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Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in
computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes
is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical
to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate esti-
mates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally
make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce
CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the
position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate
the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived ge-
nomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform ex-
isting approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate
genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality.
In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select
genomes suitable for specific gene- and genome-centric analyses of microbial communities.

[Supplemental material is available for this article.]

Recent advances in high-throughput sequencing combined with
improving computational methods are enabling the rapid, cost
effective recovery of genomes from cultivated and uncultivated
microorganisms across a wide range of host-associated and envi-
ronmental samples. Large-scale initiatives, such as the Genomic
Encyclopedia of Bacteria and Archaea (GEBA) (Wu et al. 2009),
aim to provide reference genomes from isolated species across
the Tree of Life, whereas targeted efforts such as the Human
Microbiome Project (HMP) (Turnbaugh et al. 2007) and the
GEBA-Root Nodulating Bacteria (GEBA-RNB; http://jgi.doe.gov/)
initiatives are providing reference genomes necessary for under-
standing the role of microorganisms in specific habitats. These ef-
forts are complemented by initiatives such as the GEBA-Microbial
Dark Matter (GEBA-MDM) project, which used single-cell geno-
mics to obtain genomes from uncultivated bacterial and archaeal
lineages (Rinke et al. 2013). Several studies have also demonstrated
the successful recovery of high-quality population genomes
directly from metagenomic data (Tyson et al. 2004; Wrighton
et al. 2012; Albertsen et al. 2013; Sharon et al. 2013). Together
these initiatives have produced thousands of draft genomes
and stand to provide tens of thousands more as sequencing tech-
nology and computational methodologies continue to improve.
Although this rapid recovery of genomes stands to greatly improve
our understanding of the microbial world, it is outpacing our abil-
ity to manually assess the quality of individual genomes.

In order to make robust inferences from the increasing avail-
ability of draft genomes, it is critical to distinguish between ge-
nomes of varying quality (Mardis et al. 2002; Chain et al. 2009).
In particular, genomes recovered from single cells ormetagenomic
data require careful scrutiny due to the additional complications
inherent in obtaining genomes using these approaches (Dick
et al. 2010; Albertsen et al. 2013). The quality of isolate genomes
has traditionally been evaluated using assembly statistics such as
N50 (Salzberg et al. 2012; Gurevich et al. 2013), whereas single-
cell and metagenomic studies have relied on the presence and ab-
sence of universal single-copy “marker” genes for estimating ge-
nome completeness (Wrighton et al. 2012; Haroon et al. 2013;
Rinke et al. 2013; Sharon et al. 2013). However, the accuracy of
this completeness estimate has not been evaluated, and the ap-
proach is likely to be limited by both the uneven distribution of
universal marker genes across a genome and their low number,
typically accounting for <10% of all genes (Sharon and Banfield
2013). These limitations have been partially addressed by identify-
ing genes that are ubiquitous and single copy within a specific
phylum, which increases the number of marker genes used in
the estimate (Swan et al. 2013). Single-copy marker genes present
multiple times within a recovered genome have also been used to
estimate potential contamination (Albertsen et al. 2013; Soo et al.
2014; Sekiguchi et al. 2015).

Here we describe CheckM, an automatedmethod for estimat-
ing the completeness and contamination of a genome usingmark-
er genes that are specific to a genome’s inferred lineage within a
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reference genome tree. Using simulated genomes of varying de-
grees of quality, we demonstrate that lineage-specificmarker genes
provide refined estimates of genome completeness and contami-
nation compared to the universal or domain-level marker genes
commonly used. Marker genes that are consistently collocated
within a lineage do not provide independent evidence of a ge-
nome’s quality, so collocated marker genes were grouped into
marker sets in order to further refine estimates of genome quality.
We show that lineage-specific collocated marker sets provide ro-
bust estimates across all bacterial and archaeal lineages, with com-
pleteness and contamination estimates generally having a low
absolute error even when genomes are relatively incomplete
(70%) with medium contamination (10%). We also propose a
fixed vocabulary for defining genome quality based on estimates
of completeness and contamination that is suitable for automated
screening of genomes from large-scale sequencing initiatives and
for annotating genomes in reference databases. We envisage that
CheckM will help identify problematic genomes before they are
deposited in public databases. For single-cell genomes and popula-
tion genomes recovered from metagenomic data, the improved
quality estimates provided by CheckM allow biological inferences
to be made in the context of genome quality and highlight ge-
nomes that would benefit from further refinement.

Results

Simulationmodels for evaluating the accuracy of quality estimates

Three independent models were used to generate simulated
genomes suitable for evaluating the completeness and contamina-
tion estimates provided by CheckM. Under the “random frag-
ment” model, 3324 high-quality draft genomes (spanning 39
classes and 20 phyla) obtained from IMG were fragmented into
nonoverlapping windows of 5–50 kbp and randomly sampled in
order to generate genomes with varying degrees of completeness
and contamination (see Methods for more details). This model al-
lows a large number of genomes to be simulated at varying degrees
of quality and provides a baseline for assessing the accuracy of
completeness and contamination estimates. In order to simulate
genomes reflecting the characteristics of assembled contigs, the
2430 high-quality draft genomes (spanning 31 classes and 18 phy-
la) comprised of 20 or more contigs were used to simulate incom-
plete genomes contaminated with foreign DNA. Under this
“random contig” model, incomplete genomes were generated by
randomly removing contigs to achieve a desired level of complete-
ness and contamination introduced by randomly adding contigs
from a randomly selected draft genome.

The final model simulates genomes that reflect the limita-
tions of metagenomic binning methods that rely on the statistical
properties of assembled contigs (e.g., tetranucleotide signatures,
coverages) to determine their source genome. Since the variance
of genome statistics increase with decreasing contig length, bin-
ning methods are more likely to incorrectly bin shorter contigs
(Dick et al. 2010; Albertsen et al. 2013; Imelfort et al. 2014). The
“inverse length” model captures this limitation by generating in-
complete and contaminated genomes in a manner similar to the
random contig model, but with contigs removed or added with a
probability inversely proportional to a contig’s length.

For all three models, genomes were generated at 50%–100%
completeness and 0%–20% contamination. Although genomes re-
covered using single-cell genomics are often <50% complete, we
have focused on relatively complete genomes as these have a

broader range of applications, and we believe the methodology
of combining reads from multiple single cells belonging to the
sample population, which often results in highly complete ge-
nomes, will become common practice. Similarly, we have focused
on genomes with ≤20% contamination as there are limited appli-
cations for genomes with excessive levels of contamination.

