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Motivation

Framework

Very very large number of processing elements (e.g., 220)

Failure-prone platform (like any realistic platform)

Large application to be executed on the whole platform

=⇒ Failure(s) will certainly occur before completion!

Resilience provided through coordinated checkpointing

Question

When should we checkpoint the application?



State of the art

One knows that applications should be checkpointed periodically

Is this optimal?

Several proposed values for period

Young:
√

2× C ×MTBF (1st order approximation)

Daly (1):
√

2× C × (R + MTBF) (1st order approximation)

Daly (2): η ×MTBF− C , where η = ξ2 + 1 + L(−e−(2ξ
2+1)),

ξ =
√

C
2×MTBF , and L(z)eL(z) = z

(higher order approximation)

How good are these approximations?
Could we find the optimal value? At least for Exponential failures?
And for Weibull failures?
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Hypotheses

Overall size of work: W
Checkpoint cost: C
(e.g., write on disk the contents of each processor memory)

Downtime: D (hardware replacement by spare,
or software rejuvenation via rebooting)

Recovery cost after failure: R

Homogeneous platform
(same computation speeds, iid failure distributions)

History of failures has no impact, only the time elapsed since
last failure does

A failure can happen during a checkpoint, a recovery, but not
a downtime (otherwise replace D by 0 and R by R + D).
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Problem statement

Makespan

Minimize the job’s expected makespan, that is:

the expectation E
of the time T needed to process
a work of size W
knowing that the (single) processor failed τ units of time ago.

Notation:

minimize E(T (W|τ))
ω1(W|τ): amount of work we attempt to do before taking the
first checkpoint



Recursive approach

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Probability

of success

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

to compute

the 1st chunk

Time needed

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time needed to

compute the remainder

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Probability of failure

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time elapsed

before the failure

occured

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time needed
to perform
downtime

and recovery

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

from scratch

to compute W
Time needed

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Failures following an exponential distribution

Theorem

Optimal strategy splits W into K ∗ same-size chunks where

K ∗ = max(1, bK0c) or K ∗ = dK0e

(whichever leads to the smaller value)

where

K0 =
λW

1 + L(−e−λC−1)
and L(z)eL(z) = z

Optimal expectation of makespan is

K ∗
(

eλR
(

1

λ
+ D

))(
eλ(

W
K∗+C)−1

)



Arbitrary failure distributions

E(T (W|τ)) =

min
0<ω1≤W


Psuc(ω1 + C |τ)

(
ω1 + C + E(T (W − ω1|τ + ω1 + C ))

)
+(1− Psuc(ω1 + C |τ))×

(E(Tlost(ω1 + C |τ))+E(Trec)+E(T (W|R)))

Solve via dynamic programming
• Time quantum u: all chunk sizes ωi are integer multiples of u
• Trade-off: accuracy versus higher computing time



Dynamic programming

Algorithm 1: DPMakespan (x ,b,y ,τ0)

if x = 0 then
return 0

if solution[x ][b][y ] = unknown then
best ←∞; τ ← bτ0 + yu
for i = 1 to x do

exp succ ← first(DPMakespan(x − i , b, y + i + C
u , τ0))

exp fail ← first(DPMakespan(x , 0, Ru , τ0))
cur ← Psuc(iu + C |τ)(iu + C + exp succ)

+(1− Psuc(iu + C |τ))
(
E(Tlost(iu + C , τ))

+E(Trec) + exp fail
)

if cur < best then
best ← cur ; chunksize ← i

solution[x ][b][y ]← (best, chunksize)
return solution[x ][b][y ]
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Problem statement

NextFailure

Maximize expected amount of work completed before next
failure

Optimization on a “failure-by-failure” basis

Hopefully a good approximation, at least for large job sizes W



Approach

E(W (ω|τ))=Psuc(ω1 + C |τ)(ω1 + E(W (ω − ω1|τ + ω1 + C )))

Proposition

E(W (W|0)) =
K∑
i=1

ωi ×
i∏

j=1

Psuc(ωj + C |tj)

where tj =
∑j−1

`=1 ω` + C is the total time elapsed (without failure)
before execution of chunk ωl , and K is the (unknown) target
number of chunks.



Solving through dynamic programming

Algorithm 2: DPNextFailure (x ,n,τ0)

if x = 0 then
return 0

if solution[x ][n] = unknown then
best ←∞
τ ← τ0 + (W − xu) + nC
for i = 1 to x do

work = first(DPNextFailure(x − i , n + 1, τ0))
cur ← Psuc(iu + C |τ)× (iu + work)
if cur < best then

best ← cur ; chunksize ← i
solution[x ][n]← (best, chunksize)

return solution[x ][n]
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Failures following an exponential distribution

Theorem

Optimal strategy splits W(p) in K ∗(p) same-size chunks
where

K ∗(p) = max(1, bK0(p)c) or K ∗(p) = dK0(p)e

(whichever leads to the smaller value)

where K0(p) =
λW(p)

1 + L(−e−pλC−1)
and L(z)eL(z) = z

Optimal expectation of makespan is

K ∗(p)

(
1

pλ
+ E(Trec(p))

)(
e
λ
(
W

K∗(p)+pC
)
− 1

)



Arbitrary failure distributions

Cannot solve analytically the recursion

Cannot extend the dynamic programming algorithm
DPMakespan designed for the single-processor case:

Would need to memorize all possible failure scenarios for each
processor
Number of states exponential in p
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Dynamic programming

All τ variables evolve identically: recursive calls only correspond to
cases in which no failure has occurred.

E(W (W|τ1, . . . , τp)) =

Psuc(ω1+C |τ1, . . . , τp)(ω1+E(W (W−ω1|τ1+ω1+C , . . . , τp+ω1+C )))

⇒ Same dynamic programming approach than previously

Linear dependency in p (computation of Psuc)

Reduce complexity by recording only x most recent τ values
and approximate the other values using y rounding values
defined by x regularly-spaced quantiles



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Evaluated approaches

Heuristics

Young [4]

DalyLow [2]

DalyHigh [2]

Bouguerra [1]

Liu [3]

OptExp

DPMakespan

DPNextFailure

Theoretical bounds

LowerBound (omniscient algorithm)

PeriodLB



Synthetic failure distributions

ptotal D C ,R MTBF W
1-proc 1 60 s 600 s 1 h, 1 d, 1 w 20 d

Petascale 45, 208 60 s 600 s 125 y, 500 y 1, 000 y

Exascale 220 60 s 600 s 1250 y 10, 000 y

Simulation parameters
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Sequential jobs under Exponential failures

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.62865 0.90714 0.979151

PeriodLB 1.00705 1.01588 1.02298

Young 1.01635 1.01590 1.02332

DalyLow 1.02711 1.01611 1.02338

DalyHigh 1.00700 1.01592 1.02373

Liu 1.01607 1.01655 1.02333

Bouguerra 1.02562 1.02329 1.02685

OptExp 1.00705 1.01611 1.02298

DPNextFailure 1.00785 1.01699 1.02851

DPMakespan 1.00737 1.01655 1.03467

Degradation from best, single processor, Exponential failures
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Sequential jobs under Weibull failures

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.66417 0.90714 0.97915

PeriodLB 1.00960 1.01588 1.02298

Young 1.00965 1.01590 1.02332

DalyLow 1.01155 1.01611 1.02338

DalyHigh 1.01785 1.01592 1.02373

Liu 1.00914 1.01655 1.02333

Bouguerra 1.02936 1.02329 1.02685

OptExp 1.01788 1.01611 1.02298

DPNextFailure 1.01408 1.01699 1.02851

DPMakespan 1.00731 1.01655 1.03467

Degradation from best, single processor, Weibull failures
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Conclusion and perspectives

Complete analytical solution for Makespan/ Exponential

Dynamic programming algorithms for
NextFailure / Arbitrary distribution

Makespan decreased by DPNextFailure
(for the hardest cases)

Future work
Target non-coordinated checkpointing (e.g., hierarchical
checkpointing with message logging)
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