Checkpointing and Rollback-
Recovery for Distributed Systems=

Richard Koo+
Sam Toueg#*+

TR 85-706
QOctober 1985

Department of Computer Science
Cornell University
Ithaca. NY 14853

The views . opinions and findings contained in this report are those ot the authors and
should not be construed as an official Department of Detense position, policy, or deeision.
This author was supported by the Defensze Advanced Research Projects Agency (Do)
under ARPA order 3373 Conteiet MDAQ0O3-35-C-01124, and by the National Science
Foundation under grant= DCR-2412532 and MCS 8303155

This author was supported by the Natinnal Science Foundation under grant MCS 83-
03135.

Checkpointing and Rollback-Recovery for Distributed Systemsx*

Richard Koot
Sam Touegt

Computer Science Department
Cornell University
Ithaca, New York 14853

ABSTRACT

We consider the problem of bringing a distributed system to a consistent state after
transient failures. We address the two components of this problem by describing a
distributed algorithm to create consistent checkpoints, as well as a rollback-
recovery algorithm to recover the system to a consistent state. In contrast to previ-
ous algorithms, they tolerate failures that occur during their executions. Further-
more, when a process takes a checkpoint, a minimal number of additional processes
are forced to take checkpoints. Similarly, when a process rolls back and restarts
after a failure, a minimal number of additional processes are forced to roll back
with it. Our algorithms require each process to store at most two checkpoints in
stable storage. This storage requirement is shown to be minimal under general
assumptions.

Keywords: fault-tolerance, checkpoint, rollback-recovery, distributed systems, con-
sistent state.

*The views, opinions and findings contained in this report are those of the authors and should not be con-
strued as an official Department of Defence position, policy, or decision.

tThis author was supported by the Defence Advanced Research Projects Agency (DoD) under ARPA order
5378, Contract MDA903-85-C-0124. and by the National Science Foundation under grants DCR-8412582 and MCS
83-03135.

{This author was supported by the National Science Foundation under grant MCS 83-03135.

Page 2

1. Introduction

Checkpointing and rollback-recovery are well-known techniques that allow
processes to make progress in spite of failures [Rand78]. The failures under con-
sideration are transient problems such as hardware errors and transaction aborts,
i.e., those that are unlikely to recur when a process restarts. With this scheme, a
process takes a checkpoint from time to time by saving its state on stable storage
[(Lamp79]. When a failure occurs, the process rolls back to its most recent check-
point, assumes the state saved in that checkpoint, and resumes execution.

We first identify consistency problems that arise in applying this technique to
a distributed system. We then propose a checkpoint algorithm and a rollback-
recovery algorithm to restart the system from a consistent state when failures
occur. Our algorithms prevent the well-known “domino effect” as well as livelock
problems associated with rollback-recovery. In contrast to previous algorithms,
they are fault-tolerant and involve a minimal number of processes. With our
approach, each process stores at most two checkpoints in stable storage. This

storage requirement is shown to be minimal under general assumptions.

The paper is organized as follows: We discuss the notion of consistency in a
distributed system in section 2, and describe our system model in section 3. In sec-
tion 4 we identify the problems to be solved. Sections 5 and 6 contain the check-
point and rollback-recovery algorithms respectively. The algorithms are extended
for concurrent executions in section 7. In section 8 we consider optimizations. Sec-

tions 9 and 10 contain a discussion and our conclusion.

2. Consistent Global States in Distributed Systems

The notion of a consistent global state is central to reasoning about distributed
systems. It was considered in [Rand75, Russ77, Pres83] and formalized by Chandy
and Lamport [Chan85]. In this section, we summarise their ideas.

In a distributed computation, an event can be a spontaneous state transition
by a process, or the sending or receipt of a nmessage. Event «
directly happens before event b [Lamp78] if and only if

(1) a and b are events in the same process, and a occurs before b; or

(2) a 1s the sending of a message m by a process and b is the receiving of m by

another process.

The transitive closure of the directly happens before relation is the happens before
relation. If event a happens before event b, b happens after a. (We abbreviate hap-
pens before, “before” and happens after, “after”.)

Page 3

A local state of a process p is defined by p’s initial state and the sequence of
events that occurred at p. A global state of a system is a set of local states, one
from each process. The state of the channels corresponding to a global state s is the
set of messages sent but not yet received in s. We can depict the occurrences of
events over time with a time diagram, in which horizontal lines are time axes of
processes, points are events, and arrows represent messages from the sending pro-
cess to the receiving process. In this representation, a global state is a cut dividing
the time diagram into two halves. The state of the channels comprises those
arrows (messages) that cross the cut. Figure 1 is a time diagram for a system of
four processes.

Informally, a cut (global state) in the time diagram is consistent if no arrow
starts on the right hand side and ends on the left hand side of it. This notion of
consistency fits the observation that a message cannot be received before it is sent
in any temporal frame of reference. For example, the cuts ¢ and ¢’ in Figure 1 are
consistent and inconsistent cuts, respectively. The state of the channels
corresponding to cut ¢ consists of one message from p to ¢, and another message
from s to r. Readers are referred to [Chan85] for a formal discussion of consistent
global states.

3. System Model

The distributed system considered in this paper has the following characteris-

tics:

(1) Processes do not share memory or clocks. They communicate via messages
sent through reliable first-in-first-out (FIFO) channels with variable nonzero

transmission time,.

