfk+l 
= 8k + 8k+l ---) 8k+2 + 

If for some k = 0,. . . , m there are infinitely many 
j such that ij = k then we say that Pk is activated 
infinitely often in u. Similarly we say that Pk is enabled 
infinitely often in u if there are infinitely many j’s such 
that Pk is enabled on 8j. 

Following [LPS] we define: 

A computation a is impartial if each Pi, i = 
1 1”‘) m is activated infinitely often in u. 

A computation u is jwt if for each i = 1, . . . , m ei- 

ther Pi is infinitely often disabled in u or Pi is infinitely 
often activated in u. 

A computation u i8 ftair if for each i = 1,. . . , m 
either Pi is continuously disabled beyond some state 81 
in (I or Pi is infinitely often activated in U. 

These three definition8 represent different versions 
of fairness that may be required in different frame- 
work& The algorithm we later present contain8 a com- 
ponent that varies according to the degree of fairness 
WC would like to impose. Thue by activating the ap 
propriate veraion we can check satisfiability by an un- 



restricted computation or by a computation that is re- 
stricted to be impartial, just or fair. 

Specifications and Their Interpretation 

We use linear time temporal logic for our specifi- 
cation language ([MPl]). Formulas in the language are 
constructed over the propositions in II U (true, fulae} 
using the boolean connectives 7 and V and the tem- 
poral operators 0 (next) and ll (until). Additional 
boolean connective8 (such as A, > , ZE) can be defined 
in the usual way and additional temporal operators can 
be defined by: 

0 p = true U p and up = 7 0 -p. 

The truth value of a temporal formula cp over a 
computation u denoted by ‘p lm is inductively defined 
by: 

true lo= true, false lo= jab 

For a proposition & E II, Q lb= true H & E I(Q) 

7p Ig= true H p lo= jalee 

~1 V ~32 In= true ti p1 Ia= true or ps Ia= true 

Op Iv= true H p la(,)= true 

p1Up2 lo= true H For some k > 0, ~2 l,,(k)= 
true and for each j, 0 5 j < k, pi lou)= true. 

If y3 lo= true we say that o satisfies y3 and write 
4=P. 

In the following let a denote one of the four classes 
of unrestricted, impartial, just or fair computations of 
a program P. 

If there exists an a-computation of P that satisfies 
p we say that p is a-satisfiable in P. 

If all a-computations of P satisfy p we say that p 
is a-valid over P. 

Obviously p is a-valid over P iff ~‘p is not U- 
satisfiable in P. The algorithm we present below 
checks whether a formula p is a-satisfiable in P. 

Closures and Atoms 

Let y3 be a temporal formula. The closure of p, 
CL(p) is the smallest set of formulas containing 03 and 
satisfying: 

-I 09 E CL(p) * 0-l E CL(p) 

$1 l.l $2 E cqfP0) =+ +I, 02, 0th zf $2) E CUP) 

It can be shown by induction on the structure of 
P that IWP)I I G4 

In checking validily and satisfiability of formulas 
p over a program P, we always assume that the set 
of propositions II over which P is interpreted by the 
evaluation I includes all the propositions appearing in 
P* 

An atom is defined to be a pair A = (8, F) with 
8 E S a state, and F 2 CL(p) lJ II a set of formulas 
such that: 

true E I?, fake f F 
For each proposition Q E II, & E F H & E I(s). 
For every 11, E CL(p), + E F ~3) -q6 g- F 
For every +I,& E CUP), 

hV42EF H +l~For+z~F 
For every 1 0$ E CL(p) 

-O$EFe O-+EF 
For every $1, $2 E CL(p), 

$1 u $2 E F (=) 92 E F or $1, O(rlrl U $2) E F 

For an atom A WC denote by BA and FA the state and 
set of formulas comprising A. 

The! set of all atoms is denoted by At. Clearly 
/AtI 5 ISI . 2’lpl. 

