
Checking That Finite State Concurrent Programs

Satisfy Their Linear Specification

Orna Lichtenstein
Tel Aviv University and

Amir Pnueli
The Weizmann Institute of Science

Ramat Aviv, Tel Aviv, Israel 69978

Abstract

We present an algorithm for checking satisfiabil-
ity of a linear time temporal logic formula over a finite
state concurrent program. The running time of the al-
gorithm is exponential in the size of the formula but lin-
ear in the size of the checked program. The algorithm
yields also a formal proof in case the formula is valid
over the program. The algorithm has four versions that
check satisfiability by unrestricted, impartial, just and
fair computations of the given program.

Introduction

Even though there exists a general concensus
among a large group of theoreticians and practitioners
about the utility and appropriateness of temporal logic
as a specification and veriiication tool for concurrent
programs, there is still a major controversy between
the advocates of the linear time version and the believ-
ers in the branching time version of temporal logic.

Some of the arguments offered by the supporters
of the linear time logic ([MPl], [Ll], [L2]) are better ex-
pressibility, in particular of fairness and liveness prop-
erties. Properties that are better expressed by branch-
ing time logic such as the possibility of some computa-
tion arc claimed by them (us) to be of no interest lo
the specifiers or verifiers of concurrent systems.

Some of the advantages pointed out by the branch-
ing time logic advocates ([CEl], [QSl], (QSfl], (EH]) are

Permission to copy without fee all or part of this ma&al is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear. and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

O1984 ACM 0-89791-147-4/85/001/0097 $00.75

Rehovot, 76100 Israel

precisely this ability to express the possibility of a com-
putation, and representing the branching structure of
a computation.

A strong argument in favor of branching time logic
has been its better efficiency (lower complexity) for au-
tomatic verification. It is not difficult to see that if
we restrict our attention to finite state programs, i.e.
concurrent programs in which the program variables
range over finite domains, then the whole program can
bc rcprcsentcd as a finite graph consisting of states and
transitions connecting the states. Each state contains
truth evaluation of a set of atomic properties that can
be represented by propositions. Consequently a finite
state program can be viewed as a finite model over
which propositional temporal formulas can be evalu-
ated. An important observation is that the majority of
commuuication protocols and examples of distributed
and coucurrcnt systems studied in the literature can be
represented as linite slate programs. The verification
of such systems relative to an appropriate propositional
temporal logic spccilication is thus reduced LO the prob-
lem of model-checking, i.e. checking that a given finite
model satisfies a given temporal formula. Apriori this
seems an easier problem than the satisfiability prob-
lem which is to check whether a given temporal for-
mula is satisfied by any model at all. It is also clear
that model-checking as a verification tool subsumes and
greatly improves on all the ad-hoc methods using finite
state representation for the analysis of protocols. These
methods, such as (ZWRCU] usually present separate
algorithms for checking different classes of properties
such as safety, reachability, etc. In contrast, an efficient
model-checking procedure presents a single algorithm
for checking all the properties that can be expressed in
temporal logic.

The work in [SC] analyses the complexity of some
of the decision problems in both versions of temporal
logic. It finds that the satisfiability problem (and hence
checking for general validity) is intractable for both
versions, being PSPACE-complete for the linear ver-
sion and EXPTIME-complete for the branching ver-

07

sion. On the other hand when we consider the more
practical model-checking problem we find that for the
linear version it is still PSPACE-complete, while for the
branching version it .is polynomial.

As a result several systems have been constructed
to perform model checking of branching-time specifica-
tions. These include the systems reported in [CES] and
(QSl]. In both cases it was realized that the language is
not strong enough to express some of the fairness prop-
erties, and attempts to partially repair this were incor-
porated in [CES] by considering only restricted paths
in the model.

In this paper we present a prrrcticol (so we claim)
general algorithm for model-checking of linear time
specification, and therefore suggest that efficient model
checking procedures is an advantage now shared by
both versions, and that the expressibility issue should
be the determining factor in preferring one version to
the other.

To explain how this claim is still consistent with
the lower bound derived in [SC] we should recollect
that in model-checking we are given a model A4 and
a formula p. Hence the complexity of the decision pro-
cedure should refer to]Af] and (‘p], the respective sizes
of both objects. Branching time model-checking is in-
deed polynomial in]M] .]p]. The algorithm we present
here for linear model-checking runs in worst time C *
]iV]. Zab’I for some constants C and a. Hence it is still
not better than PSPACEhard in]p] but it is linear in
]M]. Consequently for relatively small ‘p’s we obtain a
very e5cient model-checking procedure. We should re-
mind the readers that the most interesting properties,
namely aafetg, livenese and precedence ([MPl], [MP2])
are expressible by temporal formulas of small size.

Indeed, in [MP2] we presented three separate algo-
rithms for model-checking of properties in the safety,
liveness and precedence classes respectively, all of
which run in time linear in]M].]~p]. The present work
generalizes these results by presenting a uniform algo-
rithm that reduces to one of these specific algorithms
when presented with a formula belonging to the corre-
sponding class.