Assessment of universal- and domain-level marker gene sets

Within CheckM, a gene identified as single copy in ≥97% of ge-
nomes is considered to be a marker gene. The genome quality esti-
mates provided by themarker sets used byCheckMwere compared
with three universal (Mende et al. 2013; Rinke et al. 2013; Darling
et al. 2014), three bacterial (Dupont et al. 2012;Wuand Scott 2012;
Rinke et al. 2013), and twoarchaeal (WuandScott 2012;Rinke et al.
2013)marker sets using genomes simulatedunder the randomfrag-
ment model. The universal marker sets had similar performance
with the exception of the SpecI set (Mende et al. 2013), which pro-
vided superior contamination estimates at the expense of substan-
tially less accurate completeness estimates (Supplemental Table
S1). Among the CheckM, GEBA-MDM (Rinke et al. 2013), and
PhyloSift (Darling et al. 2014) sets, themean absolute error in qual-
ity estimates provided by CheckM never deviated by more than
1.4% andwas typically within 1% of the best performing universal
marker set. The four bacterial-specific and three archaeal-specific
marker sets provided farmore accurate estimates than the universal
sets with the exception of the poorly performing Amphora
2 set (Supplemental Table S1;Wu and Scott 2012). Themean abso-
lute error in the completeness estimates provided by CheckM’s
domain-specificmarker sets were alwayswithin 1% of the best per-
forming marker set, whereas the contamination estimates were
generally within 1% and always within 1.8%.

Organizing marker genes into collocated sets

Because marker genes are required to be present in nearly all ge-
nomeswithin a lineage (e.g., all bacteria or archaea), they often en-
code essential functions and are frequently organized into operons
(Supplemental Fig. S1).Marker genes that are consistently collocat-
ed do not provide independent information regarding the com-
pleteness or contamination of a genome. To address this, we
grouped marker genes that were consistently collocated within a
lineage into marker sets and used this grouping structure to refine
estimates of genome completeness and contamination. Collocated
marker genes are common across all taxonomic groups with 36%
of marker genes, on average, being grouped into a set with one
or more other marker genes (Supplemental Table S2).

We evaluated the benefit of collocated marker sets for assess-
ing genome quality by applying CheckM’s domain-specific mark-
ers (bacteria: 104 markers organized into 58 sets; archaea: 150
markers organized into 108 sets) to genomes simulated under
the random fragment model. Completeness and contamination
estimates calculated with collocated marker sets were superior to
estimates determined with individual marker genes regardless of
the completeness or contamination of the simulated genomes
(Fig. 1; Supplemental Table S3). The mean absolute error in com-
pleteness (contamination) estimates across all simulated genomes
increased from 4.3% to 5.7% (3.8% to 4.7%) when using marker
sets compared to 5.5% to 9.0% (4.7% to 6.8%)when using individ-
ualmarker genes as thewindow sizewas increased from5 to 50 kbp
(Supplemental Table S3).

To further evaluate the benefits of using collocated marker
sets, domain-specific markers were used to estimate the quality
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of genomes simulated under the randomcontig and inverse length
models. Under the random contig model, the mean absolute error
in the completeness and contamination estimates across all simu-
lated genomes was reduced from 8.5% to 5.4% and 5.9% to 4.1%,
respectively, when genome quality was estimated with collocated
marker sets as opposed to individual marker genes (Supplemental
Fig. S2; Supplemental Table S4). Similar improvements were ob-
tained under the inverse length model, although estimates were
less accurate for genomes generated under this model (complete-
ness: 10.3%–6.6%; contamination: 8.2%–5.6%) (Supplemental
Fig. S3; Supplemental Table S5).

Inference of reference genome tree

Estimates of completeness and contamination can be further re-
fined by using lineage-specific, collocated marker sets determined
from the placement of a query genomewithin a reference genome
tree (Fig. 2). The reference tree used by CheckM was inferred from
the concatenation of 43 conserved marker genes with largely con-
gruent phylogenetic histories (Supplemental Tables S6, S7). It in-
corporates 2052 finished and 3604 draft genomes obtained from
the Integrated Microbial Genomes (IMG) database (Markowitz
et al. 2014) identified as being near complete with minimal con-
tamination (see Methods). The inferred tree (Supplemental Fig.
S4) shares features in common with recently published genome
trees, including the class Clostridia being highly paraphyletic
(Yutin and Galperin 2013) and the class Epsilonproteobacteria re-
siding outside the Proteobacteria phylum (Rinke et al. 2013). These
discrepancies between phylogeny and taxonomy will cause mark-
er genes calculated fromnamed lineageswithin the genome tree to
deviate from those determined strictly from assigned taxonomy.
More importantly, a reference tree allows lineage-specific marker

genes to be established for any internal
nodes and not just those representing a
named taxonomic group.

Assessment of lineage-specific
marker sets

Lineage-specific marker sets were deter-
mined for all nodes within the reference
genome tree by identifying single-copy
genes present in ≥97% of all descendant
genomes. The quality of a genome can
be estimated using themarker set defined
at any parental node between the ge-
nome’s position in the reference tree
and the root. A simulation framework
was used to establish the parental lineage
with themost favorable set ofmarkers for
assessing the quality of genomes placed
along any branch in the reference tree
(Fig. 3). Briefly, finished genomes were
used to simulate incomplete and contam-
inated genomes placed along a branch,
and the parental lineage whose marker
genesmost accurately estimated thequal-
ity of these genomes was determined.

We evaluated the effectiveness of
the selected lineage-specific marker sets
on genomes generated under all three
simulation models. The quality of each
simulated genome was estimated using

collocated marker sets inferred from genomes within (1) the ar-
chaeal or bacterial lineage, (2) the lineage selected by the simula-
tion framework, and (3) the parental lineage producing the most

Figure 1. Error in completeness and contamination estimates on simulated genomes with 50%, 70%,
80%, or 90% completeness (comp.) and 5%, 10%, or 15% contamination (cont.). Quality estimates
were determined using domain-level marker genes treated as individual markers (IM) or organized
into collocatedmarker sets (MS). Simulated genomes were generated under the random fragment mod-
el from 3324 draft genomes spanning 39 classes (20 phyla) with each draft genome being used to gen-
erate 20 simulated genomes. A systematic bias in the estimates results in completeness being
overestimated on average (median value to the right of zero) and contamination being underestimated
on average (median value to the left of zero). Results are summarized using box-and-whisker plots show-
ing the 1st (99th), 5th (95th), 25th (75th), and 50th percentiles.

Figure 2. CheckM consists of a workflow for precomputing lineage-spe-
cific marker genes for each branch within a reference genome tree (top
box) and an online workflow for inferring the quality of putative genomes
(bottom box). Starting with a set of annotated reference genomes, the
quality of these genomes is assessed in order to produce a set of near-com-
plete genomes suitable for inferring marker genes. These genomes form
the basis of a reference genome tree. A simulation framework is then
used to associate each branch in the reference genome tree with a line-
age-specific marker set suitable for robustly estimating the quality of ge-
nomes placed along a given branch (Fig. 3). To determine the quality of
a putative genome, its position within the reference genome tree is in-
ferred in order to establish the set of marker genes suitable for assessing
its quality. These marker genes are identified within the putative genome
and the presence/absence of these genes used to estimate its complete-
ness and contamination.
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accurate estimates. Case 3 represents an idealized case inwhich the
parental lineage is selected independently for each simulated ge-
nome, which is in contrast to Case 2, where the single parental lin-
eage selected by the simulation framework must be used for all
simulated genomes placed along a given branch. Under all three
models, the selected lineage-specificmarker sets providedmore ac-
curate completeness and contamination estimates than domain-
specific marker sets and produced estimates nearly as accurate as
the best performing lineage-specific marker sets (Fig. 4; Table 1;
Supplemental Figs. S5, S6; Supplemental Tables S8–S10). The im-
provement in quality estimates can be substantial with the mean
absolute error in completeness and contamination being reduced
by 44.4% (5.4%–3.0%) and 19.5% (4.1%–3.3%), respectively,
when using selected lineage-specific sets instead of the domain-
specific sets to estimate the quality of genomes generated with
the random contig model. In addition, the variances of the com-
pleteness and contamination estimates are substantially reduced.
Summarizing results by the taxonomic group affiliated with each
simulated genome indicated that the selected lineage-specific
sets provided improved estimates across all 39 classes (20 phyla)
considered in this study, with the exception of the poorly sampled
Synergistetes lineage, in which the estimates were largely un-
changed (Supplemental Fig. S7; Supplemental Tables S11–S13).