1]

7
— T
SR - —

FI1G. 1. Consistent and inconsistent cuts in a distributed system.

|~
v

Page 4

(2) Processes fail by stopping, and whenever a process fails, all other processes are
informed of the failure in finite time. We assume that processes’ failures

never partition the communication network.

We want to develop our algorithms under a weak set of assumptions. In par-
ticular, we do not assume that the underlying system is a database transaction sys-
tem ([Fisc82] and [Jose85]). This special case admits simpler solutions: the
mechanisms that ensure atomicity of transactions can hide inconsistencies intro-
duced by the failure of a transaction. Furthermore, we do not assume that
processes are deterministic: this simplifying assumption is made in previous results
(e.g., [Stro85] and [Jose85]).

4. Identification of Problems

A checkpoint is a saved local state of a process. A set of checkpoints, one per
process in the system, is consistent if the saved states form a consistent global
state. For example, consider the system history in Figure 2. Process p takes a
checkpoint at time X and then sends a message to q. After receiving this message,
q takes a checkpoint at time Y. Subsequently, p fails and restarts from the check-
point taken at X. The global state at p’s restart is inconsistent because p’s local
state shows that no message has been sent to g, while ¢’s local state shows that a
message from p has been received. If p and g are processes supervising a
customer’s account at different banks, and the message transfers funds from p to q,
the customer will have the funds at both banks when p restarts. This inconsistency
persists even if q is forced to roll back and restart from its checkpoint taken at Y.

The problem of ensuring that the system recovers to a consistent state after
transient failures has two components: checkpoint creation and rollback-recovery;

we examine each one in turn.

X failure

Y

FIG. 2. Inconsistent checkpoints.

Page 5

4.1. Checkpoint Creation

There are two approaches to creating checkpoints. With the first approach,
processes take checkpoints independently and save all checkpoints on stable
storage. Upon a failure, processes must find a consistent set of checkpoints among
the saved ones. The system is then rolled back to and restarted from this set of
checkpoints [Ande79, Russ80, Wood81, Hadz82].

With the second approach, processes coordinate their checkpointing actions
such that each process saves only its most recent checkpoint, and the set of check-
points in the system is guaranteed to be consistent. When a failure occurs, the sys-
tem restarts from these checkpoints [Tami84].

The main disadvantage of the first approach is the “domino effect” as illus-
trated in Figure 3 [Rand75, Pres83]. In this example, processes p and ¢ have
independently taken a sequence of checkpoints. The interleaving of messages and
checkpoints leaves no consistent set of checkpoints for p and.q, except the initial
one at {X;, Yo}. Consequently, after p fails, both p and ¢ must roll back to the
beginning of the computation. For time-critical applications that require a
guaranteed rate of progress, such as real time process control, this behavior results
in unacceptable delays. An additional disadvantage of independent checkpoints is
the large amount of stable storage required to save all checkpoints.

To avoid these disadvantages, we pursue the second approach. In contrast to
[Tami84], our method ensures that when a process takes a checkpoint, a minimal
number of additional processes are forced to take checkpoints.

4.2. Rollback-Recovery

Rollback-recovery from a consistent set of checkpoints appears deceptively

simple. The following scheme seems to work: Whenever a process rolls back to its

Xo X1 X2 X3 failure
; A L,
Yy Yy Yo Y

FIG. 3. "Domuino effect” following a failure.

Page 6

checkpoint, it notifies all other processes to also roll back to their respective check-
points. It then installs its checkpointed state and resumes execution. Unfor-
tunately, this simple recovery method has a major flaw. In the absence of syn-
chronization, processes cannot all recover (from their respective checkpoints) simul-
taneously. Recovering processes asynchronously can introduce livelocks as shown
below.

Figure 4 illustrates the histories of two processes, p and q, up to p’s failure.
Process p fails before receiving the message n, rolls back to its checkpoint, and
notifies g. Then p recovers, sends mj, and receives n,. After p’s recovery, p has
no record of sending m,, while q has a record of its receipt. Therefore, the global
state is inconsistent. To restore consistency, ¢ must also roll back (to “forget” the
receipt of m;) and notify p. However, after g rolls back, ¢ has no record of sending
ny while p has a record of its receipt. Hence, the global state is inconsistent again,
and upon notification of ¢’s rollback, p must roll back a second time. After g recov-
ers, g sends ny and receives my. Suppose p rolls back before réceiving ny as shown
in Figure 5. With the second rollback of p, the sending of my is “forgotten”. To
restore consistency, ¢ must roll back a second time. After p recovers it receives n.,,

and upon notification of ¢’s rollback, it must roll back a third time. It is now clear

failure

p - >
-

checkpoints

mj

q } >

FIG. 4. Histories of p and q up to p's failure.

roll back
o | th 2nd time >
\ g ns
checkpoints v

! >

FIG. 5. History of p and q up to p's 2nd rollback.

Page 7

that p and g can be forced to roll back forever, even though no additional failures

occur.

Our rollback-recovery algorithm solves this livelock problem. It tolerates
failures that occur during its execution, and forces a minimal number of processes
to roll back after a failure. In [Tami84], a single failure forces the system to roll
back as a whole. Furthermore, the system crashes (and does not recover) if a

failure occurs while it is rolling back.
5. Checkpoint Creation

5.1. Naive Algorithms

From Figure 2 it is obvious that if every process takes a checkpoint after
every sending of a message, and these two actions are done atomically, the set of
the most recent checkpoints is always consistent. But creating a checkpoint after
every send is expensive. We may naively reduce the cost of the above method with
a strategy such as “every process takes a checkpoint after every % sends, £ >1" or
“every process takes a checkpoint on the hour”. However, the former can be shown
to suffer domino effects by a construction similar to the one in Figure 3, while the
latter is meaningless for a system that lacks perfectly synchronized clocks.