We believe that the algorithm presented in this
paper opens the way to the construction of practical
finite state automatic verifiers of linear time temporal
logic specifications.

Programs and Computations

Let II be a set of propositional variables. A con-
current finite state program P over II consists of the
following components:

s- A finite set of states ul , . . . ,8,, .

Pl,...,P* - A finite set of processes. Each process
Pi: S + 2’ maps each state 8 E S to
Pi(a) the set of its succebaors under Pi.

I:S+2 l-l - An evaluation mapping each state 8 to
the set of propositions l(8) C II that are
true in 6.

If Pi(a) # 0 we say that Pi is enabled on U. A
state 8 is terminol if for every i = 1,. . , ,m, Pi(B) = 0.
We augment the set of processes by the idle process PO,
defined by:

PO(~) = if terminal(a) then(e) eke 0.

This leads to the situation that every state 8 has Borne
process Pi, i = 0, 1, . . . , m that is enabled on u.

A computation of P ie an infinite sequence of states

pto Pf
f7= So + 61 -t 82 + * - -

such that for every j 2 0 8j+l E Pi,(aj). An 8-
computation of P is a computation u such that se =
8.

Given a computation u we define for every k 2 0
the k-shifted computation:

U(k) 4 Pfk+l
= 8k + 8k+l ---) 8k+2 +

If for some k = 0,. . . , m there are infinitely many
j such that ij = k then we say that Pk is activated
infinitely often in u. Similarly we say that Pk is enabled
infinitely often in u if there are infinitely many j’s such
that Pk is enabled on 8j.

Following [LPS] we define:

A computation a is impartial if each Pi, i =
1 1”‘) m is activated infinitely often in u.

A computation u is jwt if for each i = 1, . . . , m ei-

ther Pi is infinitely often disabled in u or Pi is infinitely
often activated in u.

A computation u i8 ftair if for each i = 1,. . . , m
either Pi is continuously disabled beyond some state 81
in (I or Pi is infinitely often activated in U.

These three definition8 represent different versions
of fairness that may be required in different frame-
work& The algorithm we later present contain8 a com-
ponent that varies according to the degree of fairness
WC would like to impose. Thue by activating the ap
propriate veraion we can check satisfiability by an un-

restricted computation or by a computation that is re-
stricted to be impartial, just or fair.

Specifications and Their Interpretation

We use linear time temporal logic for our specifi-
cation language ([MPl]). Formulas in the language are
constructed over the propositions in II U (true, fulae}
using the boolean connectives 7 and V and the tem-
poral operators 0 (next) and ll (until). Additional
boolean connective8 (such as A, > , ZE) can be defined
in the usual way and additional temporal operators can
be defined by:

0 p = true U p and up = 7 0 -p.

The truth value of a temporal formula cp over a
computation u denoted by ‘p lm is inductively defined
by:

true lo= true, false lo= jab

For a proposition & E II, Q lb= true H & E I(Q)

7p Ig= true H p lo= jalee

~1 V ~32 In= true ti p1 Ia= true or ps Ia= true

Op Iv= true H p la(,)= true

p1Up2 lo= true H For some k > 0, ~2 l,,(k)=
true and for each j, 0 5 j < k, pi lou)= true.

If y3 lo= true we say that o satisfies y3 and write
4=P.

In the following let a denote one of the four classes
of unrestricted, impartial, just or fair computations of
a program P.

If there exists an a-computation of P that satisfies
p we say that p is a-satisfiable in P.

If all a-computations of P satisfy p we say that p
is a-valid over P.

Obviously p is a-valid over P iff ~‘p is not U-
satisfiable in P. The algorithm we present below
checks whether a formula p is a-satisfiable in P.

Closures and Atoms

Let y3 be a temporal formula. The closure of p,
CL(p) is the smallest set of formulas containing 03 and
satisfying:

-I 09 E CL(p) * 0-l E CL(p)

$1 l.l $2 E cqfP0) =+ +I, 02, 0th zf $2) E CUP)

It can be shown by induction on the structure of
P that IWP)I I G4

In checking validily and satisfiability of formulas
p over a program P, we always assume that the set
of propositions II over which P is interpreted by the
evaluation I includes all the propositions appearing in
P*

An atom is defined to be a pair A = (8, F) with
8 E S a state, and F 2 CL(p) lJ II a set of formulas
such that:

true E I?, fake f F
For each proposition Q E II, & E F H & E I(s).
For every 11, E CL(p), + E F ~3) -q6 g- F
For every +I,& E CUP),

hV42EF H +l~For+z~F
For every 1 0$ E CL(p)

-O$EFe O-+EF
For every $1, $2 E CL(p),

$1 u $2 E F (=) 92 E F or $1, O(rlrl U $2) E F

For an atom A WC denote by BA and FA the state and
set of formulas comprising A.

The! set of all atoms is denoted by At. Clearly
/AtI 5 ISI . 2’lpl.