Influence of taxonomic novelty

“Natural” taxonomic novelty within the test set of 3324 draft ge-
nomes was examined in order to explore the influence of novelty
on genome quality estimates. As expected, increasing taxonomic
novelty results in the preferential use of more broadly defined lin-
eage-specific marker sets (Supplemental Table S14). For example,
69.7% of the 33 test genomes that are sole representatives of differ-
ent taxonomic families within the reference genome tree were
evaluated with a lineage-specific marker set at a rank of class or
higher, whereas only 17.9% of the 1923 genomes with multiple
strains within the reference genome tree were evaluated with
such broad marker sets. The use of more broadly defined marker
sets had a direct impact on the genome quality estimates for sim-

ulated genomes generated under the random fragment model
(Supplemental Table S15). Although simulated genomes derived
from the six draft genomes representing novel phyla or classes re-
sulted in less accurate quality estimates then genomes from less
novel lineages, the estimateswere consistentwith the performance
expected for genomes evaluated with a domain-specific marker set
(cf. Supplemental Tables S8, S15). This suggests that thenoveltyof a
genome is less critical than the specificity of themarker set used to
evaluate genomequality, and that evengenomes representingnov-
el phyla can be assessed at the error rates expected for domain-spe-
cific marker sets. Although genome quality estimates improved
gradually as the taxonomic novelty of genomes decreases from or-
der to species, the mean absolute error of the quality estimates
across the test sets never deviated by more than 0.8%, suggesting
that the accuracy of lineage-specificmarker sets are relatively stable
at this degree of novelty (Supplemental Table S15).

Bias in genome quality estimates

Quality estimates based on individual marker genes or collocated
marker sets exhibit a bias resulting in completeness being overesti-
mated and contamination being underestimated (Figs. 1, 4). This
bias is the result of marker genes residing on foreign DNA that
are otherwise absent in a genome being mistakenly interpreted
as an indication of increased completeness as opposed to contam-
ination. This bias approximately follows a binomial distribution,
suggesting a potential avenue for bias correction (see Supplemen-
tal Methods). We have elected not to correct for this bias because
confounding factors such as gene collocation make the correction
approximate and the bias is small (<3%) when genomes are sub-
stantially complete (>70%) with medium contamination (≤10%)
(Supplemental Fig. S8).

Assessment of isolate genomes

To benchmark CheckM on real-world data, we assessed the quality
of 2281 isolate genomes from the GEBA, GEBA-KMG, GEBA-PCC,
GEBA-RNB, and HMP data sets (Table 2). Using lineage-specific
marker sets, 2190 (96%) of these genomes were estimated to be

Figure3. Overview of simulation framework for selecting lineage-specific marker genes. (A) To evaluate a genome,G, it is placed into a reference genome
tree. Each parental node from the point of insertion to the root of the tree defines a lineage-specific marker set which can be used to estimate the com-
pleteness and contamination of this genome. (B) To select a suitable set of lineage-specific marker genes for evaluatingG, the genomes in the child lineage
of G with the fewest genomes were used as proxies for G. (C) Genomes at different levels of completeness and contamination were simulated from these
proxy genomes by subsampling and duplicating fixed sized genomic fragments. (D) Each parental marker set was then used to estimate the completeness
and contamination of these simulated genomes, and the marker set resulting in the best average performance over all simulated genomes was identified.
This marker set is used to assess the quality of any genomes subsequently inserted along this branch.
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≥95% complete with ≤5% contamination (Supplemental Table
S16), making them excellent reference genomes for analyses
such as assigning taxonomy to anonymous genomic fragments
(Brady and Salzberg 2009; Parks et al. 2011) or characterizingmeta-
genomic samples using marker genes (Darling et al. 2014). The re-

maining 91 (4%) genomes were found to
be <95% complete or >5% contaminated
making them less reliable reference ge-
nomes for some analyses. A small num-
ber of the genomes have an estimated
completeness <90% (14 genomes) or an
estimated contamination >10% (five ge-
nomes). These genomes suffer from a
diverse range of problems, which we il-
lustrate using three public genomes
from the HMP available at the time of
preparing this manuscript:

• The Capnocytophaga sp. oral taxon 329
genome (HMP id: 9074; GenBank id:
AFHP00000000; IMG id: 651324019)
was estimated as 100% complete
and 100% contaminated by CheckM.
Investigation of the 157 contigs com-
prising this genome revealed a bimodal
GC-distribution, suggesting the pres-
ence of two distinct genomes (Supple-
mental Fig. S9). We separated the
contigs into two clusters by applying
k-means clustering with k=2 to the tet-
ranucleotide signatures of each contig.
Placing the resulting clusters into a ge-
nome tree identified one cluster as a
novel Capnocytophaga genome (99.0%
complete, 0.2% contaminated) and
the other cluster as closely related to
Paraprevotella clara YIT 11840 (100%
complete, 0.4% contaminated) (Sup-
plemental Fig. S10).

• The least complete HMP genome re-
ported by CheckMwas the gastrointes-
tinal Clostridiales sp. SM4/1 genome
(HMP id: 924; GenBank id: FP929060;
IMG id: 2524023221) annotated as fin-
ished at IMG andGOLD, but estimated
as only 56% complete. CheckM deter-
mined the coding density of this
genome to be 66%, suggesting substan-
tial assembly or gene calling errors.

Further investigation revealed that 667 kbp (21.5%) of this 3.1
Mbp genome is comprised of ambiguous base pairs (N’s).

• The Lactobacillus gasseriMV-22 genome (HMP id: 515) available
from IMG (id: 643886189) consists of 93 contigs comprising
1.89 Mbp with only 193 ambiguous bases. CheckM estimated

Figure 4. Error in completeness and contamination estimates on simulated genomes with 50%, 70%,
80%, or 90% completeness and 5%, 10%, or 15% contamination. Quality estimates were determined
using (1) domain: marker sets inferred across all archaeal or bacterial genomes; (2) selected: marker
sets inferred from genomes within the lineage selected by CheckM; and (3) best: marker sets inferred
from genomes within the lineage producing the most accurate estimates. Marker genes were organized
into collocated marker sets in all cases. Simulated genomes were generated under the random contig
model from 2430 draft genomes spanning 31 classes (18 phyla) with each draft genome being used
to generate 20 simulated genomes.