5.2. Classes of Checkpoints

Our algorithm saves two kinds of checkpoints on stable storage: permanent
and tentative. A permanent checkpoint cannot be undone. It guarantees that the
computation needed to reach the checkpointed state will not be repeated. A tenta-
tive checkpoint, however, can be undone or changed to be a permanent checkpoint.
When the context is clear, we call permanent checkpoints “checkpoints”.

Consider a system with a consistent set of permanent checkpoints. A check-
point algorithm is resilient to failures if the set of permanent checkpoints is still
consistent after the algorithm terminates, even if some processes fail during its
execution. To exclude the impractical “naive” algorithm (in last section) from our
consideration, henceforth, we consider only those systems where processes either
cannot afford to take a checkpoint after every send, or cannot combine the sending
of a message and the taking of a checkpoint into one atomic operation. The follow-
ing theorem shows that checkpoint algorithms for these systems must store at least
two checkpoints in stable storage to be resilient to failures.

Theorem 1: No resilient checkpoint algorithms that take only permanent check-

points exist.

Page 8

Proof: By contradiction. Suppose that such an algorithm A exists. Consider the
following scenario: p and g are processes in the system. Suppose that by time ¢,
t>0, p has received a message m, from g, and q a message m, from p. At ¢, pro-
cess p invokes A to take a checkpoint. Suppose that A terminates by time ¢’, and
that p takes a permanent checkpoint Cp,tp at time ¢, t<t,=<t’. Since A is resilient,
the set of checkpoints at the termination of A must be consistent. Therefore, pro-
cess ¢ must also have taken a permanent checkpoint qutq at time ¢, t<t,<t'. Let
d be the minimum time required for the failure of a process to be detected. Depend-

ing on whether ¢,<¢, or t,>t,, we now construct another execution of A that shows
A is not resilient to failure.

Case 1: ¢, =<t,. Let q fail in the time interval (max(¢, ¢, —d), t,). Process p dis-
covers the failure after ¢, hence after ¢,. (See Figure 6.) Consequently, Cp,,p is
taken although Cq,tq is not. Since Cp,t,, is a permanent checkpoint that cannot be
undone, and ¢ fails before making a permanent checkpoint, the sending of m, is
“forgotten” forever while the receipt of m, is “remembered” always, no matter what

A does after p detects the failure. Hence, contrary to our assumption, Algorithm A
is not resilient.

Case 2: t,>t,. Let p fail in the time interval (max(t, tp—d), t,). The rest of
the proof is analogous to Case 1. O

Theorem 1 shows that in those systems we consider, any resilient checkpoint algo-
rithm must store at least two checkpoints on stable storage.

5.3. Our Checkpoint Algorithm

We assume the algorithm is invoked by a single process that wants to take a
permanent checkpoint. We also assume that no failures occur in the system. In sec-
tion 5.3.4 we extend the algorithm to handle failures, and in section 7 we describe

- Cpity - d-—»
" r i
: checkpoint p detects failure
q fails
q :
t oty ty—d tq

F1G. 6. The scenario when t,<t, and q fails.

Page 9

concurrent invocations of this algorithm.

5.3.1. Motivation

The algorithm is patterned on two-phase-commit protocols. In the first phase,
the initiator ¢ takes a tentative checkpoint and requests all processes to take ten-
tative checkpoints. If g learns that all processes have taken tentative checkpoints,
q decides all tentative checkpoints should be made permanent; otherwise, g decides
tentative checkpoints should be discarded. In the second phase, g¢’s decision is pro-
pagated and carried out by all processes. Since all or none of the processes take
permanent checkpoints, the most recent set of checkpoints is always consistent.

However, our goal is to force a minimal number of processes to take check-
points. The above algorithm is modified as follows: a process p takes a tentative
checkpoint after it receives a request from q only if q’s tentative checkpoint records
the receipt of a message from p, and p’s latest permanent checkpoint does not
record the sending of that message. Process p determines whether this condition is
true using the label appended to ¢’s request. This labeling scheme is described
below.

Messages that are not sent by the checkpoint or rollback-recovery algorithms
are system messages. Every system message m contains a label m.[. Each process
appends outgoing system messages with monotonically increasing labels. We
define L and T to be the smallest and largest labels, respectively. For any
processes g and p, let m be the last message that q received from p after ¢ took its
last permanent or tentative checkpoint. Define:

m.l if m exists
last_rmsg,(p) = L otherwise

Also, let m be the first message that g sent to process p after g took its last per-
manent or tentative checkpoint. Define:

m. if m exists

firstsmsgq(p) =1 therwise

When q requests p to take a tentative checkpoint, it appends last_rmsg,(p) to its
request; p takes the checkpoint only if last_rmsg (p)=first_smsg ,(q)> L.