WC extend the mapping induced by processes to
map atoms P; : At + 2At by the natural definition:

Pi(A) = {u E At 1 8~ E Pi(dA)}

For an atom A = (8, F) we denote

A= p A
PEP

Let $ be a formula such that A -+ 4 is an instance of
a propositional tautology. Then we write Ak$.

A formula JI which is a boolean combination of the
propositions in II is called a stcrte-form&

Fair Paths and Graphs

The procedure for checking satisfiability attempts
to construct a structure of atoms that contains an in-
finite path corresponding to an a-computation of P
which satisfies cp.

The constructed structure A = (A&R) is a graph
whose nodes are all the atoms corresponding to S and
p, and whose edges, given by R, are defined by:

We define

B~E~(A)forsomei=O,...,mand
for every formula $, 09 E FA =+
rc, E FB.

an a-path in A to be a labeled infinite
sequence of atoms,

*:&p2*lp>*2p2... such that:

a) x is an infinite path in A (namely, for every j >
0, *j+l E Pij (Ai) and for every Q6 E FA, 2
follows that SF, E li’~~+,).

b) The sequence of corresponding states

is an a-computation of P.

c) For every j 2 0 and for every $1 ti $2 E FAN there
exists some 8 2 j such that 92 E FAN.

If r~/==$ we say that the a-path A fulfills p.

Proposition 1

a) An a-path K fulfills p iff p E FAN.

b) The formula ‘p is a-satisfiable iff there exists an
a-path zr fulfilling it.

Proof:

a) Letsbe&-tAlp>AZp>... andletII,E
pi0

Cl,(p). The proposition is establi86ed by induc-
tion on the structure of,+, showing that for every
j > 0 + E FAN Sff dJ)+$ where u is the com-
putation corresponding to x.

b) A direct consequence of the definition of an a-path
is that if there exists an a-path fulfilling p then p
is a-satisfiable by the computation u derived from
T.
For the other direction of part b) assume an a-
computation d salisfying bp. It. is easy to see that
the corresponding a-path fulfilling $ can be de-
fined by:

where for every j 2 0, 8~~ = 8j and FAN = {$ E

cL(P) I u(i) P +I) U 1(8j)* I

Rom proposition 1 we conclude that if we want to
check the a-8ati8fiability of (p, we have to look for an

a-path in A, & 2 A1 3 A2 + . - - such that 9 E FA.

Let x be an a-path in A. We denote by In f (r) the
subgraph of A consisting of all the atoms that appear
infinitely many times in K. Here and later we specify
8Ubgraph8 G of A by defining the set of node8 belonging
to G assuming that the edges of G are taken to be all
the A-edges that are incident only on G-nodes.

It, is not difficult to see that for every K, the sub
graph Inf(n) is strongly connected.

WC give now an independent, characterization of
such subgraphs dependent on the restriction repre-
sented by a.

A subgraph B E A is debed to be self-fulfilling if
every atom in B has at least one outgoing edge and for
every atorn A in B and for every $1 11 $2 E FA there
exists an atom B in B such that $2 E FB.

Let 4 # Ns{l,... , n}; A subgraph B G A is
called impartial with respect to N if for every i E N,
there exist. A, B in B such that (A,B) E R and B E
pi(*).

An SCS (Strongly Connected Subgraph) B E A
which is self-fulfilling is called an unredricted SCS.

An SCS B c A is called an importioCSCS if it is
impartial w.r.t. (with respect to) {l, . . . , m} and is self-
fulfilling.

An SCS B C A is called a jwt-SCS if B is self-
fullMing and for every i = 1, . . . , m either there exists
an atom A in B such that Pi(A) = 4 or B is impartial
w.r.t. to (i).

An SCS B s A is calIed a F&SCS if it is self-
fulfilling and for every i = 1,. . . ,m either P;(A) = $
for every A in B or B is impartial w.r.t. to {i}.

From the above definition8 we get,:

Proposition 2

a) The infinity set of an a-path is an a-SCS of A.

b) For every a-SCS G G A there exists an a-path II
such that Inf(I-I) = G.

Proof

a) Let G = Inf(~). As we already observed G
is strongly connected. From the definition of the infin-
ity set, it follow8 that there exists a k > 0 such that
the atoms in G are exactly all the atoms that appear
somewhere in

100

Let A E G and $1 U $2 E IQ. By the comment above
A appears in d”), say A = Ai for some j 2 k. By
condition c of the definition of o-paths, there must exist
some I! > j such that $2 E FAN. Hence Al E G. It
follows that G is self-fulfilling.

This settles immediately claim a) for unrestricted
paths t.

Let i E (1,. . . ,nz} be an index such that x is im-
partial with respFt to i, i.e. there exist infinitely many

,
j’s such that Aj -+ Aj+l in X. In particular there ex-
ists at least one such j 2 k. Therefore, Aj, Aj+l E G
and G is impartial with respect to {i}.

This shows that if r is an impartial path, then
G = Ini is an impartial SCS.