Table 1. Mean absolute error (±SD) in completeness (comp.) and contamination (cont.) estimates for (1) Domain:marker sets inferred across all
archaeal or bacterial genomes; (2) Selected: marker sets inferred from genomes within the lineage selected by CheckM; and (3) Best: marker sets
inferred from genomes within the parental lineage producing the most accurate estimates

Simulation model

Domain Selected Best

Comp. (%) Cont. (%) Comp. (%) Cont. (%) Comp. (%) Cont. (%)

Random fragment (5 kbp) 4.3 ± 4.29 3.8 ± 3.73 2.6 ± 2.75 2.4 ± 2.49 2.3 ± 2.51 2.2 ± 2.37
Random fragment (20 kbp) 5.0 ± 4.89 4.3 ± 4.23 3.0 ± 3.06 2.7 ± 2.73 2.6 ± 2.75 2.4 ± 2.54
Random fragment (50 kbp) 5.7 ± 5.37 4.7 ± 4.65 3.4 ± 3.41 2.9 ± 3.01 2.9 ± 3.04 2.6 ± 2.77
Random contig 5.4 ± 5.85 4.1 ± 4.37 3.0 ± 3.47 3.3 ± 3.43 2.5 ± 2.90 3.1 ± 3.27
Inverse length 6.6 ± 6.54 5.6 ± 5.26 4.2 ± 4.38 5.3 ± 4.92 3.6 ± 3.91 4.9 ± 4.71
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the completeness of this genome as 90.9% when using the line-
age-specific marker sets and 81.2% complete when using the
bacterial marker set (Supplemental Table S17). Although these
low completeness estimates could be the result of lineage-specif-
ic gene loss, the other three Lactobacillus gasseri genomes from
HMP are all estimated to be ≥96% complete with only the
Leucyl-tRNA synthetase protein family (PF13603) exhibiting
lineage-specific gene loss across the bacterial marker genes
(Supplemental Table S18). This suggests that Lactobacillus gasseri
MV-22 is incomplete with ≥9% of its genome estimated to be
missing. The incomplete state of this genome is not transparent
from its genome size, as available Lactobacillus gasseri genomes
are between 1.78 and 2.01 Mbp.

The issues exemplified above are not limited to the HMP or
large-scale sequencing efforts. For example, the Paracoccus denitri-
ficans SD1 genome (Siddavattam et al. 2011) at IMG (id:
2511231195) was estimated to be only 59% complete by CheckM
(Supplemental Table S19). Comparing this genome to Paracoccus
denitrificans PD1222 suggests that this species has two chromo-
somes anda plasmid, and that the SD1genome is currentlymissing
both a chromosome and its plasmid. CheckM also identified sever-
al submission errors as exemplified by the type strain Oligotropha
carboxidovorans OM5 (IMG id: 650716069), which is reported as
99.7% complete and 100.9% contaminated as a result of both draft
and finished versions of its chromosome and plasmid being con-
tained in its genome sequence file.

Assessment of single-cell genomes

The GEBA-MDM initiative applied single-cell genomics to novel
uncultivated bacterial and archaeal cells (Rinke et al. 2013).
Although this is the largest single-cell sequencing initiative cur-
rently published, other large-scale initiatives are underway and
have submitted initial genomes to IMG. To assess the quality of
genomes recovered through single-cell genomics, we applied
CheckM to (1) 201 genomes recovered from individual cells in

the GEBA-MDM initiative; (2) 21 genomes coassembled from
GEBA-MDM cells belonging to the same population; and (3) 410
additional genomes from unpublished studies annotated as “un-
cultured type” or “single cell” in IMG (Table 2).

Technical challenges in obtaining single-cell genomes such as
low DNA yield and the associated need for genome amplification
make it challenging to recover complete genomes. CheckMquality
estimates indicate that only three of the 201 (1.5%) GEBA-MDM
genomes and 17 of the 410 (4.4%) unpublished single-cell ge-
nomes have an estimated completeness ≥90%. Combining cells
from the samepopulation can substantially improve completeness
with the 21 combined assemblies in GEBA-MDM having an aver-
age completeness of 64.9% ± 24.3% compared to 34.9%± 20.6%
for the 201 single-cell genomes (Supplemental Table S20).
Although current techniques for recovering genomes from single
cells result in highly incomplete genomes, these are still valuable
reference genomes for analyses such as assigning taxonomy to
anonymous genomic fragments and resolving phylogenetic rela-
tionships (Rinke et al. 2013). However, these reference genomes
should be free from substantial contamination as this will be a
source of inaccuracy in such analyses. CheckMestimates identified
62 of the 410 (15.1%) unpublished single-cell genomes have ≥5%
contamination. All the GEBA-MDM genomes were found to have
<5% contamination, except one Omnitrophica sp. with 5.3% con-
tamination and two combined assemblies that were estimated to
be 11.3% (Marinimicrobia sp.) and 21.5% (Cloacimonetes sp.)
contaminated. Comparison of duplicate marker genes within
these genomes suggests the contamination is the result of foreign
DNA being amplified and not an assembly error.

Assessment of population genomes

Unlike genomes recovered from cultured isolates or single cells, ge-
nomes obtained from metagenomic data represent a consensus
across amicrobial population. CheckMwas applied to 146 popula-
tion genomes recovered from four metagenomic studies (Table 2).

Table 2. Completeness and contamination of genomes from large-scale sequencing projects

Genomes

Completeness (% of genomes) Contamination (% of genomes)

100% ≥95% ≥90% <90% 0% ≤5% ≤10% >10%

Isolates
GEBA 244 34.0 60.7 4.5 0.8 28.3 70.5 0.4 0.8
GEBA-KMG 724 35.5 62.8 1.7 0 31.6 67.8 0.3 0.3
GEBA-PCC 55 20.0 78.2 1.8 0 20.0 78.2 1.8 0
GEBA-RNB 92 55.4 44.6 0 0 23.9 76.1 0 0
HMP 1166 26.1 71.6 1.5 0.8 36.3 63.2 0.3 0.2
Single cells
GEBA-MDM 201 0 0 1.5 98.5 51.2 48.3 0.5 0.0
GEBA-MDM (combined) 21 4.8 0 4.8 90.5 28.6 52.4 9.5 9.5
IMG single cell 410 0 3.4 1.0 95.6 31.5 53.3 8.0 7.1
Metagenomics
Sludge bioreactor 13 7.7 61.5 0 30.8 30.8 61.5 7.7 0
Acid mine drainage 5 0 0 20.0 80.0 0 40.0 40.0 20.0
Infant gut 16 0 43.8 0 56.2 50.0 43.8 0 6.2
Acetate-amended aquifer 90 0 1.1 2.2 96.7 15.6 44.4 13.3 26.7
Acetate-amended aquifera 22 0 0 13.6 86.4 13.6 68.2 9.1 9.1
Mixed
“Finished” IMG genomes 2360 26.0 68.4 2.6 3.0 37.4 62.0 0.5 0.1