5.3.2. Informal Description

Process p is a ckpt_cohort of ¢ if q has taken a tentative checkpoint, and
last_rmsg,(p)>L before the tentative checkpoint is taken. The set of ckpt_cohorts

of ¢ is denoted ckpt_cohort,. Every process p keeps a variable willing_to_ckpt, to

Page 10

denote its willingness to take checkpoints. Whenever p cannot take a checkpoint
(for any reason), willing_to_ckpt, is “no”. The initiator q starts the checkpoint
algorithm by making a tentative checkpoint and sending a request “take a tenta-
tive checkpoint and last_rmsg,(p)” to all pE€ckpt_cohort,. A process p inherits this
request if willing_to_ckpt, is “yes” and last_rmsg (p)=first smsg,(q¢)>L. If p
inherits a request, it takes a tentative checkpoint and sends “take a tentative
checkpoint and last_rmsg,(r)” requests to all r€ckpt_cohort ,. If p receives but does
not inherit a request from g, p replies willing_to_ckpt » 0 q.

After p sends out its requests, it waits for replies that can be either “yes” or
“no”, indicating a ckpt_cohort’s acceptance or rejection of p’s request. If any reply is
“no”, willing_to_ckpt, becomes “no”; otherwise willing_to_ckpt, is unchanged. Pro-
cess p then sends willing to_ckpt, to the process whose request p has inherited.
From the time p takes a tentative checkpoint to the time it receives the decision
from the initiator, p does not send any system messages.

If all the replies from its ckpt_cohorts arrive and are all “yes”, the initiator
decides to make all tentative checkpoints permanent. Otherwise the decision is to
undo all tentative checkpoints, This decision is propagated in the same fashion as
the request “take a tentative checkpoint” is delivered. A process discards its previ-
ous checkpoints after it takes a new permanent checkpoint.

The algorithm is presented in Figure 7. For simplicity, we create a fictitious

process called daemon to assume the initiation and decision tasks of the initiator.
In practice, daemon is a part of the initiator process.

5.3.3. Proofs of Correctness

We consider a single invocation of the algorithm, and we assume no process
fails in the system.

Lemma 1: Every process inherits at most one request to take a tentative check-
point.

Proof: Immediately after a process p inherits a request it takes a tentative check-
point. From the time p takes this checkpoint to the time it receives the initiator’s
decision, p does not send any system messages. Therefore, during this interval of

time first_smsg,(q)= L for all q, and p cannot inherit additional requests. |

Lemma 2: Every process terminates its execution of Algorithm C1.

'await does not prevent a process from receiving messages.

Page 11

Daemon process:

send(initiator, “take a tentative checkpoint and T7);
await(initiator, willing_to_ckpt ., siaror);*
if willing_to_ckpt;isioer = “yes” then

send(initiator, “make tentative checkpoint permanent”)
else

send(initiator, “undo tentative checkpoint”)

fi.

All processes p:

INITIAL STATE:
first_smsg,(daemon) = T;
“yes” if p is willing to take a checkpoint

willing_to_ckpt,, = “no” otherwise :

UPON RECEIPT OF “take a tentative checkpoint and last_rmsg (p)” from q DO
if willing_to_ckpt, and last_rmsg,(p) = first_smsg ,(q) > L then
take a tentative checkpoint;
for all r€ckpt_cohort, send(r, “take a tentative checkpoint and last_rmsg,(r)”);
for all ré€ckpt_cohort, await(r, willing_to_ckpt,);
if 3 r€ckpt_cohort ,, willing_to_ckpt, = “no” then willing_to_ckpt ;< “no” fi;
fi;
send(q, willing_to_ckptp);
od.

UPON FIRST RECEIPT OF m ="make tentative checkpoint permanent” or
m ="undo tentative checkpoint” DO
if m="make tentative checkpoint permanent” then
make tentative checkpoint permanent;
else
undo tentative checkpoint;
fi;
for all r€ckpt_cohort ,, send(r, m);
od.

FIG. 7. Algorithm C1: the Checkpoint Algorithm

Page 12

Proof: Any process that executes C1 without taking a tentative checkpoint clearly
terminates. Let p be a process that takes a tentative checkpoint. By Lemma 1, p
takes a tentative checkpoint exactly once. Consequently, to prove that C1 ter-
minates at p, it suffices to prove that after p takes a tentative checkpoint, it does
not wait forever for either the “yes” or “no” from its ckpt_cohorts, or the initiator’s
decision.

Let g be a ckpt_cohort of p. If ¢ inherits p’s request to take a tentative check-
point, it sends willing_to_ckpt, to p before it waits for the initiator’s decision. On
the other hand, if g does not inherit p’s request, it sends willing_to_ckpt, to p
immediately after receiving p’s request. Therefore, there can be no deadlock involv-
ing p waiting for ¢’s reply and q waiting for the initiator’s decision.

Process p cannot be in a deadlock waiting for replies from its ckpt_cohorts
either. To show this, note that if ¢ inherits a checkpoint request from p, p inherits
a request before q does. The inherit relation cannot be circular, and hence no
deadlock can arise. Therefore, p will receive replies from all its ckpt_cohorts.

After the initiator receives replies from all its ckpt_cohorts, it decides whether
to make tentative checkpoints permanent or not. This decision is guaranteed to
reach all processes that have taken tentative checkpoints since all processes for-
ward the decision, and message channels are reliable. Thus process p does not wait
forever for replies from its ckpt_cohorts, or for the initiator’s decision. d

The next lemma shows that C1 takes a consistent set of checkpoints.