Let r be a just path, and i E (1,. . . ,m} some
process indcx.By the definition of just computations,
either k is impartial with respect to i, or there are
iniinitely many j’s such that Pi(Aj) = 0. In the first
case G = Znf(r) is impartial with respect to {i}. In
the second case, by taking j > k we are assured of
some Aj E G such that Pi(Aj) = 8. Consequently G is
a just SCS.

In the case that t is a fair path we know that for
each i E (1,. . . m}, either A is impartial with respect to
i, or that for some .!, all j 2 A! satisfy Pi(Aj) = 0. In
the case that T is impartial with respect to i, it follows
that G is impartial with respect to {i}. In the other
case, we know that each A E G appears infinitely many
times in A, hence it has some instance A = Aj with
j >). Consequently for each A E G, Pi(A) = 0 as
required by the definition of a fair SCS.

b) Let G be an a-SCS. Since G is strongly con-
nccted it is always possible to construct a finite cyclic
path in G:

W:&%&..+Ak =A0

such that:

i)
ii)

Every atom A E G appears in li.

For every two atoms A, B E G and process Pi
pr

such that B E Pi(A), the transition A -+ B appear
somewhere in Ei.

Take R = liw, i.e. the path constructed out of the
infinite repetition of A. The path x obviously satisfies
clause a) of the definition of o-paths, and since G is self
fulfilling also clause c).

It only remains to check clause b). For the unre-
stricted case clause b) is trivially true. Let j be an index
such that G is impartial with respect to (j}. I3y the

definition tbcrc exist A, 11 E G such that B E Pi(A). By
the construction of rr this iraplies that infinitely many
~+cps are taken in R, and hence A is impartial with
respect to {j}.

It follows that if G is an impartial SCS then A is
an impartial path.

Assume next that G is a just SCS. Thus for each
j E {l,..., m}, either G is impartial with respect to
(j} or there exists an A E G such that Pi(A) = 0.
Siuce any such A appears infinitely many times in rr it
follows that A is just with respect to j.

Similarly if G is a fair SCS it follows that for each
j E {I,... ,m} either G is impartial with respect to
{j}, or lrll aloms A E G satisfy Pi(A) = 0. It follows
that K is a fair path. g

Consequently, instead of searching a-paths, which
are infinite objects within the structure A, it is sufficient
to look for a-SCC’s which are finite subsets of A. Thus
a consequence of proposition 2 is that a formula ‘p is
a-satisfiable iff there exists an atom A in A such that
up E FA and there exists a path in A from A to an a-
scs.

Unfortunately, there are still too many SCS’s
within a given graph. Therefore we concentrate on the
mazimd strongly connected components (MSCC’s) and
cxaminc their o-properties. One interesting property is
monotonicity: For a E {unrestricted, impartial, just},
if G1 is an a-SCS and Gr C G2, where G2 is an SCS,
then Ga is also an a-SCS.

To see this, let us argue first that the prop
erty of being self-fulfilling is monotonic across strongly
counected subgraphs. Let G1 C_ G2 and Gr be self-
fulfilling. Let $1 Zl $2 E FA where A E G2. Since
Ga is strongly connected, there exists a finite path x
leading from A to some B E GI. By the definition of
the R relation connecting atoms in G, either for some
atom C E R, $2 E Fc, or $1 Zf $2 E B. In the latter
case, since Cl is self-fulfilling, there exists a D E G1
such that $2 E FD. In any case we are assured of an
atom E E G2 such that $2 E FE (E being C or D).

For the other requirements of an a-SCS it is clear
that they arc monotonic.

This, however, is not the case for fair SCS. There
we will develop an algorithm for checking whether a
maximnlly strongly connecled component contains a
fair SCY.

Our first algorithm, presented by the following
procedure a-SAT, checks whether a temporal formula
p is a-satisfiable over the structure A, where a E
{unrestricted, impartial, just).

101

Procedure a-SAT;
begin

Decompose A into MSCC’s;

repeat

If there is a terminal MSCC (i.e. without

edges leading outside the component)
which is not an a-SCS)

then delete it from A

u&I A = 0 or every terminal MSCC is an a-SCS;

if there is an atom A in A such that y, E FA
then report success else report. failure

end

The second algorithm, presented by the following
procedure FAIR-SAT, checks whether a temporal for-
mula (p is fair-satisfiable over the structure A. Let $ #
NC {l,.. . , m}; We say that an SCS B C A is a fair-
SCS w.r.t. N if for every i E N either Pi(A) = 4 for
every A in B or B is impartial w.r.t. {i}, and B is self
fulfilling.

The procedure FAIR-SAT uses the recursive
boolean function CFAIR (B, N), where B c A is a SCS
and Cp # N E(l,... ,m}, that returns the boolean
value true if B contains a Fair-SCS w.r.t. to N, and
false otherwise.