WC extend the mapping induced by processes to 
map atoms P; : At + 2At by the natural definition: 

Pi(A) = {u E At 1 8~ E Pi(dA)} 

For an atom A = (8, F) we denote 

A= p A 
PEP 

Let $ be a formula such that A -+ 4 is an instance of 
a propositional tautology. Then we write Ak$. 

A formula JI which is a boolean combination of the 
propositions in II is called a stcrte-form& 

Fair Paths and Graphs 

The procedure for checking satisfiability attempts 
to construct a structure of atoms that contains an in- 
finite path corresponding to an a-computation of P 
which satisfies cp. 

The constructed structure A = (A&R) is a graph 
whose nodes are all the atoms corresponding to S and 
p, and whose edges, given by R, are defined by: 



We define 

B~E~(A)forsomei=O,...,mand 
for every formula $, 09 E FA =+ 
rc, E FB. 

an a-path in A to be a labeled infinite 
sequence of atoms, 

*:&p2*lp>*2p2... such that: 

a) x is an infinite path in A (namely, for every j > 
0, *j+l E Pij (Ai) and for every Q6 E FA, 2 
follows that SF, E li’~~+,). 

b) The sequence of corresponding states 

is an a-computation of P. 

c) For every j 2 0 and for every $1 ti $2 E FAN there 
exists some 8 2 j such that 92 E FAN. 

If r~/==$ we say that the a-path A fulfills p. 

Proposition 1 

a) An a-path K fulfills p iff p E FAN. 

b) The formula ‘p is a-satisfiable iff there exists an 
a-path zr fulfilling it. 

Proof: 

a) Letsbe&-tAlp>AZp>... andletII,E 
pi0 

Cl,(p). The proposition is establi86ed by induc- 
tion on the structure of,+, showing that for every 
j > 0 + E FAN Sff dJ)+$ where u is the com- 
putation corresponding to x. 

b) A direct consequence of the definition of an a-path 
is that if there exists an a-path fulfilling p then p 
is a-satisfiable by the computation u derived from 
T. 
For the other direction of part b) assume an a- 
computation d salisfying bp. It. is easy to see that 
the corresponding a-path fulfilling $ can be de- 
fined by: 

where for every j 2 0, 8~~ = 8j and FAN = {$ E 

cL(P) I u(i) P +I) U 1(8j)* I 

Rom proposition 1 we conclude that if we want to 
check the a-8ati8fiability of (p, we have to look for an 

a-path in A, & 2 A1 3 A2 + . - - such that 9 E FA. 

Let x be an a-path in A. We denote by In f (r) the 
subgraph of A consisting of all the atoms that appear 
infinitely many times in K. Here and later we specify 
8Ubgraph8 G of A by defining the set of node8 belonging 
to G assuming that the edges of G are taken to be all 
the A-edges that are incident only on G-nodes. 

It, is not difficult to see that for every K, the sub 
graph Inf(n) is strongly connected. 

WC give now an independent, characterization of 
such subgraphs dependent on the restriction repre- 
sented by a. 

A subgraph B E A is debed to be self-fulfilling if 
every atom in B has at least one outgoing edge and for 
every atorn A in B and for every $1 11 $2 E FA there 
exists an atom B in B such that $2 E FB. 

Let 4 # Ns{l,... , n}; A subgraph B G A is 
called impartial with respect to N if for every i E N, 
there exist. A, B in B such that (A,B) E R and B E 
pi(*). 

An SCS (Strongly Connected Subgraph) B E A 
which is self-fulfilling is called an unredricted SCS. 

An SCS B c A is called an importioCSCS if it is 
impartial w.r.t. (with respect to) {l, . . . , m} and is self- 
fulfilling. 

An SCS B C A is called a jwt-SCS if B is self- 
fullMing and for every i = 1, . . . , m either there exists 
an atom A in B such that Pi(A) = 4 or B is impartial 
w.r.t. to (i). 