Lemma 3: If the set of checkpoints in the system is consistent before the execution
of Algorithm C1, the set of checkpoints in the system is consistent after the termi-
nation of C1.

Proof: Without loss of generality, assume new checkpoints are taken in C1. The
proof is by contradiction. Suppose the set of checkpoints after C1 terminates is not
consistent. Then there are two processes p and g, such that p sent ¢ a message m
after making its permanent checkpoint, and ¢ received m before making its per-
manent checkpoint. Since all checkpoints are consistent before the execution of C1,
q must have taken its permanent checkpoint during this execution. Before q took
a tentative checkpoint in C1, last_rmsg (p)=m.[; hence, p was in ckpt_cohort, and
received a request to take a tentative checkpoint from q. When p received the
request, willing_to_ckpt, had to be “yes” because q could not have made its tenta-
tive checkpoint permanent otherwise. Furthermore, either p had already taken a
tentative checkpoint after sending m, or last_rmsgq(p)Zm.l=first_smsg ,(¢)>L. In

both cases, p took a tentative checkpoint after sending m. However, p makes its

Page 13

tentative checkpoint permanent if ¢ makes its permanent. Consequently, p took a
permanent checkpoint after sending m, a contradiction. O

We now show the number of processes that take new permanent checkpoints
during the execution of Algorithm C1 is minimal. Let P={p,, p;, - - -, pp} be the
set of processes that take new permanent checkpoints in C1, where p, is the initia-
tor of C1. Let C(P)={c(py), c(p1), - - -, c(p,)} be the new permanent checkpoints
taken by processes in P. Define an alternate set of checkpoints:
C'(P)={c'(pg), c'(py), - - =, ¢'(pp)} where ¢'(pg) = c(py) and for 1<i<k, c'(p,) is
either c(p,) or the checkpoint p, had before executing C1.

Theorem 2: C'(P) is consistent if and only if C'(P)=C(P).

Proof: The if part is by Lemma 3. We now prove the only if part. The execution of
C1 imposes a “p inherits a request from ¢” relation on the set of processes. Since
this relation is noncircular and there is only one initiator, it can be represented as
a tree T the root of T is the initiator, and p is a child of ¢ if and only if p inherits
a request from ¢. If p€T, it must make a new permanent checkpoint during the
execution of C1; hence p€P. If p€P, either p is the initiator or it inherits a
request; hence p€T. Therefore, p€7T if and only if p€P.

Our proof is by contradiction. Suppose that C'(P)=C(P) and C'(P) is con-
sistent. Let r€P such that c¢'(r)zc(r). Note that r#p, and that there exists a
path from r to py in T. Since ¢'(pgy) =c(py), there is an edge (p, ¢) on this path such
that c'(p)=c(p), and c¢'(g)=c(q). When p inherits ¢’s request,
last_rmsg,(p) =first_smsg,(q)>L1. Let m be the message that ¢ receives from p
such that last_rmsg,(p)=m.l. Since m.l=first_smsg ,(q), the sending of m is not
recorded in ¢'(p). But the receipt of m is recorded in ¢'(q). Thus, C'(P) is not a

consistent set of checkpoints, a contradiction. O

Theorem 2 shows that if p, takes a checkpoint, then all processes in P must take a

checkpoint to ensure consistency.

5.3.4. Coping with Failures

We now extend Algorithm C1 to handle processes’ failures. We first consider
the effects of failures on nonfaulty processes. When failures occur, a nonfaulty pro-

cess may not receive some of the following messages:

(1) “yes” or “no” from ckpt_cohorts,

t

(2) “make tentative checkpoint permanent” or “undo tentative checkpoint” from

the initiator.

Page 14

Suppose that process p fails before replying “yes” or “no” to process ¢’s
request. By the assumption of section 3, ¢ will know of p’s failure. After ¢ knows
that p has failed, it sets willing_to_ckpt, to “no” and stops waiting for p’s reply.
Therefore, to take care of a missing “yes” or “no”, it suffices to change the state-
ment in C1 from

if 3 r€ckpt_cohort ,, willing_to_ckpt, = “no” then willing_to_ckpt ;< “no” fi
to

if 3 r€ckpt_cohort ,, willing_to_ckpt, = “no” or r has failed then
willing_to_ckpt ;< “no” fi.

Suppose that process p does not receive the decision regarding its tentative
checkpoint. If p undoes its tentative checkpoint or makes it permanent, it risks
contradicting the initiator. The two-phase structure of C1 requires p to block until
it discovers the initiator’s decision [Skee82]. We will discuss ways to prevent block-
ing in section 8.

We now consider the recovery of faulty processes. When a process restarts
after a failure, its latest checkpoint on stable storage may be tentative or per-
manent. If this checkpoint is tentative, the restarting process must decide whether
to discard it or to make it permanent. The decision is made as follows:

Suppose that the restarting process is the initiator. The initiator knows that
every process that has taken a tentative checkpoint is still blocked waiting for its
decision. Hence, it is safe for the initiator to decide to undo all tentative check-
points and send this decision to its ckpt_cohorts. If the restarting process is not the
initiator, it must discover the initiator’s decision regarding tentative checkpoints.
It may contact either the initiator or those processes of which it is a ckpt_cohort; it

follows the decision accordingly to terminate Cl1.

The restarting process is now left with one permanent checkpoint on stable
storage. It can recover from this checkpoint by invoking the rollback-recovery algo-
rithm of section 6.