Procedure FAIR-SAT;

begin

Decompose A into MSCC’s;

repeat

If there is a terminal MSCC B such that

CFAIR(B, { 1,. . . , m}) = j&e

then delete B from A

until A = 0 or every terminal MSCC contains
a fair-subgraph;

If there is an atom A in d, such that (p E FA

then report. success else report failure

end

function CFAIR (B,N): booleau;
{B is a strongly connected subgraph, N C { 1, . . . , m} is
a set of indices. The procedure checks that B contains
a fair SCS w.r.t. N}

begin

If B is not self-ful51Iing then return fdge;

if B is impartial with respect to N

then return true;

Let K = {j E N 1 B is not impartial with respect
to {j) 1

Let BK be the subgraph obtained from B by
deleting all the atoms A E B such that Pi(A) # 0
for some j E K.

if BK = 0 then return false;
Decompose B K into maxima1 strongly connected
components 81, . . . , Bn.

for i := 1 to n do

if CFAIR(Bi, N -K) then return true;

{Otherwise, no component contains a fair SCS
w.r.t. N - K}

return false

end (CFAIR}

Proposition 3

The temporal formula p is a-satisfiable over the
structure A iff the procedure a-SAT reports success.

The proof is a direct consequence of the following
two claims:

1) +7 is a-satis5able iff there exists an atom A in A
such that p E FA and there exists a path in A
from A to an (x-SCS.

2) For a E {unrestricted, impartial, just): There is
an a-SCS in d iff there exists an a-MSCC in A.
This claim is true by the monotonicity of a-SCS’s.
For the fair case: CFAIR(g, N) is correct, i.e. it,
reports success iff B contains a fair-SCS w.r.t. to
N.

To establish the correctness of the CFAIR proce-
dure, we observe 5rst that it always terminates. This is’
because the set K is never empty, and hence a procc
dure called with some N can only issue recursive calls
with the corresponding parameter equal to N-K, i.e.
a set, with lower cardinaIity than N.

Next, assume that a call to CFAIR(B, N) reports
success. This can happen only if some recursive invo-
cation of the same procedure, say CFAIR(B’, N’) with
B’ E B and N’ 5 N reports success because B’ was
found to be impartial with respect. to N’. It, is not difIi-
cult to see that if B # B’ then for each j E N-N’, r’j
is disabled on all the atoms of 8’. Thus 8’ is fair with
respect to N. Consequently a report of success implies

102

the existence of a 8’ C B which is a fair SCS with re-
spect to N.

Another argument will show that if B does contain
an SCS which is fair with respect to N, then the CFAIR
procedure cannot report failure,

Propoeitfon 4

The a-validity over P is decidable.

Proofi (p is a-valid over P iff -IVY is not a-satisfiable
over the structure A constructed from P and CL(p).

Complcxity of the Checking Algorithm

Let 141 denote the size of the structure A which
is defined as the number of nodes and edges in A. If
we denote by IPI the similar measure for the program
P, then it is not difficult to bound IAl by IAl 5 IPI .
2”lpl. We also observe that in the case that each of the
processes Pl , . . . , Pm is deterministic then lP\ <_ (m +
l)lSl where ISI is the number of states in the program
P.

As is well known, the decomposition of a graph G
into maximal strongly connected components can be
accomplished in O(lGl) steps. It is not difficult to
see that checking whether a component B is an n-SC%
for a = unrestricted, impartial or just, can be done in
O(lBl + m + 514). For the fair case, recursion is em-

ployed but its depth never exceeds m-the number of
processes.

Consequently, checking whether a component B
contains a far+SCS can be done in O(m[lBl + m +
5lPlu w e ma summarize these arguments to obtain Y
a bound of O(m . IPI - ZalpI) on the time complexity of
the algorithm.

Treating General Fairness

The fairness notions that have been treated so far
in this paper are directly related to fairness in schedul-
ing between the different processes that participate in
a concurrent system. Fairness, however, may appear in
many other contexts providing abstract modelling for
diverse phenomena such as: eventually reliable chan-
nels, resource allocation, random scheduling, etc. Most
of these fairness requirements can be specified by means
of a formula of the general form:

where the index sets i and Ji, i E I are finite and
pj,qi are state formulas [EL]. To see that all the fair-
ncss notions we considered here are special cases of this
formula let ej, i= l,..., m denote the fact that Pj is
currently enabled, and let tj denote the fact that the
current step taken is performed by Pi. We actually
need an extension of our formalism in order to have
these as atomic propositions but the necessary general-
ization is not difficult.

Then, under these conventions we may express the
notions previously considered by:

Impartiality: I\j=l,,..,m(Cl 0 tj)

Justice:

i?=lf-pm
(El 0 ttj V lej))

Fairness: j=l,,,,,m(0 0 tj V 0 dTej))

WC show now that the algorithm checking fair satisfi-
ability of a formula cp can be easily modified to check
satisfiability of cp under the assumption of generalized
fairness as given by the formula Cp.

The procedure FAIR-SAT remains unchanged. For
the function CFAIR we observe that the formula Q, is
a disjunction: cf, = vie1 \ki where each \Iri has the
general form:

\k = l\(oOPjV 0 q qjl.
jEJ

Thus, in order to check that an SCS B contains an
SCS which is fair w.r.t. @ it is sufficient to check that it
contains an SCS which is fair w.r.t. Jli for some i E I.