An SCS B s A is calIed a F&SCS if it is self- 
fulfilling and for every i = 1,. . . ,m either P;(A) = $ 
for every A in B or B is impartial w.r.t. to {i}. 

From the above definition8 we get,: 

Proposition 2 

a) The infinity set of an a-path is an a-SCS of A. 

b) For every a-SCS G G A there exists an a-path II 
such that Inf(I-I) = G. 

Proof 

a) Let G = Inf(~). As we already observed G 
is strongly connected. From the definition of the infin- 
ity set, it follow8 that there exists a k > 0 such that 
the atoms in G are exactly all the atoms that appear 
somewhere in 
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Let A E G and $1 U $2 E IQ. By the comment above 
A appears in d”), say A = Ai for some j 2 k. By 
condition c of the definition of o-paths, there must exist 
some I! > j such that $2 E FAN. Hence Al E G. It 
follows that G is self-fulfilling. 

This settles immediately claim a) for unrestricted 
paths t. 

Let i E (1,. . . ,nz} be an index such that x is im- 
partial with respFt to i, i.e. there exist infinitely many 

, 
j’s such that Aj -+ Aj+l in X. In particular there ex- 
ists at least one such j 2 k. Therefore, Aj, Aj+l E G 
and G is impartial with respect to {i}. 

This shows that if r is an impartial path, then 
G = Ini is an impartial SCS. 

Let r be a just path, and i E (1,. . . ,m} some 
process indcx.By the definition of just computations, 
either k is impartial with respect to i, or there are 
iniinitely many j’s such that Pi(Aj) = 0. In the first 
case G = Znf(r) is impartial with respect to {i}. In 
the second case, by taking j > k we are assured of 
some Aj E G such that Pi(Aj) = 8. Consequently G is 
a just SCS. 

In the case that t is a fair path we know that for 
each i E (1,. . . m}, either A is impartial with respect to 
i, or that for some .!, all j 2 A! satisfy Pi(Aj) = 0. In 
the case that T is impartial with respect to i, it follows 
that G is impartial with respect to {i}. In the other 
case, we know that each A E G appears infinitely many 
times in A, hence it has some instance A = Aj with 
j > ). Consequently for each A E G, Pi(A) = 0 as 
required by the definition of a fair SCS. 

b) Let G be an a-SCS. Since G is strongly con- 
nccted it is always possible to construct a finite cyclic 
path in G: 

W:&%&..+Ak =A0 

such that: 

i) 
ii) 

Every atom A E G appears in li. 

For every two atoms A, B E G and process Pi 
pr 

such that B E Pi(A), the transition A -+ B appear 
somewhere in Ei. 

Take R = liw, i.e. the path constructed out of the 
infinite repetition of A. The path x obviously satisfies 
clause a) of the definition of o-paths, and since G is self 
fulfilling also clause c). 

It only remains to check clause b). For the unre- 
stricted case clause b) is trivially true. Let j be an index 
such that G is impartial with respect to (j}. I3y the 

definition tbcrc exist A, 11 E G such that B E Pi(A). By 
the construction of rr this iraplies that infinitely many 
~+cps are taken in R, and hence A is impartial with 
respect to {j}. 

It follows that if G is an impartial SCS then A is 
an impartial path. 

Assume next that G is a just SCS. Thus for each 
j E {l,..., m}, either G is impartial with respect to 
(j} or there exists an A E G such that Pi(A) = 0. 
Siuce any such A appears infinitely many times in rr it 
follows that A is just with respect to j. 

Similarly if G is a fair SCS it follows that for each 
j E {I,... ,m} either G is impartial with respect to 
{j}, or lrll aloms A E G satisfy Pi(A) = 0. It follows 
that K is a fair path. g 

Consequently, instead of searching a-paths, which 
are infinite objects within the structure A, it is sufficient 
to look for a-SCC’s which are finite subsets of A. Thus 
a consequence of proposition 2 is that a formula ‘p is 
a-satisfiable iff there exists an atom A in A such that 
up E FA and there exists a path in A from A to an a- 
scs. 