References: GEBA (Wu et al. 2009); GEBA-PCC (Shih et al. 2013); HMP (Turnbaugh et al. 2007); GEBA-MDM (Rinke et al. 2013); IMG (Markowitz et al.
2014); Sludge bioreactor (Albertsen et al. 2013); Acid mine drainage (Tyson et al. 2004); Infant gut (Sharon et al. 2013); Acetate-amended aquifer
(Wrighton et al. 2012); IMG (Markowitz et al. 2014). GEBA-RNB genomes were produced by the US Department of Energy Joint Genome Institute.
aRebinning of select Wrighton et al. (2012) bins by Albertsen et al. (2013).
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As expected, the estimated completeness and contamination of
these genomes vary substantially (Fig. 5). Although population ge-
nomes are often incomplete (74 of 146 genomes are between 50%
and 95% complete), they can be recovered with relatively little
contamination (43 of the 74 partial genomes have ≤5% contami-
nation) (Supplemental Table S21). In addition to this set of 74 par-
tial genomes, an additional 16 (11%) population genomes were
estimated to be ≥95% complete with <5% contamination. These
estimates account for several of the population genomes recoding
the opal stop codon as CheckM automatically identifies such
recodings (see Supplemental Methods).

Poor quality estimates are expected for genomic elements
such as plasmids or phage as the marker genes used by CheckM
are specific to bacterial and archaeal chromosomes. The 10 plas-

mids and 11 phage identified within the acetate-amended aquifer
(Wrighton et al. 2012) and infant gut (Sharon et al. 2013) data sets
were estimated to be 0% complete and 0% contaminated, with the
exception of two plasmids (CARSEP1P, ACD71) and one phage
(ACD33), which were estimated as 4.2%, 2.7%, and 0.15% com-
plete, respectively (Supplemental Table S21). The completeness
of reduced genomes without representation in the reference ge-
nome tree will also be underestimated when genome reduction
has resulted in the loss of marker genes. This is illustrated by
the four candidate phylum Saccharibacteria (TM7) genomes ob-
tained from sludge bioreactor metagenomes, which were estimat-
ed to be 60%–70% complete by CheckM, although shown to be
≥85% complete after accounting for lineage-specific gene loss
(Albertsen et al. 2013).

Figure 5. Lineage-specific completeness and contamination estimates for 262 isolates annotated as finished in IMG (A), 2019 isolates annotated as draft
in IMG (B), 632 genomes recovered using single-cell genomics (C), and 146 population genomes recovered from metagenomic data (D). Dashed lines
indicate the criteria required for a genome to be considered a near-complete genomewith low contamination. Insets give amore detailed view of the qual-
ity of the isolate genomes. The 2281 isolate genomes were obtained from IMG and sequenced as part of the GEBA, GEBA-KMG, GEBA-PCC, GEBA-RNB, or
HMP initiatives.
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We compared the quality estimates obtained for the 90 puta-
tive population genomes recovered from the acetate-amended
aquifer (Wrighton et al. 2012) community using domain-level
and lineage-specific marker sets (Supplemental Table S22). Al-
though the completeness and contamination of these population
genomes is unknown, these results demonstrate the degree to
which quality estimates can change under these two conditions.
We have focused on the acetate-amended aquifer data set as it con-
tains population genomes spanning a wide range of qualities,
whereas other studies have focused exclusively on high-quality
population genomes. On average, completeness changed by
13.0% and contamination by 5.1%when using lineage-specific in-
stead of domain-specificmarker sets. Estimates varied substantially
for some genomeswith completeness estimates changingby≥15%
for 36 genomes and contamination estimates changing by ≥10%
for 12 genomes. Although completeness estimates with domain-
level and lineage-specific marker sets are highly correlated (R2 =
0.84), domain-level estimates tend to overestimate the complete-
ness of genomes relative to lineage-specific estimates (Supplemen-
tal Fig. S11). The correlation between contamination estimates is
weaker (R2 = 0.69), and any global trend is less clear as themajority
of populationgenomes exhibit <5%contamination (Supplemental
Fig. S12).

Estimating strain heterogeneity

CheckM can distinguish between contamination resulting from
the presence of genomic fragments frommultiple strains and con-
tamination resulting from the inclusion of genomic fragments
from more divergent taxa. This is particularly useful for genomes
recovered from metagenomic data as separating strains into indi-
vidual genomes remains a challenging problem (Imelfort et al.
2014). These two types of contamination are differentiated auto-
matically by CheckM by using the amino acid identity (AAI) be-
tween multicopy genes as a measure of phylogenetic relatedness
(Konstantinidis and Tiedje 2005). Reanalysis of the methanotro-
phic ANME-1 genome recovered from metagenomic data by
Meyerdierks et al. (2010) with CheckM illustrates that this popula-
tion genome is a chimera of closely related strains. Of the 229 lin-
eage-specific marker genes used to evaluate the quality of this
genome, 42 were identified as being multicopy within the
ANME-1 genome (38 present twice, two present three times;
82.3% completeness). Although this represents ∼21% contamina-
tion, 82.0% of the comparisons between multicopy genes have an
AAI≥90% (76.0% at ≥95%AAI) (Supplemental Fig. S13), revealing
that the contamination is largely the result of incorporating geno-
mic fragments from closely related taxa and thatmultiple ANME-1
strains are likely present within this environment.

Proposed genome quality classification scheme

Genomes recovered from isolates, single cells, or metagenomic
data vary substantially in their quality (Fig. 5). To make full use
of these genomes, their quality must be reported in reference data-
bases along with other essential genome information (Field et al.
2008). A qualitative vocabulary for discussing genomes of varying
quality was proposed by Chain et al. (2009); here, we supplement
this effort by proposing a vocabulary based on a quantitative
threshold that augments existing schemes for describing draft ge-
nome quality (Table 3). The status of finished is reserved for ge-
nomes assembled into a single contiguous sequence containing
no gaps or ambiguities, where extensive efforts have been made
to identify errors (Mardis et al. 2002; Chain et al. 2009). Genomes

assembled into multiple sequences as a result of repetitive regions,
but otherwise of a finished quality, may be classified as noncontigu-
ous finished (Chain et al. 2009).We propose that all other genomes
be designated as draft, and the quality of genomes qualified based
on both established vocabularies for describing genome quality
and estimates of genome completeness and contamination.

The proposed quantitative vocabulary permits automated as-
signments of completeness and contamination estimates, which
are critical for quality control in large-scale genome sequencing ini-
tiatives and for updating genome databases as new genomes are
added or techniques for estimating genome quality improve. Of
the3059genomes(2281 isolates,632singlecell,146metagenomic)
considered in this study, 2292 (74.9%)were classified as being near
complete with either no detectable (833 genomes; 27.2%) or low
(1461 genomes; 47.8%) contamination. These genomes are strong
candidates for being classified as finished or noncontiguous finished,
but this designation should only be applied after extensive addi-
tional verification. Thewide range of quality within the remaining
767 (25.1%) genomes illustrates the need for a verbose vocabulary
when discussing draft genomes, e.g., 84 (2.7%) were classified as
substantially completedraftswith22 (0.7%)exhibitingnocontam-
ination, 55 (1.8%) having lowcontamination, and 5 (0.2%)having
mediumcontamination. The presence ofmetagenomic and single-
cell genomes was also transparent as 125 (4.1%) of the genomes
were classified as moderately complete drafts, and 521 (17.0%)
were classified as partial draft genomes.

Discussion
Here, we introduce CheckM, a new tool developed to estimate the
completeness and contamination of genomes derived from iso-
lates, single cells, and metagenomes using lineage-specific marker
genes. To evaluate the robustness of genome quality estimates, we
simulated genomes under three distinctmodels: (1) a random frag-
ment model in which genomic fragments were removed or added
uniformly across the genome; (2) a random contig model that ac-
counts for the characteristics of assembled contigs; and (3) an in-
verse length model reflecting the limitations of metagenomic
binning methods. Our results on simulated genomes demonstrate
that when lineage-specific marker genes are organized into collo-
cated sets, they are sufficiently spaced throughout a genome to
provide accurate estimates of genome quality. For substantially
complete genomes (≥70%–90%) with medium contamination
(5% to ≤10%), our results suggest that completeness and contam-
ination estimates generally have an absolute error of ≤6%, and
the error in the quality estimates tends to decrease as the quality
of a genome improves (Fig. 4; Table 1; Supplemental Figs. S5, S6;
Supplemental Tables S8–S10).

The robust estimates of genome quality provided by CheckM
allow for automated quality screening of bacterial and archaeal

Table 3. Controlled vocabulary of draft genome quality based on
estimated genome completeness and contamination

Completeness Classification Contamination Classification

≥90% Near ≤5% Low∗
≥70% to 90% Substantial 5% to ≤10% Medium
≥50% to 70% Moderate 10% to ≤15% High
<50% Partial >15% Very high

(∗) Genomes estimated to have 0% contamination can be designated as
having “no detectable contamination”.
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genomes. Using CheckM, wewere able to identify isolate genomes
exhibiting a wide range of problems. Incorporation of these low-
quality genomes into reference data sets will diminish the accuracy
of inferences made in many studies. For example, a study of hori-
zontal gene transfer might incorrectly predict a large number of
transfers between Capnocytophaga and Paraprevotella genomes
due to the Capnocytophaga sp. oral taxon 329 genome erroneously
containing genes from both of these genera. Similarly, a compara-
tive genomics study including the Clostridiales sp. SM4/1 genome
identified as 56% complete may incorrectly report the number of
core genes amongClostridiales genomes or the ubiquity of keymet-
abolic pathways. Comparison of the incomplete Lactobacillus gas-
seri MV-22 genome considered in this study to its GenBank (id:
GL531761) counterpart revealed that this issue was localized to
the IMG repository, illustrating the benefit of independently veri-
fying the quality of genomes at different repositories.

Many of the erroneous genomes reported in this study were
brought to the attention of IMG and have subsequently been re-
moved from their database. The Capnocytophaga sp. oral taxon
329 has also been retracted from NCBI. Although removal of con-
taminated or incomplete genomes is warranted, the statistics pro-
vided by CheckM can help identify the problems associated with
these genomes. In the case of Capnocytophaga sp. oral taxon 329,
the CheckM statistics directly suggested the presence of two dis-
tinct populations, which allowed for the recovery of two near-
complete genomes with low contamination.

Incomplete draft genomes are valuable references for many
genomic analyses, and their use is likely to increase as partial ge-
nomes of novel species are recovered from single cells andmetage-
nomic data. Although methodologies for handling genomes of
varying qualities are currently in their infancy, it is clear many
analyses will benefit from accurate estimates of completeness
and contamination. The benefit of using partial genomes with
low contamination for assigning taxonomy to anonymous geno-
mic fragments and resolving phylogenetic relationships has al-
ready been demonstrated (Rinke et al. 2013). Other analyses
such as comparing the metabolic capability of different groups
of genomes will likely benefit from restricting the analyses to
only near-complete genomes in order to ensure confident predic-
tions can bemade regarding differences in their metabolic capabil-
ities. Because the quality of a genome is essential for determining
its suitability for different analyses, we recommend public genome
repositories and new genome announcements include complete-
ness and contamination estimates (Table 3).

The limitations of the proposed approachmust be considered
when interpreting CheckM quality estimates. Eukaryotic or phage
genomeswill be reported as highly incomplete becausewehave fo-
cused on marker sets suitable for evaluating bacterial and archaeal
genomes. The quality of plasmids must also be assessed indepen-
dently of CheckM. When recovering genomes frommetagenomic
data, the additional genome statistics reported by CheckM (e.g.,
coding density, coverage) can be used along with the quality esti-
mates to help distinguish putative genomes representing frag-
ments of an archaeal or bacterial chromosome from phage,
plasmids, or eukaryotic genomes. However, incorporation of
CheckM into a complete quality control and annotation pipeline
where plasmids (Jørgensen et al. 2014), genomic islands (Langille
et al. 2010), phage (Akhter et al 2012), andother genomic elements
are automatically identified and screened will likely improve the
quality and characterization of recovered genomes. Use of taxo-
nomic assignment methods (Patil et al. 2011; Dröge et al. 2014)
would also be of benefit within a complete quality control pipeline

in order to identify genomes exhibiting clear chimerism and sourc-
es of contamination within single-cell and isolate genomes. The
estimates for highly incomplete or highly contaminated genomes
must be interpreted with regard to the observed systematic bias,
which arises from marker genes from foreign genomes being mis-
interpreted as an indication of additional completeness (Supple-
mental Fig. S8). The novelty of a genome will also influence the
accuracy of CheckM estimates. Estimates for bacterial and archaeal
genomes from deep basal lineages with few reference genomes are
necessarily determined using domain-level marker sets instead of
lineage-specific markers that generally provide superior estimates.
This limitation is most evident for novel lineages undergoing ge-
nome reduction as demonstrated by our reanalysis of the candi-
date phylum Saccaribacteria (TM7) genomes. Although CheckM
can provide refined estimates for reduced genomes in well-charac-
terized lineages (see Supplemental Results), a manual assessment
of gene loss or duplication is required to improve quality estimates
for reduced genomes recovered from novel lineage (Albertsen et al.
2013). CheckM provides outputs to aid in performing this
refinement.

We anticipate several improvements that will further refine
the estimates produced by CheckM. The most substantial impact
is likely to be the inclusion of additional reference genomes from
lineages that are currently poorly represented. This will mitigate
the number of genomes that are evaluated using broad, less accu-
rate marker sets and improve refinements for lineage-specific
gene loss and duplication. Incorporation of eukaryotic genomes
into the reference treewould also be a substantive benefit when as-
sessing population genomes recovered from environmental sam-
ples where fungi and other microbial Eukaryotes may be present.
Further exploration of the parameter space of CheckMmay also re-
sult in improved estimates. For instance, the 97% ubiquity criteria
used to delineate marker genes is likely not optimal, and the use of
a probabilistic model for assessing the presence/absence of a gene
across all genomes in a lineage may improve the inferred marker
sets (Segata et al. 2013). Ultimately, we expect to adopt a strategy
that will allow optimal values for key parameters to be determined
independently for each lineage.