Let us consider a formula \Ir of the form above. Let
N E J be a subset of the indices appearing in 9. An
SCS B is defined to be @-impartial w.r.t. IV if for every
j c N, there exists some atom A E B such that Akpi.

An SCS B is defined to be Ilr-fair if B is self-
fulfilling and for each j E J, either dome atom A E
B satisiies Akpj, or all atoms A E B satisfy A+qj.

It is not difficult to set that if B is a @-fair SCS
then the path that passes infinitely many times through
every atom and every edge of B satisfies 9. Conversely,
a path R in A that satisfies @ always defines a @-fair
SCS by forming mf(rr).

The recursive procedure Ik-FAIR(8, N), checks
that the component B contains some SCS that is Jr-
fair relative to N C J, i.e. is \IIN-fair, where \IrN is
obtained from q by replacing J by the smaller set N.

103

fin&ion \Ir-FAIR@, N): boolean

{D a strongly connected subgraph, N E J is a set of
indices. The procedure checks that B contains a $N-
fair SCS}

begin

if B is not self-fulfilling then return false;

ff B is @-impartial w.r.t. N then return true;

Let K = {i E N (B is not impartial w.r.t. {i} }

Let BK be the subgraph obtained from B by
deleting all the atoms A E B such that Aklqj
for some j E K.

if BK = 0 then return false* ,

Decompose B K into maximal strongly connected
components 81, . . . , &.

foor i := 1 to n do

if %FAIR(Bi, N - K) then

return true;

{Otherwise, no 8; contains a *IrNwK-fair SCS)

return false

end @-FAIR}

Completenese of a Deductive Proof System

A general deductive proof system for proving tem-
poral properties of concurrent programs has been prc
sented in [MP3]. In its general form such a system
consists of three parts. The general part considers only
uninterpreted first order temporal formulas. The do-
mcin part axiomatires the theory of the domain over
which the program may operate. The program part ax-
iomatizes the behavior of a specific program. In [MP4]
it has been shown that the program part is complete
relative to the other two parts. This means that if we
may take all the interpreted first order temporal for-
mulas that are true in allmodels as theorems then the
full proof system is adequate for proving the validity
of such formulas that hold only over models that rep-
resent computations of the considered program,

In the case we consider her, that of finite state pro-
grams, the general part reduces to its propositional ver-
sion and no additional domain part is necessary. Since
the completeness of the propositional version of the de-
ductive proof system for pure temporal logic (i.e. the
general part) has been established (See [SP] for a de-
tailed proof), the relative completeness of [MP4] yields
absolute completeness for proving properties of finite
state programs.

However, the algorithm presented above provides
a constructive direct proof of the completeness of the
proof system. This can be summarised by:

Theorem

If the algorithm claims that 03 is unsatisflabte, then
ly3 is provable by the proof system described below.

Thus the checking algorithm provides a tool that
cuts both ways. For a given cp to be checked for validity,
it will either produce a model for 7~ or a proof for p.

Proof System - General Psrt

The general part consists of the axioms:

Al. 1 Op s 0-p

AZ. a@-,q)+-,(o~+ c3q)

A3. q p+(pA OpA 0 up)

A4. 0-p E -, Op

A5. O(p-‘q)+(Op+ Od

AG. O(P -+ 0~) + (P+ UP)

A7.(pUq)=[IqV@A O@uq))]

AS- (P 2.f d -+ 0 q

It contains the following inference rules:

Rl. If p is an instance of a propositional tautology then
I- Pm

R2. If k b+ Q) and k p, then k q.

R3. if /- p then k op.

Proof System - Program Part

The program part is formulated for a specific pro-
gram P with the usual constituents, S, PI,. . . , Pm and
I : S -+ 2l’. We assume that II contains a special
proposition at 8 for each 8 E S, such that

0t 8 E I(8) for every 8 E S
and tat d q1(8) for every 8 # 8’,8,d E S.

We define the following formulas:

QEW QfElFI(~)

i?i = v at8 forj=O,l,..., m.
rcS,P,(4#0

tj = v &8/\ 0(&t’) fOrj=O,l,...,m
JWb)

104

15(a) contains all the propositional information that
is known about the state 8. The formula cj is true if
Pi is currently enabled. The formula tj is true in a
sequence if the next step taken is a Pi-step.

Bl.

B2.

B3.

B4.

The program dependent axioms are:

A ,+ -(at 8 A at 8’)

Ut 8 -b d(8)

VGQ tj

Axiom Bl states that at any instant we may be in at
most one state. Axiom B2 states that whenever we are
at state s all of 6(a) holds. Axiom B3 states that some
Pj transition (j = 0, 1, . . . ,m) is going to follow each
instant. Axiom B4 stipulates fairness. Note that B3
implies that at least one at s holds at any instant.

Proof of the Theorem

Because of limitations of space we outline below
only the major steps in the proof.