Let C2 be the Algorithm C1 as modified above. C2 terminates if all processes
that fail during the execution of C2 recover. At termination, the set of checkpoints
in the system is consistent, and the number of processes that took new permanent
checkpoints is minimal. The proofs for these properties are similar to those of C1
and they are omitted.

Page 15

6. Rollback-Recovery

We assume that the algorithm is invoked by a single process that wants to roll
back and recover (henceforth denoted restart). We also assume that the checkpoint
algorithm and the rollback-recovery algorithm are not invoked concurrently. Con-

current invocations of these algorithms are described in section 7.

6.1. Motivation

The rollback-recovery algorithm is patterned on two-phase-commit protocols.
In the first phase, the initiator q requests all processes to restart from their check-
points. Process g decides to restart all the processes if and only if they are all wil-
ling to restart. In the second phase, ¢’s decision is propagated and carried out by
all processes. We will prove that the two-phase structure of this algorithm
prevents livelock as discussed in section 4.2. Since all processes follow the
initiator’s decision, the global state is consistent when the rollback-recovery algo-

rithm terminates.

However, our goal is to force a minimal number of processes to roll back. If a
process p rolls back to a state saved before an event e occurred, we say that e is
undone by p. The above algorithm is modified as follows: the rollback of a process
q forces another process p to roll back only if ¢’s rollback undoes the sending of a
message to p. Process p determines if it must restart using the label appended to
q’s “prepare to roll back” request. This label is described below.

For any processes ¢ and p, let m be the last message that ¢ sent to p before q
took its latest permanent checkpoint. Define

m.l if m exists
last_smsg,(p) = T otherwise

When ¢ requests p to restart, it appends last_smsg,(p) to its request. Process p
restarts from its permanent checkpoint only if last_rmsg,(q) >last_smsg (p).

6.2. Informal Description

Process p is a roll——éohort of ¢ if ¢ can send messages to it. The set of roll-
cohorts of q is roll —cohort,. Every process p keeps a variable willing_to_roll , to
denote its willingness to roll back. Whenever p cannot roll back (for any reason),
willing_to_roll, is “no”. The initiator q starts the rollback-recovery algorithm by
sending a request “prepare to roll back and last_smsg,(p)” to all p€roll —cohort . A

process p inherits this request if willing_to_roll P is yes”,
last_rmsg,(q) >last_smsg,(p), and p has not already inherited another request to

Page 16

roll back. After p inherits the request, it sends “prepare to roll back and
last_smsg,(r)” to all r€roll —cohort ,; otherwise, it replies willing_to_roll » to q.

After p sends out its requests, it waits for replies from each process in
roll—cohort,. The reply can be an explicit “yes” or “no” message, or an implicit
“no” when p discovers that r has failed. If any reply is “no”, willing_to_roll »
becomes “no”, otherwise willing_to_roll, is unchanged. Process p then sends
willing_to_roll, to the process whose request p inherits. From the time p inherits
the rollback request to the time it receives the decision from the initiator, p does
not send any system messages.

If all the replies from its roll-cohorts arrive and are all “yes”, the initiator
decides the rollbacks will proceed, otherwise it decides no process will roll back.
This decision is propagated to all processes in the same fashion as the request
“prepare to roll back” is delivered. If failures prevent the decision from reaching a
process p, p must block until it discovers the initiator’s decision. We discuss non-
blocking algorithms in section 8.

The rollback-recovery algorithm is presented in Figure 8. Like the presenta-
tion of Algorithm C1, we introduce a fictitious process called daemon to perform
functions that are unique to the initiator of the algorithm.

6.3. Proofs of Correctness

We consider a single invocation of the rollback-recovery algorithm. The vari-
able ready_to_roll, ensures that a process p inherits at most one request to roll
back. As a result, the variable also ensures that a process rolls back at most once.
To prove the termination of Algorithm R, it suffices to show that Algorithm R is
free of deadlocks.

Lemma 4: Algorithm R is deadlock free.
Proof: Similar to the proof of Lemma 2. O]

We now show that the global state of the system is consistent after the termi-
nation of R.

Lemma 5: If the system is consistent before the execution of Algorithm R, the sys-
tem is consistent after the termination of Algorithm R.

Proof. The proof is by contradiction. Suppose that after Algorithm R terminates at
every process, the global state of the system is inconsistent. There must be a mes-
sage m sent by a process ¢ to p such that during the execution of R, g undid the
sending of m while p did not undo the receipt of m. We first show that p inherited

Page 17

Daemon process:

send(initiator, “prepare to roll back and L”);
await(initiator, willing_to_roll,,isiator);

if willing_to_roll;,;in0r = “yes” then
send(:nitiator, “roll back”)
else
send(initiator, “do not roll back”)
fi.