Unfortunately, there are still too many SCS’s 
within a given graph. Therefore we concentrate on the 
mazimd strongly connected components (MSCC’s) and 
cxaminc their o-properties. One interesting property is 
monotonicity: For a E {unrestricted, impartial, just}, 
if G1 is an a-SCS and Gr C G2, where G2 is an SCS, 
then Ga is also an a-SCS. 

To see this, let us argue first that the prop 
erty of being self-fulfilling is monotonic across strongly 
counected subgraphs. Let G1 C_ G2 and Gr be self- 
fulfilling. Let $1 Zl $2 E FA where A E G2. Since 
Ga is strongly connected, there exists a finite path x 
leading from A to some B E GI. By the definition of 
the R relation connecting atoms in G, either for some 
atom C E R, $2 E Fc, or $1 Zf $2 E B. In the latter 
case, since Cl is self-fulfilling, there exists a D E G1 
such that $2 E FD. In any case we are assured of an 
atom E E G2 such that $2 E FE (E being C or D). 

For the other requirements of an a-SCS it is clear 
that they arc monotonic. 

This, however, is not the case for fair SCS. There 
we will develop an algorithm for checking whether a 
maximnlly strongly connecled component contains a 
fair SCY. 

Our first algorithm, presented by the following 
procedure a-SAT, checks whether a temporal formula 
p is a-satisfiable over the structure A, where a E 
{unrestricted, impartial, just). 
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Procedure a-SAT; 
begin 

Decompose A into MSCC’s; 

repeat 

If there is a terminal MSCC (i.e. without 

edges leading outside the component) 
which is not an a-SCS) 

then delete it from A 

u&I A = 0 or every terminal MSCC is an a-SCS; 

if there is an atom A in A such that y, E FA 
then report success else report. failure 

end 

The second algorithm, presented by the following 
procedure FAIR-SAT, checks whether a temporal for- 
mula (p is fair-satisfiable over the structure A. Let $ # 
NC {l,.. . , m}; We say that an SCS B C A is a fair- 
SCS w.r.t. N if for every i E N either Pi(A) = 4 for 
every A in B or B is impartial w.r.t. {i}, and B is self 
fulfilling. 

The procedure FAIR-SAT uses the recursive 
boolean function CFAIR (B, N), where B c A is a SCS 
and Cp # N E(l,... ,m}, that returns the boolean 
value true if B contains a Fair-SCS w.r.t. to N, and 
false otherwise. 

Procedure FAIR-SAT; 

begin 

Decompose A into MSCC’s; 

repeat 

If there is a terminal MSCC B such that 

CFAIR(B, { 1,. . . , m}) = j&e 

then delete B from A 

until A = 0 or every terminal MSCC contains 
a fair-subgraph; 

If there is an atom A in d, such that (p E FA 

then report. success else report failure 

end 

function CFAIR (B,N): booleau; 
{B is a strongly connected subgraph, N C { 1, . . . , m} is 
a set of indices. The procedure checks that B contains 
a fair SCS w.r.t. N} 

begin 

If B is not self-ful51Iing then return fdge; 

if B is impartial with respect to N 

then return true; 

Let K = {j E N 1 B is not impartial with respect 
to {j) 1 

Let BK be the subgraph obtained from B by 
deleting all the atoms A E B such that Pi(A) # 0 
for some j E K. 

if BK = 0 then return false; 
Decompose B K into maxima1 strongly connected 
components 81, . . . , Bn. 

for i := 1 to n do 

if CFAIR(Bi, N -K) then return true; 

{Otherwise, no component contains a fair SCS 
w.r.t. N - K} 

return false 

end (CFAIR} 

Proposition 3 

The temporal formula p is a-satisfiable over the 
structure A iff the procedure a-SAT reports success. 