WC assume Lhat the algorithm was applied for
checking the satisfiability of a formula p and failed.
This means that we constructed the structure A =
(W,R) with W = At and decomposed it into maxi-
mal strongly connected components Al,. . . , &. Then
we checked each terminal component for containing a
fair SCS and deleted each component for which the
test failed. On completion we were either left with an
empty graph, or the remaining graph did not contain
an atom A such that (o E FA. We wish to show that
this implies that +,o is provable in our system.

The following list of lemmas establish this state-
ment:

Ll:

L2:

has

For every $ E CL(~0) L

b + + VAEW,$EF* A

Forpvery A E W

I- A + O(VBEW,(A,B)ER a
The empty disjunction, arising in the case that A
no R-successors in W, is interpreted as fulsc.

Denote by R* the reflexive transitive closure of R.
Then we have:

In order to follow the deletion process let us denote
W=WsandR= RQ. Then at phase i we locate in Wi
a terminal component that does not contain a fair SCS
and delete it, obtaining Wi+l and Ri+l. Clearly, no
more than k phases are required. Hence we will refer
to Wk and Rk as the resulting graph after all deletions

have bocu accomplished.

WC will prove by induction on i = 0, 1, . . . , k the
following two statements:

L4: For every A E W - Wi, k 7A
(i.e. a deleted atom is useless).

L5: For every A E Wi
I-A-+o(V BEWi,(A,E)ER,’ ‘)

For i = 0, L4 is vacuously true, and L5 is indenti-
cal to 1,3. Consider the passage from i to i + 1. Let C
be the deleted component. Then Wi+l = Wi-C. Since
C is a terminal component relative to Wi, we have by
L5:

L6: For:very A E C
I- A-, D(VBEC~)

We proceed to show that for every A E C, b oh.
Consider the different reasons for deleting C.

If C = (A) such that A has no Ri-successor, then
by LO, k A -+ &i which can be shown to contra-
dict B3.

If C is not self-fulfilling then for every A E C there
exists a formula p U q E FA such that for all B E C,
q @/FB. In this case we can prove

which by A8 leads to +yA.

If C dots not contain a fair SCS we can show
that O(VB~C& contradicts B4, leading again to

Since we assnmed that the algorithm failed, we
know that every atom A such that p E P,4 does not
belong to W;,. By L4 we have that for every such atom
k TA. Combining this with Ll for 4 = p we obtain
I- T-

Admitting the Past

Surprisingly enough, the algorithm presented
above can be extended with very little effort to include
also the past fragment of linear temporal logic. Severat
recent works (e.g. [KVK], [BK]) have indicated that the
past operators improve the specification of safety prop
erlics and are very crucial for achieving compositional-
ity in temporal verification.

The past fragment that we introduce here may
only refer to a bounded history - starting at the be-
ginning of the computation.

105

The past operators that we introduce are:

@P- There exists an immediately preceding instant
and it satisfies p.

p S Q - p dince q, q has happened in the past and since
then p has been continuously true.

Some derived past operators are

@P= 1$-p, if there exists a predecessor instant
it must satisfy p.

e!l = frue S q, q happened in the past.

u!lp= 1 e up, p has been continuously true.

The evaluation of temporal formulas p is now
given with respect to a computation a as before, and
a position j 2 0 within this computation. We denote
such an evaluation by 9 1’ :. It is defined for both past
and future operators as follows:

true I;= true and false I’,= jalee for every u and j 2
0.

For a proposition Q E II, Q I’,= true a Q E I(sj)

-y I$= true H y3 I!= falee

cpl Vy2 I$= true t;) (~1 Ii,== true or ~2 I’,= true
Op It= true ti p Ii+‘= true

P ll11,lib= true w For some k 2 j 9 127 true and
foreachi,j<i < k;pl$=
true.

$ ‘p Ijb= true @ j > 0 and p Ii-‘= true
p S + I$= true H For some t 2 j 3 It= true and

for each i, k < i < j, p Ii=
true

In defining CL(p), we add the following clauses:

WECW=,tl,~CYP)

the

R

$1 s $2 E CYP) * 91, $2, awl s $2) E CYP).

In defining atoms we add the foliowing clauses to
requirements of F:

For every 31, $2 E CYP)

$1 S+dFW2~Forh$(+l SWU

In defining the structure A we redefine the relation
as follows:

f
B E Pi(A) for some i = 0, 1, . . . , m,
and

(A,B)ER@
I

for every O$ E CL(p),
O$EJ’ACJ$EJ’B, and

for every $ tb E CL(p),
$EFA++@$EFB

An atom A such that FA does not contain any formula
of the form $ JI is called initial.

To the definition of a-paths we add the clause:

d) & is initial

It can be shown that clause d) implies the follow-
ing: For every j 2 0 and $1 S $2 E FA* there exists
an C 5 j such that $2 E Fb.

An atom B in A is called ccceraible if there exists
a Finite path leading from some A E A to B such that
A is initial.

An SCS G of A is called occessibfe if some atom in
G is accessible.

To the definition of a self-fulfilling SCS we add
the requirement that it be ecccmille. This requirement
should therefore be satisfied by any a-SCS, and should
be checked wherever self-fulfillment is checked.