All processes p:

INITIAL STATE:
ready_to_roll, = true;
last_rmsg,(daemon) = T,
“yes” if p is willing to roll back

willing_to_roll , = “no” otherwise ;

UPON RECEIPT OF “prepare to roll back and last_smsg,(p)” from ¢ DO
if willing_to_roll, and last_rmsg,(q)>last_smsg ,(p) and ready_to_roll,, then
ready_to_roll , < false;
for all r€roll —cohort,, send(r, “prepare to roll back and last_smsg,(r)”);
for all r€roll —cohort p await(r, willing_to_roll ,);

if 3 ré€roll_cohort ,, willing_to_roll, = “no” or r has failed
then willing to_roll ,«< “no” fi;
fi;
send(q, willing_to_roll ,);
od;

UPON RECEIPT OF m ="“roll back” or
m ="do not roll back” and ready_to_roll,,= false DO
if m = “roll back” then
restart from p’s permanent checkpoint;
else
resume execution;
fi;
for all r€roll —cohort
od;

p» send(r, m);

F1G. 8. Algorithm R: the Rollback Algorithm

Page 18

a request to roll back. After q inherited a request to roll back, it stopped sending
system messages. Hence, it must have sent a request to roll back to p after send-
ing m. Moreover, since g undid the sending of m, m.[>last_smsg(p). On the
other hand, process p could not have taken a permanent checkpoint after receiving
m and before receiving g¢’s request: the creation of this checkpoint and the fact that
q did not take a permanent checkpoint would contradict Lemma 3. Consequently,
last_rmsg,(q) Zm.l>last_smsg ,(p). In addition, the variable willing_to_roll , must
have been “yes”, for the initiator cannot have decided to roll back. Therefore, when
q’s request reached p, either p had already inherited a rollback request or it inher-
ited ¢’s request.

Since p and g received the same decision, p rolled back. Next we show that
p’s rollback undid the receipt of m. There are two cases to consider:

Case 1: m reached p after p inherited a rollback request. Since message chan-
nels are FIFO, m reached p before ¢’s request did. The initiator made its decision
after p replied to g’s request. Therefore, p rolled back after receiving m.

Case 2: m reached p before p inherited a rollback request. We have shown
that p did not take a permanent checkpoint after receiving m. Hence, the rollback
of p undid the receipt of m. O
Lemma 5 ensures that a single execution of Algorithm R brings the system to a
consistent state after a failure; since processes roll back at most once in any execu-
tion of R, the rollback algorithm prevents livelocks. Thus, Algorithm R prevents
livelocks.

Many existing rollback algorithms exhibit the following undesirable property.
If the initiator rolls back, it forces an additional set of processes P to roll back with
it, even though the system will be consistent if some of the processes in P omit to
roll back. For example, the algorithm in [Tami84] requires all processes to roll
back every time any process wants to roll back. However, in some cases, the initia-
tor could roll back alone and the system would still be consistent. With our algo-
rithm, the number of processes that are forced to roll back with the initiator is

minimal.

Theorem 3: Let £ be an execution of R in which the initiator, p,, and an addi-
tional set of processes P roll back. Consider an execution E’, identical to E except
that a non-empty subset of processes in P omit to roil back upon receipt of the “roll

back” decision. The execution E' leaves the system in an inconsistent state.

Proof: The execution of R imposes a “p inherits a ‘prepare to roll back’ request from

q)

3

relation on the set of processes. Since this relation is noncircular and there is

Page 19

only one initiator, it can be represented as a tree T: the root of T is the initiator,
Po» and p is a child of g if and only if p inherits a request from q. If p€T, it rolls
back during the execution of R; hence p€PU{py}. If p€PU{p,}, either p is the ini-
tiator or it inherits a request; hence p€T. Therefore, p€7T if and only if p€ PU{p}.

Our proof is by contradiction. Suppose P'CP is the set of processes that omit
to roll back in the execution E’, and the system is consistent at the end of E’. Let
r€P'. There exists a path from r to pg in 7. Since r omits to roll back and p, rolls
back, there is an edge (p,q) on this path, such that p omits to roll back and ¢ rolls
back. When p inherits the “prepare to roll back” request from g,
last_rmsg,(q)>last_smsg,(p). Let m be the message that q sent to p such that
last_.rmsg,(qg)=m.l. When q rolls back it undoes the sending of m. But since p
omits to roll back, it does not undo the receipt of m. Thus, at the end of E’, the
global state of the system is inconsistent, a contradiction. O

7. Interference

In this section, we consider concurrent invocations of the checkpoint and
rollback-recovery algorithms. An execution of these algorithms by process p is
interfered with if any of the following events occur:

(1) Process p receives a rollback request from another process q while executing
the checkpoint algorithm.

(2) Process p receives a checkpoint request from ¢ while executing the rollback-

recovery algorithm.,

(3) Process p, while executing the checkpoint algorithm for initiator i, receives a
checkpoint request from g, but ¢’s request originates from a different initiator
than :.

(4) Process p, while executing the rollback-recovery algorithm for initiator i,
receives a rollback request from q, but ¢’s request originates from a different
initiator than i.

One single rule handles the four cases of interference: once p starts the execu-
tion of a checkpoint [rollback] algorithm, p is unwilling to take a tentative check-
point [roll back] for another initiator, or to roll back [take a tentative checkpoint].
As a result, in all four cases, p replies “no” to q. We can show this rule is sufficient
to guarantee that all previous lemmas and theorems hold despite concurrent invo-
cations of the algorithms. This rule can, however, be modified to permit more con-
currency in the system. The modification is that in case (1), instead of sending “no”
to q, p can begin executing the rollback-recovery algorithm after it finishes the

Page 20

checkpoint algorithm. We cannot allow a similar modification in case (2) lest
deadlocks may occur.

8. Optimization

When the initiator of the checkpoint or of the rollback-recovery algorithm fails
before propagating its decision to its cohorts, it is desirable for processes not to
block for its recovery. To prevent processes from blocking, we can modify our algo-
rithms by replacing the underlying two-phase commit protocol with a nonblocking
three-phase commit protocol [Skee82]. However, nonblocking protocols are
inherently more expensive than blocking ones [Dwor83].