The proof is a direct consequence of the following 
two claims: 

1) +7 is a-satis5able iff there exists an atom A in A 
such that p E FA and there exists a path in A 
from A to an (x-SCS. 

2) For a E {unrestricted, impartial, just): There is 
an a-SCS in d iff there exists an a-MSCC in A. 
This claim is true by the monotonicity of a-SCS’s. 
For the fair case: CFAIR(g, N) is correct, i.e. it, 
reports success iff B contains a fair-SCS w.r.t. to 
N. 

To establish the correctness of the CFAIR proce- 
dure, we observe 5rst that it always terminates. This is’ 
because the set K is never empty, and hence a procc 
dure called with some N can only issue recursive calls 
with the corresponding parameter equal to N-K, i.e. 
a set, with lower cardinaIity than N. 

Next, assume that a call to CFAIR(B, N) reports 
success. This can happen only if some recursive invo- 
cation of the same procedure, say CFAIR(B’, N’) with 
B’ E B and N’ 5 N reports success because B’ was 
found to be impartial with respect. to N’. It, is not difIi- 
cult to see that if B # B’ then for each j E N-N’, r’j 
is disabled on all the atoms of 8’. Thus 8’ is fair with 
respect to N. Consequently a report of success implies 
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the existence of a 8’ C B which is a fair SCS with re- 
spect to N. 

Another argument will show that if B does contain 
an SCS which is fair with respect to N, then the CFAIR 
procedure cannot report failure, 

Propoeitfon 4 

The a-validity over P is decidable. 

Proofi (p is a-valid over P iff -IVY is not a-satisfiable 
over the structure A constructed from P and CL(p). 

Complcxity of the Checking Algorithm 

Let 141 denote the size of the structure A which 
is defined as the number of nodes and edges in A. If 
we denote by IPI the similar measure for the program 
P, then it is not difficult to bound IAl by IAl 5 IPI . 
2”lpl. We also observe that in the case that each of the 
processes Pl , . . . , Pm is deterministic then lP\ <_ (m + 
l)lSl where ISI is the number of states in the program 
P. 

As is well known, the decomposition of a graph G 
into maximal strongly connected components can be 
accomplished in O(lGl) steps. It is not difficult to 
see that checking whether a component B is an n-SC% 
for a = unrestricted, impartial or just, can be done in 
O(lBl + m + 514). For the fair case, recursion is em- 

ployed but its depth never exceeds m-the number of 
processes. 

Consequently, checking whether a component B 
contains a far+SCS can be done in O(m[lBl + m + 
5lPlu w e ma summarize these arguments to obtain Y 
a bound of O(m . IPI - ZalpI) on the time complexity of 
the algorithm. 

Treating General Fairness 

The fairness notions that have been treated so far 
in this paper are directly related to fairness in schedul- 
ing between the different processes that participate in 
a concurrent system. Fairness, however, may appear in 
many other contexts providing abstract modelling for 
diverse phenomena such as: eventually reliable chan- 
nels, resource allocation, random scheduling, etc. Most 
of these fairness requirements can be specified by means 
of a formula of the general form: 

where the index sets i and Ji, i E I are finite and 
pj,qi are state formulas [EL]. To see that all the fair- 
ncss notions we considered here are special cases of this 
formula let ej, i= l,..., m denote the fact that Pj is 
currently enabled, and let tj denote the fact that the 
current step taken is performed by Pi. We actually 
need an extension of our formalism in order to have 
these as atomic propositions but the necessary general- 
ization is not difficult. 

Then, under these conventions we may express the 
notions previously considered by: 

Impartiality: I\j=l,,..,m( Cl 0 tj) 

Justice: 

i?=lf-pm 
( El 0 ttj V lej)) 

Fairness: j=l,,,,,m( 0 0 tj V 0 dTej)) 

WC show now that the algorithm checking fair satisfi- 
ability of a formula cp can be easily modified to check 
satisfiability of cp under the assumption of generalized 
fairness as given by the formula Cp. 

The procedure FAIR-SAT remains unchanged. For 
the function CFAIR we observe that the formula Q, is 
a disjunction: cf, = vie1 \ki where each \Iri has the 
general form: 

\k = l\(oOPjV 0 q qjl. 
jEJ 

Thus, in order to check that an SCS B contains an 
SCS which is fair w.r.t. @ it is sufficient to check that it 
contains an SCS which is fair w.r.t. Jli for some i E I. 

Let us consider a formula \Ir of the form above. Let 
N E J be a subset of the indices appearing in 9. An 
SCS B is defined to be @-impartial w.r.t. IV if for every 
j c N, there exists some atom A E B such that Akpi. 

An SCS B is defined to be Ilr-fair if B is self- 
fulfilling and for each j E J, either dome atom A E 
B satisiies Akpj, or all atoms A E B satisfy A+qj. 

It is not difficult to set that if B is a @-fair SCS 
then the path that passes infinitely many times through 
every atom and every edge of B satisfies 9. Conversely, 
a path R in A that satisfies @ always defines a @-fair 
SCS by forming mf(rr). 

The recursive procedure Ik-FAIR( 8, N), checks 
that the component B contains some SCS that is Jr- 
fair relative to N C J, i.e. is \IIN-fair, where \IrN is 
obtained from q by replacing J by the smaller set N. 
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fin&ion \Ir-FAIR@, N): boolean 

{D a strongly connected subgraph, N E J is a set of 
indices. The procedure checks that B contains a $N- 
fair SCS} 

begin 

if B is not self-fulfilling then return false; 

ff B is @-impartial w.r.t. N then return true; 

Let K = {i E N ( B is not impartial w.r.t. {i} } 

Let BK be the subgraph obtained from B by 
deleting all the atoms A E B such that Aklqj 
for some j E K. 

if BK = 0 then return false* , 

Decompose B K into maximal strongly connected 
components 81, . . . , &. 

foor i := 1 to n do 

if %FAIR(Bi, N - K) then 

return true; 

{Otherwise, no 8; contains a *IrNwK-fair SCS) 

return false 

end @-FAIR} 

Completenese of a Deductive Proof System 

A general deductive proof system for proving tem- 
poral properties of concurrent programs has been prc 
sented in [MP3]. In its general form such a system 
consists of three parts. The general part considers only 
uninterpreted first order temporal formulas. The do- 
mcin part axiomatires the theory of the domain over 
which the program may operate. The program part ax- 
iomatizes the behavior of a specific program. In [MP4] 
it has been shown that the program part is complete 
relative to the other two parts. This means that if we 
may take all the interpreted first order temporal for- 
mulas that are true in allmodels as theorems then the 
full proof system is adequate for proving the validity 
of such formulas that hold only over models that rep- 
resent computations of the considered program, 

In the case we consider her, that of finite state pro- 
grams, the general part reduces to its propositional ver- 
sion and no additional domain part is necessary. Since 
the completeness of the propositional version of the de- 
ductive proof system for pure temporal logic (i.e. the 
general part) has been established (See [SP] for a de- 
tailed proof), the relative completeness of [MP4] yields 
absolute completeness for proving properties of finite 
state programs. 

However, the algorithm presented above provides 
a constructive direct proof of the completeness of the 
proof system. This can be summarised by: 

Theorem 

If the algorithm claims that 03 is unsatisflabte, then 
ly3 is provable by the proof system described below. 

Thus the checking algorithm provides a tool that 
cuts both ways. For a given cp to be checked for validity, 
it will either produce a model for 7~ or a proof for p. 

Proof System - General Psrt 

The general part consists of the axioms: 

Al. 1 Op s 0-p 

AZ. a@-,q)+-,(o~+ c3q) 

A3. q p+(pA OpA 0 up) 

A4. 0-p E -, Op 

A5. O(p-‘q)+(Op+ Od 

AG. O(P -+ 0~) + (P+ UP) 

A7.(pUq)=[IqV@A O@uq))] 

AS- (P 2.f d -+ 0 q 

It contains the following inference rules: 

Rl. If p is an instance of a propositional tautology then 
I- Pm 

R2. If k b+ Q) and k p, then k q. 