The procedures a-SAT and FAIR-SAT should be
changed so that after all the deletions are complete,
the final search is for an initial atom A such that Q E
FA. The procedures then report success only if such an
atom is found.

With these modifications, propositions 1 to 4 re-
main valid, leading to an algorithm for deciding the
a-validity of a formula p of full temporal logic, i.e.
spanning both past and future.

In a subsequent paper we will present an extended
deductive proof system for full temporal logic and prove
its complotcness by a method that extends the re-
stricted competeness proof presented here.

References

[BMPI

H. Barringer and R. Kuiper, A Temporal Logic
Specification Method Supporting Hierarchi-
cal Development, University of Manchester,
(1983).

M. Ben-Ari, 2. Manna, A. Pnueli, The Tempe
ral Logic of Branching Time, Acts Informafica
20 (1983) pp. 207-226.

WI

ICES1

\

E.M. Clarke, E.A. Emerson, Synthesis of Syn-
chronization Skeletons for Branching Time
Temporal Logic, Proc. of the Workshop on
Logic of Programa, Yorktown Heights, NY,
Springer Verlag LNCS Vol. 131 (1982).

E.M. Clarke, E.A. Emerson and A.P. Sistla,
Automatic Verification of Finite State Con-
current Systems Using Temporal Logic Spec-
ifications: A Practical Approach, ldh ACM
Symposium on Principle6 .of Programming
Languages, Austin, Texas, January 1983.

106

WI

PI

WRl

FJll

PJ21

PSI

WV

wp21

FIP31

IMP41

EA. Emerson, J.Y. Halpern, Sometimes and
No1 Never Revisited: On Branching Time
Versus Linear Time, ltih ACM Symposium
on Principles of Programming Languages,
Austin, Texas, 1983.

E.A. Emerson and C.L. Lei, Temporal Model
Checking Under Generalieed Fairness Con-
straints, University of Texas, Austin July
(1984).

R. Koymans, J. Vytopil and W.P. de Roever,
Real-time Programming and Asynchronous
Message Passing, Fend ACM Symposium on
Principles of Distributed Computing, Mon-
treal, Canada (1983) 187-197.

L. Lamport, ‘Sometime’ is Sometimes ‘Not
Never- A Tutorial on the Temporal Logic of
Programs, Proc. of the ‘@ Annual ACMSym-
poaium on Principles of Programming Lan-
guage6, Jan. 1980.

L. Lamport, What good is Temporal Logic?
Information Processing 1983, Proc. of the #’
IFIP Congreos, R.E.A. Mason Editor, North
Holland, pp. 657-668.

D. Lehmann, A. Pnueli, J. Stavi, Impartial-
ity, Justice and Fairness: The Ethics of Con-
current Termination, Automata, Languages
and Programming, Springer Verlag LNCS 115
(1981) pp. 265-277.

2. Manna, A. Pnueli, Verification of Concur-
rent Programs: The Temporal Framework,
in the Correctness Problem in Computer Sci-
ence, R.S. Boyer, J.S. Moore Editors, Inter-
national Lecture Series in Computer Science,
Academic Press (1981).

Z. Manna, A. Pnueli, Proving Precedence
Properties: The Temporal Way, Technical
Report CS84-04, The Weiemann Institute
February 1984, also a shorter version in Au-
tomata, Languages and Programming 10th
Colloquium Barcelona, July, 1983, Springer
Verlag LNCS 154, pp. 491-512.

Z. Manna, A. Pnueli, Verification of Con-
current Programs: A Temporal Proof Sys-
tem, Foundations of Computer Science IV,
Distributed Systems: Part 2, Semantics and
Logic, J.W. DeBakker, J. Van Leeuwen Edi-
tors, Mathematical Centre Tracts 169 Ams-
terdam 1983, pp. 163-255.

Z. Manna, A. Pnueli, How to Cook a Temporal
Proof System for Your Pet Language, Sgm-

[Qsll

IQ=1

WI

PI

pooium on Principle8 of Programming Lan-
guaged, Austin, Texas (1983).

J.P. Quelle, J. Sifakis, Specification and Ver-
ification of Concurrent Systems in CESAR,
Proc. of the ph Internutiond Symposium on
Programming, 1981.

J.P. Quelle, J. Sifakis, Fairness and Related
Properties in Transition Systems, IMAG Re-
search Report 292, Grenoble, March 1982.

A.P. Sistla, E.M. Clarke, The Complexity
of Propositional Temporal Logic, 14”‘ ACM
Syrrapoaium on Theory of Computing, May
1982, pp. 159-167.

R. Sherman and A. Pnueli, Semantic Tableau
for Temporal Logic, Technical Report, CS81-
21, Weizmann Institute of Science, Septem-
ber (1981)

[ZWRCBJP. Zafiropulo, C. West, H. Rudin, D. Cowan,
D. &and, Towards Analyzing and Synthesiz-
ing Protocols, IEEE Transactions on Commu-
nicationc, Vol. COM-28, No. 4, April 1980,
pp. 651-671.

107