CheckM is the first automated tool for estimating the com-
pleteness and contamination of isolate, single-cell, and population
genomes. The need for accurate estimates of genome quality will
only grow in importance as we continue to fill out the microbial
tree of life and are better able to utilize draft genomes to inform
gene- and genome-centric analyses of microbial communities.

Methods

Inference of reference genome tree

A genome tree incorporating 5656 trusted reference genomes (see
Supplemental Methods) was inferred from a set of 43 genes with
largely congruent phylogenetic histories. An initial set of 66 uni-
versal marker genes was established by taking the intersection be-
tween bacterial and archaeal genes determined to be single copy in
>90% of genomes. From this initial gene set, 18 multicopy genes
with divergent phylogenetic histories in >1% of the reference ge-
nomes were removed. A multicopy gene within a genome was
only deemed to have a congruent phylogenetic history if all copies
of the gene were situated within a single conspecific clade (i.e.,
all copies were contained in a clade from a single named species)
within its gene tree. Genes were aligned with HMMER v3.1b1
(http://hmmer.janelia.org), and gene trees inferred with FastTree
v2.1.3 (Price et al. 2009) under the WAG (Whelan and Goldman
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2001) andGAMMA (Yang 1994)models. Trees were thenmodified
with DendroPy v3.12.0 (Sukumaran and Holder 2010) in order to
root the trees between archaea and bacteria unless these groups
were not monophyletic, in which case midpoint rooting was
used. A further five genes found to be incongruent with the IMG
taxonomy were also removed as these genes may be subject to lat-
eral transfer. Testing of taxonomic congruency was performed as
described in Soo et al. (2014). The final set of 43 phylogenetically
informative marker genes (Supplemental Table S6) consists pri-
marily of ribosomal proteins and RNA polymerase domains and
is similar to the universal marker set used by PhyloSift
(Supplemental Table S7; Darling et al. 2014). A reference genome
tree was inferred from the concatenated alignment of 6988 col-
umns with FastTree v2.1.3 under the WAG+GAMMA model and
rooted between bacteria and archaea. Internal nodes were assigned
taxonomic labels using tax2tree (McDonald et al. 2012).

Identification of marker genes in putative genomes

Genes were predicted using Prodigal v2.60 (Hyatt et al. 2012) and
Pfam (Finn et al. 2014), and TIGRFAMs (Haft et al. 2003) protein
families were identified using HMMER v3.1b1 (http://hmmer.
janelia.org) with model specific cutoff values for both the Pfam
(-cut_gc) and TIGRFAMs (-cut_nc) HMMs. Pfam annotations are
assigned using the same methodology as the Sanger Institute
and IMG, which accounts for homologous relationships between
Pfam clans (see pfam_scan.pl on the Sanger Institute FTP site,
https://www.sanger.ac.uk/). Gene calling errors occasionally occur
due to ambiguous bases in a contig that can result in adjacent, er-
roneous genes being called that are assigned to the same marker
gene. These errors are resolved by checking if adjacentmarker genes
have a bestmatch to adjacent, nonoverlapping portions of amarker
gene’s HMM.

Determination of lineage-specific marker genes

Single-copy Pfam and TIGRFAMs genes were identified within ref-
erence genomes using the annotations provided by IMG. A gene
was defined as a lineage-specific marker gene if it occurs only
once in >97% of the genomes within a lineage. Lineage-specific
marker genes were inferred for all internal nodes within the refer-
ence genome tree. Pfam and TIGRFAMs families were considered
redundant if theymatched the same genes in >90% of the finished
IMG genomes, in which case only the Pfam gene was used as a
marker.

Organization of marker genes into collocated marker sets

A pair of marker genes were considered to be collocated within a
lineage if they occurred within 5 kbp of each other in >95% of ge-
nomes within a lineage. Sets of collocated markers were formed
from collocated gene pairs by clustering together all pairs with a
shared gene (e.g., if genes A and B, and genes B and C are collocat-
ed, then they are clustered into the collocated set ABC).

Estimation of completeness, contamination, and strain
heterogeneity

Genome completeness is estimated as the number of marker sets
present in a genome taking into account that only a portion of a
marker set may be identified:

∑
s[M

|s>GM |
|s|

|M| , (1)

where s is a set of collocated marker genes;M is the set of all collo-
catedmarker sets s; andGM is the set ofmarker genes identified in a

genome. Genome contamination is estimated from the number of
multicopy marker genes identified in each marker set:

∑
s[M

∑
g[s

Cg

|s|

|M| , (2)

where Cg is N− 1 for a gene g identified N≥ 1 times, and 0 for a
missing gene. CheckM also supports estimating completeness
and contamination without arranging marker genes into collocat-
ed sets. Equations 1 and 2 can be applied to this case by assigning
each marker gene to its own set (i.e., ∀s : |s| = 1).

Contamination resulting from multiple strains or closely re-
lated species being binned into a single putative genome is identi-
fied by examining the AAI between multicopy marker genes.
Specifically, a strain heterogeneity index is calculated as the frac-
tion of multicopy gene pairs above a specified AAI threshold:

∑
g[G

∑|g|

i=1

∑|g|

j=i+1
aai(gi,gj,t)

∑
g[G

∑|g|

i=1

∑|g|

j=i+1
1

, (3)

where g = {g1,g2,…,gN} is the set of hits to amarker gene;G is the set
of all marker genes; and aai is 1 if the AAI between gi and gj is great-
er than t (default = 0.9) and 0 otherwise.

Placement of genomes into the reference genome tree

Identification of the 43 phylogenetically informativemarker genes
within a putative genome are identified using HMMs as described
in the preceding section Identification ofMarker Genes in Putative
Genomes. Identified genes are aligned with HMMER and the con-
catenated alignment used to place a genome into the reference ge-
nome tree using pplacer v2.6.32 (Matsen et al. 2010). Putative
genomes consisting of an insufficient number of unique phyloge-
netic marker genes (default = 10) to be robustly placed within the
reference genome tree are evaluated using the universalmarker set.

Selection of lineage-specific marker genes

Marker genes can be inferred for all internal nodes in the reference
tree along the path from the putative genome to the root (Fig. 3A).
The most suitable set of marker genes for assessing a genome de-
pends on anumber of factors, including the novelty of the putative
genome relative to the surrounding reference genomes and the
breadth of diversity covered by these genomes. A simulation
framework was used to establish the parent node producing the
most suitable marker set for estimating the completeness and con-
tamination of a genome placed on a given branch within the ref-
erence genome tree.