We next address the following problem: after a ckpt_cohort g of a process p
fails, p cannot take a permanent checkpoint until g restarts (p cannot know if the
latest checkpoint of g records the sendings of all messages it received from g). To
avoid waiting for ¢’s restart, p can remove q from ckpt_cohort, by restarting from
its checkpoint (using the rollback-recovery algorithm). After its restart, process p
can take new checkpoints.

9. Message Loss

Rollback-recovery can cause message loss as illustrated in Figure 9. When p
is rolled back to X following a failure at F, the global state is consistent, but the
message m from g is lost. It is lost because the state of the channels corresponding
to the global state {X, Y} contains m.

One method to circumvent message loss is to have that processes use
transmission protocols that transform lossy channels to virtual error-free channels,
e.g., sliding window protocols [Tane81]. Another method is to ensure that the state
of the channels corresponding to the most recent set of checkpoints contains no
messages. We can modify the checkpoint and rollback-recovery algorithms to

b F
P Y - —

|
9 >
Ty

FIG. 9. kMessage loss following p's rollback to X.

Page 21

implement this latter method, but such modification increases the number of
processes that are forced to take checkpoints and roll back.

10. Conclusion

We have presented a checkpoint algorithm and a rollback-recovery algorithm
to solve the problem of bringing a distributed system to a consistent state after
transient failures. In contrast to previous algorithms, they tolerate failures that
occur during their executions. Furthermore, when a process takes a checkpoint, a
minimal number of additional processes are forced to take checkpoints. Similarly, a
minimal number of additional processes are forced to restart when a process res-
tarts after a failure. We also show that the stable storage requirement of our algo-

rithms is minimal.
Acknowledgements

We would like to thank Amr El Abbadi, Ken Birman, Rance Cleaveland, and Jen-
nifer Widom for commenting on earlier drafts of this paper.

Bibliography

Ande79 T. Anderson, P. A. Lee and S. K. Shrivastava, System fault tolerance, in
Computing System Reliability, T. Anderson, B. Randell (eds.) Cambridge
University Press, Cambridge, 1979, pp. 153-210.

Bria84 D. Briatico, A. Ciuffoletti, and L. Simoncini, A distributed domino-effect

free recovery algorithm, Proc. of the 4th Symposium on Reliability in
Distributed Software and Database Systems, October 1984.

Chan85 K. M. Chandy and L. Lamport, Distributed snapshots: Determining glo-
bal states of distributed systems, ACM Transactions on Computer Sys-
tems, vol. 3, no. 1, pp. 63-75, February 1985,

Dwor84 C. Dwork and D. Skeen, The inherent cost of nonblocking commitment,
Proc. ACM Symposium on Principles of Database Systems, March 1983,

Fisc82 M. Fischer, N. Griffeth, and N. Lynch, Global states of a distributed sys-
tem, [EEE Transaction on Software Engineering, May 1982, pp. 198-202

Hadz82 V. Hadzilacos, An algorithm for minimizing rollback cost, Proc. ACM
Symposium on Principles of Database Systems, March 1982.

Jose85 T. Joseph and K. Birman, Low cost management of replicated data in
fault-tolerant distributed systems, To appear in TOCS.

Lamp78

Lamp79

Pres83

Rand75

Rand78

Russ77

Russ80

Skee82

Stro85

Tami84

Tane81

Wood81

Page 22

L. Lamport, Time, clocks and the ordering of events in a distributed sys-
tem, Communications of the ACM, vol. 21, no. 7, July 1978, pp. 558-565.

B. Lampson and H. Sturgis, Crash recovery in a distributed storage sys-
tem, Xerox PARC Tech. Rep., Xerox Palo Alto Research Center, April
1979.

D. L. Presotto, Publishing: A reliable broadcast communication mechan-
ism, Tech. Rep. UCB/CSD 83-165, Computer Science Division, University
of California, Berkeley, December 1983.

B. Randell, System structure for software fault tolerance, IEEE Transac-
tions On Software Engineering, vol. SE-1, no.2, June 1975, pp. 226-232.

B. Randell, P.A. Lee, and P.C. Treleaven, Reliability issues in computing
system design, ACM Computing Surveys, vol. 10, no. 2, June 1978, pp.
123-166.

D. L. Russell, Process backup in producer-consumer systems, Proc. ACM
Symposium on Operating Systems Principles, November, 1977.

D. L. Russell, State restoration in systems of communicating processes,
IEEE Transactions on Software Engineering, vol. SE-6, no. 2, March
1980, pp. 183-194.

D. M. Skeen, Crash recovery in a distributed database system, Ph.D.
dissertation, Computer Science Division, University of California, Berke-
ley, 1982.

R. Strom and S. Yemini, Optimistic recovery in distributed systems,
Transactions on Computer Systems, August 1985, pp. 204-226.

Y. Tamir and C. H. Sequin, Error recovery in multicomputers using glo-
bal checkpoints, Proc. of 13th International Conference on Parallel Pro-
cessing, August 1984.

A. S. Tanenbaum, Computer Networks, Prentice Hill, New Jersey, 1981,
pp. 148-164.

W. G. Wood, A decentralized recovery control protocol, Proc. of the 11th
Annual International Symposium on Fault-Tolerant Computing, June
1981.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif

