

Checkpoint and Restoration of Micro-service in Docker Containers

Chen Yang

School of Information Security Engineering, Shanghai Jiao Tong University, China 200240

chen.yang@sjtu.edu.cn

Keywords: Lightweight Virtualization, Checkpoint/restore, Docker.

Abstract. In the present days of rapid adoption of micro-service, it is imperative to build a system to
support and ensure the high performance and high availability for micro-services. Lightweight
virtualization, which we also called container, has the ability to run multiple isolated sets of processes
under a single kernel instance. Because of the possibility of obtaining a low overhead comparable to the
near-native performance of a bare server, the container techniques, such as openvz, lxc, docker, they
are widely used for micro-service [1]. In this paper, we present the high availability of micro-service in
containers. We investigate capabilities provided by container (docker, openvz) to model and build the
Micro-service infrastructure and compare different checkpoint and restore technologies for high
availability. Finally, we present preliminary performance results of the infrastructure tuned to the
micro-service.

Introduction

Lightweight virtualization, named the operating system level virtualization technology, partitions
the physical machines resource, creating multiple isolated user-space instances. Each container acts
exactly like a stand-alone server. A container can be rebooted independently and have root access,
users, IP address, memory, processes, files, etc. Unlike traditional virtualization with the hypervisor
layer, containerization takes place at the kernel level. Most modern operating system kernels now
support the primitives necessary for containerization, including Linux with openvz, vserver and more
recently lxc, Solaris with zones, and FreeBSD with Jails [2]. From the kernel point of view, a container
is the separate set of processes completely isolated from the other containers and the host system.

To guarantee applications’ high availability despite and in presence of a disastrous and disruptive
event, high availability feature such as monitoring, live migration and checkpoint/restore, are
integrated into the virtualization technologies. Checkpoint-restore of Micro-service application is the
ability to save the state of a running application so that it can later resume its execution from the time of
the checkpoint. Application checkpoint-restore can provide many benefits, including fault recovery by
rolling back applications to a previous checkpoint, better response time by restarting applications from
checkpoints instead of from scratch, and better system utilization by suspending jobs on demand.
Application migration is useful for dynamic load balancing by moving applications to less loaded hosts,
fault resilience by migrating applications off of faulty hosts, and improved availability by evacuating
applications before host maintenance so that they continue to run with minimal downtime [3].

This paper present a high availability solution for the micro-service application in a container. The
high availability solution is achieved by the checkpoint/restore approach which allows one to
checkpoint the state of a running container and restore it later on the same or a different host, in a way
transparent for micro-service. With the help of implementing this checkpoint/restore feature to docker
containers, micro-services could be deployed more convenient and high availability in the cloud
infrastructure based on container.

Related Work

Checkpoint-restore has been the subject of extensive research, spanning all four approaches:
application level, library mechanisms, operating system mechanisms, and hardware virtualization.

3rd International Conference on Mechatronics and Industrial Informatics (ICMII 2015)

© 2015. The authors - Published by Atlantis Press 915

There are many application checkpoint-restore projects, some in userspace and others in the kernel.
DMTCP implements checkpoint/restore of a process on a library level. This means, that if you want to
C/R some application you should launch one with DMTCP library (dynamically) linked from the very
beginning. Restoration of process set is also tricky, as it frequently requires restoring an object with the
predefined ID and kernel is known to provide no APIs for several of them [4]. Berkeley Lab
Checkpoint/Restart (BLCR) is a part of the Scalable Systems Software Suite, developed by the Future
Technologies Group at Lawrence Berkeley National Lab under SciDAC funding from the United
States Department of Energy [5]. BLCR is aimed primarily at HPC users. It consists of a library and a
kernel module. Applications must be checkpoint-aware so as to discard unsupported resources. PinLIT
(c) is a checkpointing tool built on top of Intel's proprietary PIN binary instrumentation tool [6]. It
records the processor's (big) architectural register state and all pages of memory that contain
application and shared library code, optimizing size by only storing memory used during a desired
interval. Legacy OpenVZ (RHEL4, RHEL5, RHEL6 based kernels) has in-kernel checkpoint/restore,
sources can be found in kernel/cpt/ [7]. Linux Checkpoint/Restart was a project from around 2008 to
around 2010 to implement checkpoint/restart of Linux processes [3]. CRIU (Checkpoint/Restore in
Userspace) is a project to implement checkpoint/restore functionality for Linux in userspace. CRIU
doesn't require any libraries to be pre-loaded. It will checkpoint and restore any arbitrary application, as
long as kernel provides all needed facilities. Kernel support for some of CRIU features were added
recently, essentially meaning that a recent kernel version might be required [8].

Proposed Approach

The checkpoint and restore approach for Docker container with CRIU can be divided into two parts,
checkpoint and restore.

Part 1: Checkpoint. The checkpoint procedure relies heavily on /proc file system (it's a general
place where criu takes all the information it needs). Which includes the files descriptors information,
pipes parameters and memory maps. The process dumper does the following steps during checkpoint
stage:

Step 1: Collect process tree and freeze it. By using this $pid the dumper walks though
/proc/$pid/task/ directory collecting threads and through the /proc/$pid/task/$tid/children to gathers
children recursively. While walking tasks are stopped using the ptrace's PTRACE_SEIZE command.

Step 2: Collect tasks' resources and dump them. In this stage, CRIU reads all the information (it
knows) about collected tasks and writes them to dump files. Then CRIU injects a parasite code into a
task via ptrace interface.

Step 3: Cleanup. After everything dumped (such as memory pages, which can be written out only
from inside dumped address space) we use ptrace facility again and cure dumped by dropping out all
our parasite code and restoring original code. Then CRIU detaches from tasks and they continue to
operate.

Part 2: Restore. The restore procedure is done by CRIU morphing itself into the tasks it restores.
On the top-level it consists of 4 steps:

Step 1: Resolve shared resources. At this step CRIU reads in image files and finds out which
processes share which resources. Later shared resources are restored by someone process and all the
others either inherit one on the 2nd stage (like session) or obtain in some other way.

Step 2: Fork the process tree. At this step CRIU calls fork() many times to re-created the processes
needed to be restored.

Step 3: Restore basic tasks resources. Here CRIU restores all resources but memory mappings
exact location, timers, credentials, threads. On this stage CRIU opens files, prepares namespaces, maps
(and fills with data) private memory areas, creates sockets, calls chdir() and chroot() and dome some
more.

Step 4: Switch to restorer context, restore the rest and continue. Since criu morphs into the target
process, it will have to unmap all its memory and put back the target one. While doing so some code

916

should exist in memory (the code doing the munmap and mmap). At the same place we restore timers
not to make them fire too early, here we restore credentials to let criu do privileged operations (like
fork-with-pid) and threads not to make them suffer from sudden memory layout change.

Experiment and Performance Evaluation

The measurements was conducted on two independent hosts, and each one had an Ubuntu 14.04
system with Intel SandyBridge CPU (E5-2620) clocked at 2GHz and 8GB DRAM. First of all, a
CentOS7 image was used to launch a minimal version of a container in each host, then openssh,
openmpi and the micro-service application were installed. Unfortunately, a lot of standard software
packages are installed not in usual place so before compilation there is a need to export PATH and libs,
but once it was done, this prepared image was saved. This is a great advantage of container-based
virtualization, because all steps were done only once.

For the measurements we used the program which allows a caller specify the number of child
process, a memory size for each task to map, or a memory size for each task to map and then dirty. We
repeated the tests specific times (eg: 50), and report average values.

Application
Image size

Checkpoint
Time (to file)

Checkpoint
Time (no I/O)

Restore
time

56 MB 509 ms 173 ms 492 ms

118 MB 1063 ms 313 ms 972 ms

256 MB 2183 ms 679 ms 1998ms

Table 1. Checkpoint/restore performance on different applications

Table 1 presents the results in terms of checkpoint different micro-service applications with different
image size, checkpoint time and restore time. The results show that the checkpoint and restore time
scale linearly with the micro-service application image size.