R3. if /- p then k op. 

Proof System - Program Part 

The program part is formulated for a specific pro- 
gram P with the usual constituents, S, PI,. . . , Pm and 
I : S -+ 2l’. We assume that II contains a special 
proposition at 8 for each 8 E S, such that 

0t 8 E I(8) for every 8 E S 
and tat d q1(8) for every 8 # 8’,8,d E S. 

We define the following formulas: 

QEW QfElFI(~) 

i?i = v at8 forj=O,l,..., m. 
rcS,P,(4#0 

tj = v &8/\ 0(&t’) fOrj=O,l,...,m 
JWb) 
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15(a) contains all the propositional information that 
is known about the state 8. The formula cj is true if 
Pi is currently enabled. The formula tj is true in a 
sequence if the next step taken is a Pi-step. 

Bl. 

B2. 

B3. 

B4. 

The program dependent axioms are: 

A ,+ -(at 8 A at 8’) 

Ut 8 -b d(8) 

VGQ tj 

Axiom Bl states that at any instant we may be in at 
most one state. Axiom B2 states that whenever we are 
at state s all of 6(a) holds. Axiom B3 states that some 
Pj transition (j = 0, 1, . . . ,m) is going to follow each 
instant. Axiom B4 stipulates fairness. Note that B3 
implies that at least one at s holds at any instant. 

Proof of the Theorem 

Because of limitations of space we outline below 
only the major steps in the proof. 

WC assume Lhat the algorithm was applied for 
checking the satisfiability of a formula p and failed. 
This means that we constructed the structure A = 
(W,R) with W = At and decomposed it into maxi- 
mal strongly connected components Al,. . . , &. Then 
we checked each terminal component for containing a 
fair SCS and deleted each component for which the 
test failed. On completion we were either left with an 
empty graph, or the remaining graph did not contain 
an atom A such that (o E FA. We wish to show that 
this implies that +,o is provable in our system. 

The following list of lemmas establish this state- 
ment: 

Ll: 

L2: 

has 

For every $ E CL( ~0) L 

b + + VAEW,$EF* A 

Forpvery A E W 

I- A + O(VBEW,(A,B)ER a 
The empty disjunction, arising in the case that A 
no R-successors in W, is interpreted as fulsc. 

Denote by R* the reflexive transitive closure of R. 
Then we have: 

In order to follow the deletion process let us denote 
W=WsandR= RQ. Then at phase i we locate in Wi 
a terminal component that does not contain a fair SCS 
and delete it, obtaining Wi+l and Ri+l. Clearly, no 
more than k phases are required. Hence we will refer 
to Wk and Rk as the resulting graph after all deletions 

have bocu accomplished. 

WC will prove by induction on i = 0, 1, . . . , k the 
following two statements: 

L4: For every A E W - Wi, k 7A 
(i.e. a deleted atom is useless). 

L5: For every A E Wi 
I-A-+o(V BEWi,(A,E)ER,’ ‘) 

For i = 0, L4 is vacuously true, and L5 is indenti- 
cal to 1,3. Consider the passage from i to i + 1. Let C 
be the deleted component. Then Wi+l = Wi-C. Since 
C is a terminal component relative to Wi, we have by 
L5: 

L6: For:very A E C 
I- A-, D(VBEC~) 

We proceed to show that for every A E C, b oh. 
Consider the different reasons for deleting C. 

If C = (A) such that A has no Ri-successor, then 
by LO, k A -+ &i which can be shown to contra- 
dict B3. 

If C is not self-fulfilling then for every A E C there 
exists a formula p U q E FA such that for all B E C, 
q @/FB. In this case we can prove 

which by A8 leads to +yA. 