The simulation framework was restricted to the 2052 finished
reference genomes in IMG, as draft genomes were used for evaluat-
ing the performance of CheckM. For each branch, the descendant
lineage with the fewest genomes was removed from the reference
tree (Fig. 3B). These genomes were used as proxies to simulate ge-
nomes placed on this branch. Each genome was fragmented into
10-kbp windows and used to simulate 100 independent genomes
with completeness randomly selected between 50% and 100%
and contamination randomly selected between 0% and 20%
(Fig. 3C). Marker genes were then inferred for each parent node us-
ing the 97% single-copy criterion and used to assess the complete-
ness and contamination of the simulated genomes. Marker genes
were not formed intomarker sets in order to reduce computational
complexity and to allow a fair assessment of how this feature influ-
ences genome assessment. The parental node whose inferred
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marker genes minimize the error in the estimated completeness
and contamination over all simulated genomes was assigned to
the branch (Fig. 3D):

argmin
m[M

=
∑

g[G

∑N

i=1

|compest (gi,m) − compt (gi)| + |contest (gi,m)

− contt (gi)|, (4)
where m is a set of marker genes; M is the set of marker genes for
each parent node; compest(gi,m) is the estimated completeness of
simulated genome gi using m; compt(gi) is the true completeness
of gi; contest(gi,m) and contt(gi) are analogous functions for contam-
ination; andN is the number of simulated genomes derived from g.
Marker genes associated with each internal node were calculated
de novo during the simulation to reflect removing the test ge-
nomes and then recalculated afterward using all available refer-
ence genomes in order to produce refined sets of marker genes.
This simulation framework is computationally expensive, but
only needs to be performed once, and the results are distributed
with the CheckM software.

Simulation of incomplete and contaminated isolate
and population genomes

Simulated genomeswere generated froman initial set of 3604 draft
genomes within IMG identified as being of high quality (see
Supplemental Methods). To help alleviate bias toward well-sam-
pled lineages, 280 of the 3604 high-quality draft genomes with
identical phylogeneticmarker genes were not used during the gen-
eration of simulated genomes. Simulated genomes were generated
at varying degrees of completeness and contamination using three
distinct random sampling models. Under the random fragment
model, each contig comprising a genome was fragmented into
nonoverlapping windows of a fixed size between 5 and 50 kbp.
This size range was selected because it approximates the contig
lengths of genomes recovered from metagenomic data or single-
cell genomics: The mean N50 of the GEBA-MDM single-cell ge-
nomes, Wrighton acetate-amended aquifer population genomes,
and Sharon infant gut population genomes is ∼28 kbp, ∼17 kbp,
and∼ 12 kbp, respectively. In order to generate genomes at a de-
sired level of completeness and contamination, fragments were
sampled without or with replacement, respectively. Windows
were sampled until a simulated genome had completeness and
contamination equal to or just greater than the target values.
Generation of simulated genomes was limited to draft genomes
as finished genomes were used to determine appropriate lineage-
specific marker sets suitable for evaluating genomes (Fig. 3).

The 2430 draft reference genomes comprised of 20 or more
contigs were used to simulate partial and contaminated genomes
reflecting the characteristics of assembled contigs. Under this ran-
dom contig model, genomes were generated by randomly remov-
ing contigs until the simulated genome reached or fell below a
target completeness level. Contamination was introduced by ran-
domly adding contigs with replacement from a single randomly
selected genome until the desired level of contamination was
reached or exceeded. These 2430 draft genomes were also used to
generate genomes reflecting the limitations of metagenomic bin-
ning methods that rely on the statistical properties of contigs
(e.g., tetranucleotide signature, coverage) to establish putative
population genomes. To simulate this, partial genomes were gen-
erated by randomly removing contigs with a probability inversely
proportional to their length until the simulated genome reached
or fell below a target completeness level. Contaminationwas intro-
duced by randomly selecting another draft reference genome and
adding contigs from this genome with a probability inversely pro-

portional to length until the desired level of contamination was
reached or exceeded.

Evaluation using simulated genomes

Evaluation of CheckM was performed using simulated genomes
generated at all combinations of 50%, 70%, 80%, 90%, 95%, and
100% completeness with 0, 5%, 10%, 15%, or 20% contamina-
tion. Marker genes and marker sets were inferred with the test ge-
nome removed from the set of reference genomes (i.e., leave-one-
out testing), and their performance was evaluated by considering
the error in completeness and contamination estimates. To evalu-
ate the performance of the lineage-specific markers selected by the
simulation framework (Fig. 3), results were compared to the line-
age-specific markers resulting in the best performance as deter-
mined by applying Equation 4 independently to each set of
simulated genomes generated from a test genome at a specific level
of completeness and contamination. This represents a highly ide-
alized case, as it assumes a method capable of selecting different
optimal lineage-specific markers for the same genome under vary-
ing levels of completeness and contamination.

Evaluation of universal- and domain-level marker gene sets

Several universal- and domain-level marker gene sets were ob-
tained either directly from the authors or from available software
packages (Supplemental Table S1). PhyloSift (Darling et al. 2014)
originally used the 40 marker genes suggested by Wu et al.
(2013), but was reduced to 37 markers in version 1.0.1 of the
PhyloSift software. Marker genes were identified using the precal-
culated “gathering” and “noise” cutoffs for the Pfam and
TIGRFAMs models, respectively. Marker genes of COG or custom
protein families were identified using an E-value cutoff of 1 × 10−5,
1 × 10−10, 1 × 10−15, and 1 × 10−20 and results reported for the cut-
off providing the bestmean performance. Results were highly sim-
ilar across this range of E-values.

Evaluation of taxonomic novelty

The influence of taxonomic novelty on genome quality estimates
was evaluated by identifying “natural” novelty within the test set
of high-quality draft genomes used to generate simulated ge-
nomes. A test genome was classified as having taxonomic novelty
at a given rank (e.g., genus) if (1) it was the only genomewithin the
reference genome tree from the named group (e.g., the only ge-
nome from genus Ruminobacter); and (2) the parent group (e.g.,
the family Succinivibrionacea) contains at least two named groups
at the rank of interest (e.g., Ruminobacter and at least one other
Succinivibrionacea genus). The taxonomic rank of a lineage-specific
marker set is defined as the most specific taxonomic rank contain-
ing the internal node fromwhich the marker set was inferred (e.g.,
a marker set defined at an internal node between a named order
and class was assigned to the broader rank of class).

Genome data sets

Population genomes from the Wrighton et al. (2012) and
Sharon et al. (2013) studies were downloaded from ggKbase
(http://ggkbase.berkeley.edu/) on March 31, 2014. Tyson et al.
(2004) and Meyerdierks et al. (2010) population genomes were
obtained from NCBI. The population genomes from the
Albertsen et al. (2013) study can be obtained from http://eco
genomic.org/checkm/public-data. Reference genomes at NCBI
and IMG are occasionally removed or modified. For posterity,
the reference genomes analyzed in this paper have been archived
at http://ecogenomic.org/checkm/public-data. The GEBA, GEBA-
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KMG, GEBA-PCC, GEBA-RNB, GEBA-MDM, and HMP genomes
comprise part of the data downloaded from IMG on April 4,
2014.

Software availability

CheckM is open source software available at http://ecogenomics.
github.io/CheckM. CheckM v0.9.4 was used during the prepara-
tion of this manuscript and is available as Supplemental Material.
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