To look further at the impact of the micro-service application image size, we measured the
checkpoint for the specific application with memory sizes increasing from 1MB to 1GB. In one
container the application only allocate memory but do not change it. In the other container, the
application provide service to outside which would write memory to the allocated space. In both cases,
the output was redirected to avoid expensive I/O. The results are given in Table 2. The results show
strong correlation between the memory change and checkpoint time. Checkpoint times increase
substantially with changed memory as it requires the contents to actually be stored in the checkpoint
image.

Memory Size Checkpoint Time
(memory untouched)

Checkpoint Time
(memory changed)

1 MB 3.6 ms 9.8 ms

10 MB 31.1 ms 103 ms

100 MB 297 ms 982 ms

1 GB 2763 ms 9312 ms

Table 2. Checkpoint time and memory size

Summary

 A generic checkpoint/restore mechanism was presented based on the criu tool for container based
micro-service architecture. With criu, you can freeze a running application (or part of it) and
checkpoint it to a hard drive as a collection of files. You can then use the files to restore and run the
application from the point it was frozen at. CRIU provides transparent, reliable, flexible, and efficient
application checkpoint-restore. We investigated some current checkpoint-restore projects for
processes and gave a simple comparison. On top of this mechanism, we presented the procedure of
checkpoint/restore an application in a docker container. In addition, the experiment and performance

917

evaluation shows that the checkpoint and restore time scale linearly with the micro-service application
image size.

References

[1] Kratzke N. A lightweight virtualization cluster reference architecture derived from open source

paas platforms[J]. Open J. Mob. Comput. Cloud Comput, 2014, 1: 17-30.

[2] Information on https://www.docker.com/

[3] Laadan O, Hallyn S E. Linux-CR: Transparent application checkpoint-restart in Linux[C]//Linux

Symposium. 2010: 159.

[4] Ansel J, Aryay K, Coopermany G. DMTCP: Transparent checkpointing for cluster computations

and the desktop[C]//Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE International

Symposium on. IEEE, 2009: 1-12.

[5] Jason Duell. The Design and Implementation of Berkeley Lab’s Linux Checkpoint/Restart.

Lawrence Berkeley National Laboratory, 2005.

[6] Narayanasamy S, Pereira C, Patil H, et al. Automatic logging of operating system effects to guide

application-level architecture simulation[J]. ACM SIGMETRICS Performance Evaluation Review,

2006, 34(1): 216-227.

[7] Perkov L, Pavković N, Petrović J. High-availability using open source software[C]//MIPRO, 2011

Proceedings of the 34th International Convention. IEEE, 2011: 167-170.

[8] CRIU. Checkpoint/Restore In Userspace. http://criu.org/

[9] Mirkin A, Kuznetsov A, Kolyshkin K. Containers checkpointing and live migration[C]

//Proceedings of the Linux Symposium. 2008: 85-92.

[10] Garg R, Sodha K, Cooperman G. A generic checkpoint-restart mechanism for virtual machines[J].

arXiv preprint arXiv:1212.1787, 2012.

[11] Tang X, Zhang Z, Wang M, et al. Performance Evaluation of Light-Weighted Virtualization for

PaaS in Clouds[M]//Algorithms and Architectures for Parallel Processing. Springer International

Publishing, 2014: 415-428.

[12] Li W, Kanso A. Comparing Containers versus Virtual Machines for Achieving High

Availability[J].

[13] Pickartz S, Gad R, Lankes S, et al. Migration Techniques in HPC Environments[C]//Euro-Par

2014: Parallel Processing Workshops. Springer International Publishing, 2014: 486-497.

[14] Ljubuncic I, Rozenfeld A, Goldis A, et al. Be Kind, Rewind[J].

918