If C dots not contain a fair SCS we can show 
that O(VB~C& contradicts B4, leading again to 

Since we assnmed that the algorithm failed, we 
know that every atom A such that p E P,4 does not 
belong to W;,. By L4 we have that for every such atom 
k TA. Combining this with Ll for 4 = p we obtain 
I- T- 

Admitting the Past 

Surprisingly enough, the algorithm presented 
above can be extended with very little effort to include 
also the past fragment of linear temporal logic. Severat 
recent works (e.g. [KVK], [BK]) have indicated that the 
past operators improve the specification of safety prop 
erlics and are very crucial for achieving compositional- 
ity in temporal verification. 

The past fragment that we introduce here may 
only refer to a bounded history - starting at the be- 
ginning of the computation. 
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The past operators that we introduce are: 

@P- There exists an immediately preceding instant 
and it satisfies p. 

p S Q - p dince q, q has happened in the past and since 
then p has been continuously true. 

Some derived past operators are 

@P= 1$-p, if there exists a predecessor instant 
it must satisfy p. 

e!l = frue S q, q happened in the past. 

u!lp= 1 e up, p has been continuously true. 

The evaluation of temporal formulas p is now 
given with respect to a computation a as before, and 
a position j 2 0 within this computation. We denote 
such an evaluation by 9 1’ :. It is defined for both past 
and future operators as follows: 

true I;= true and false I’,= jalee for every u and j 2 
0. 

For a proposition Q E II, Q I’,= true a Q E I(sj) 

-y I$= true H y3 I!= falee 

cpl Vy2 I$= true t;) (~1 Ii,== true or ~2 I’,= true 
Op It= true ti p Ii+‘= true 

P ll11,lib= true w For some k 2 j 9 127 true and 
foreachi,j<i < k;pl$= 
true. 

$ ‘p Ijb= true @ j > 0 and p Ii-‘= true 
p S + I$= true H For some t 2 j 3 It= true and 

for each i, k < i < j, p Ii= 
true 

In defining CL(p), we add the following clauses: 

WECW=,tl,~CYP) 

the 

R 

$1 s $2 E CYP) * 91, $2, awl s $2) E CYP). 

In defining atoms we add the foliowing clauses to 
requirements of F: 

For every 31, $2 E CYP) 

$1 S+dFW2~Forh$(+l SWU 

In defining the structure A we redefine the relation 
as follows: 

f 
B E Pi(A) for some i = 0, 1, . . . , m, 
and 

(A,B)ER@ 
I 

for every O$ E CL(p), 
O$EJ’ACJ$EJ’B, and 

for every $ tb E CL(p), 
$EFA++@$EFB 

An atom A such that FA does not contain any formula 
of the form $ JI is called initial. 

To the definition of a-paths we add the clause: 

d) & is initial 

It can be shown that clause d) implies the follow- 
ing: For every j 2 0 and $1 S $2 E FA* there exists 
an C 5 j such that $2 E Fb. 

An atom B in A is called ccceraible if there exists 
a Finite path leading from some A E A to B such that 
A is initial. 

An SCS G of A is called occessibfe if some atom in 
G is accessible. 

To the definition of a self-fulfilling SCS we add 
the requirement that it be ecccmille. This requirement 
should therefore be satisfied by any a-SCS, and should 
be checked wherever self-fulfillment is checked. 

The procedures a-SAT and FAIR-SAT should be 
changed so that after all the deletions are complete, 
the final search is for an initial atom A such that Q E 
FA. The procedures then report success only if such an 
atom is found. 

With these modifications, propositions 1 to 4 re- 
main valid, leading to an algorithm for deciding the 
a-validity of a formula p of full temporal logic, i.e. 
spanning both past and future. 

In a subsequent paper we will present an extended 
deductive proof system for full temporal logic and prove 
its complotcness by a method that extends the re- 
stricted competeness proof presented here. 
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