
Checkpointing strategies for parallel jobs

Marin Bougeret, Henri Casanova, Mikaël Rabie,
Yves Robert, and Frédéric Vivien

ENS Lyon & INRIA, France
University of Hawai‘i at Mānoa, USA

University of Montpellier, France



Motivation

Framework

Very very large number of processing elements (e.g., 220)

Failure-prone platform (like any realistic platform)

Large application to be executed on the whole platform

=⇒ Failure(s) will certainly occur before completion!

Resilience provided through coordinated checkpointing

Question

When should we checkpoint the application?



State of the art

One knows that applications should be checkpointed periodically

Is this optimal?

Several proposed values for period

Young:
√

2× C ×MTBF (1st order approximation)

Daly (1):
√

2× C × (R + MTBF) (1st order approximation)

Daly (2): η ×MTBF− C , where η = ξ2 + 1 + L(−e−(2ξ
2+1)),

ξ =
√

C
2×MTBF , and L(z)eL(z) = z

(higher order approximation)

How good are these approximations?
Could we find the optimal value? At least for Exponential failures?
And for Weibull failures?



State of the art

One knows that applications should be checkpointed periodically
Is this optimal?

Several proposed values for period

Young:
√

2× C ×MTBF (1st order approximation)

Daly (1):
√

2× C × (R + MTBF) (1st order approximation)

Daly (2): η ×MTBF− C , where η = ξ2 + 1 + L(−e−(2ξ
2+1)),

ξ =
√

C
2×MTBF , and L(z)eL(z) = z

(higher order approximation)

How good are these approximations?
Could we find the optimal value? At least for Exponential failures?
And for Weibull failures?



State of the art

One knows that applications should be checkpointed periodically
Is this optimal?

Several proposed values for period

Young:
√

2× C ×MTBF (1st order approximation)

Daly (1):
√

2× C × (R + MTBF) (1st order approximation)

Daly (2): η ×MTBF− C , where η = ξ2 + 1 + L(−e−(2ξ
2+1)),

ξ =
√

C
2×MTBF , and L(z)eL(z) = z

(higher order approximation)

How good are these approximations?
Could we find the optimal value? At least for Exponential failures?
And for Weibull failures?



State of the art

One knows that applications should be checkpointed periodically
Is this optimal?

Several proposed values for period

Young:
√

2× C ×MTBF (1st order approximation)

Daly (1):
√

2× C × (R + MTBF) (1st order approximation)

Daly (2): η ×MTBF− C , where η = ξ2 + 1 + L(−e−(2ξ
2+1)),

ξ =
√

C
2×MTBF , and L(z)eL(z) = z

(higher order approximation)

How good are these approximations?
Could we find the optimal value? At least for Exponential failures?
And for Weibull failures?



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Hypotheses

Overall size of work: W
Checkpoint cost: C
(e.g., write on disk the contents of each processor memory)

Downtime: D (hardware replacement by spare,
or software rejuvenation via rebooting)

Recovery cost after failure: R

Homogeneous platform
(same computation speeds, iid failure distributions)

History of failures has no impact, only the time elapsed since
last failure does

A failure can happen during a checkpoint, a recovery, but not
a downtime (otherwise replace D by 0 and R by R + D).



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Problem statement

Makespan

Minimize the job’s expected makespan, that is:

the expectation E
of the time T needed to process
a work of size W
knowing that the (single) processor failed τ units of time ago.

Notation:

minimize E(T (W|τ))
ω1(W|τ): amount of work we attempt to do before taking the
first checkpoint



Recursive approach

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Probability

of success

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

to compute

the 1st chunk

Time needed

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time needed to

compute the remainder

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Probability of failure

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time elapsed

before the failure

occured

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

Time needed
to perform
downtime

and recovery

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

from scratch

to compute W
Time needed

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

+

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Recursive approach

+

(1− Psucc(ω1 + C |τ )) (E(Tlost(ω1 + C |τ )) + E(Trec) + E(T (W|R)))

Psucc(ω1 + C |τ ) (ω1 + C + E(T (W − ω1|τ + ω1 + C ))

E(T (W|τ )) =

Problem: finding ω1(W, τ) minimizing E(T (W|τ))



Failures following an exponential distribution

Theorem

Optimal strategy splits W into K ∗ same-size chunks where

K ∗ = max(1, bK0c) or K ∗ = dK0e

(whichever leads to the smaller value)

where

K0 =
λW

1 + L(−e−λC−1)
and L(z)eL(z) = z

Optimal expectation of makespan is

K ∗
(

eλR
(

1

λ
+ D

))(
eλ(

W
K∗+C)−1

)



Arbitrary failure distributions

E(T (W|τ)) =

min
0<ω1≤W


Psuc(ω1 + C |τ)

(
ω1 + C + E(T (W − ω1|τ + ω1 + C ))

)
+(1− Psuc(ω1 + C |τ))×

(E(Tlost(ω1 + C |τ))+E(Trec)+E(T (W|R)))

Solve via dynamic programming
• Time quantum u: all chunk sizes ωi are integer multiples of u
• Trade-off: accuracy versus higher computing time



Dynamic programming

Algorithm 1: DPMakespan (x ,b,y ,τ0)

if x = 0 then
return 0

if solution[x ][b][y ] = unknown then
best ←∞; τ ← bτ0 + yu
for i = 1 to x do

exp succ ← first(DPMakespan(x − i , b, y + i + C
u , τ0))

exp fail ← first(DPMakespan(x , 0, Ru , τ0))
cur ← Psuc(iu + C |τ)(iu + C + exp succ)

+(1− Psuc(iu + C |τ))
(
E(Tlost(iu + C , τ))

+E(Trec) + exp fail
)

if cur < best then
best ← cur ; chunksize ← i

solution[x ][b][y ]← (best, chunksize)
return solution[x ][b][y ]



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Problem statement

NextFailure

Maximize expected amount of work completed before next
failure

Optimization on a “failure-by-failure” basis

Hopefully a good approximation, at least for large job sizes W



Approach

E(W (ω|τ))=Psuc(ω1 + C |τ)(ω1 + E(W (ω − ω1|τ + ω1 + C )))

Proposition

E(W (W|0)) =
K∑
i=1

ωi ×
i∏

j=1

Psuc(ωj + C |tj)

where tj =
∑j−1

`=1 ω` + C is the total time elapsed (without failure)
before execution of chunk ωl , and K is the (unknown) target
number of chunks.



Solving through dynamic programming

Algorithm 2: DPNextFailure (x ,n,τ0)

if x = 0 then
return 0

if solution[x ][n] = unknown then
best ←∞
τ ← τ0 + (W − xu) + nC
for i = 1 to x do

work = first(DPNextFailure(x − i , n + 1, τ0))
cur ← Psuc(iu + C |τ)× (iu + work)
if cur < best then

best ← cur ; chunksize ← i
solution[x ][n]← (best, chunksize)

return solution[x ][n]



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Failures following an exponential distribution

Theorem

Optimal strategy splits W(p) in K ∗(p) same-size chunks
where

K ∗(p) = max(1, bK0(p)c) or K ∗(p) = dK0(p)e

(whichever leads to the smaller value)

where K0(p) =
λW(p)

1 + L(−e−pλC−1)
and L(z)eL(z) = z

Optimal expectation of makespan is

K ∗(p)

(
1

pλ
+ E(Trec(p))

)(
e
λ
(
W

K∗(p)+pC
)
− 1

)



Arbitrary failure distributions

Cannot solve analytically the recursion

Cannot extend the dynamic programming algorithm
DPMakespan designed for the single-processor case:

Would need to memorize all possible failure scenarios for each
processor
Number of states exponential in p



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Dynamic programming

All τ variables evolve identically: recursive calls only correspond to
cases in which no failure has occurred.

E(W (W|τ1, . . . , τp)) =

Psuc(ω1+C |τ1, . . . , τp)(ω1+E(W (W−ω1|τ1+ω1+C , . . . , τp+ω1+C )))

⇒ Same dynamic programming approach than previously

Linear dependency in p (computation of Psuc)

Reduce complexity by recording only x most recent τ values
and approximate the other values using y rounding values
defined by x regularly-spaced quantiles



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Evaluated approaches

Heuristics

Young [4]

DalyLow [2]

DalyHigh [2]

Bouguerra [1]

Liu [3]

OptExp

DPMakespan

DPNextFailure

Theoretical bounds

LowerBound (omniscient algorithm)

PeriodLB



Synthetic failure distributions

ptotal D C ,R MTBF W
1-proc 1 60 s 600 s 1 h, 1 d, 1 w 20 d

Petascale 45, 208 60 s 600 s 125 y, 500 y 1, 000 y

Exascale 220 60 s 600 s 1250 y 10, 000 y

Simulation parameters



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Sequential jobs under Exponential failures

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.62865 0.90714 0.979151

PeriodLB 1.00705 1.01588 1.02298

Young 1.01635 1.01590 1.02332

DalyLow 1.02711 1.01611 1.02338

DalyHigh 1.00700 1.01592 1.02373

Liu 1.01607 1.01655 1.02333

Bouguerra 1.02562 1.02329 1.02685

OptExp 1.00705 1.01611 1.02298

DPNextFailure 1.00785 1.01699 1.02851

DPMakespan 1.00737 1.01655 1.03467

Degradation from best, single processor, Exponential failures



Sequential jobs under Exponential failures

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.62865 0.90714 0.979151

PeriodLB 1.00705 1.01588 1.02298

Young 1.01635 1.01590 1.02332

DalyLow 1.02711 1.01611 1.02338

DalyHigh 1.00700 1.01592 1.02373

Liu 1.01607 1.01655 1.02333

Bouguerra 1.02562 1.02329 1.02685

OptExp 1.00705 1.01611 1.02298

DPNextFailure 1.00785 1.01699 1.02851

DPMakespan 1.00737 1.01655 1.03467

Degradation from best, single processor, Exponential failures



Sequential jobs under Weibull failures

MTBF
Heuristics 1 hour 1 day 1 week

LowerBound 0.66417 0.90714 0.97915

PeriodLB 1.00960 1.01588 1.02298

Young 1.00965 1.01590 1.02332

DalyLow 1.01155 1.01611 1.02338

DalyHigh 1.01785 1.01592 1.02373

Liu 1.00914 1.01655 1.02333

Bouguerra 1.02936 1.02329 1.02685

OptExp 1.01788 1.01611 1.02298

DPNextFailure 1.01408 1.01699 1.02851

DPMakespan 1.00731 1.01655 1.03467

Degradation from best, single processor, Weibull failures



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Parallel jobs under Exponential failures (1/2)

0.9

1

1.1

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

211 213210 212 215214

number of processors

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1

1.1

0.9

number of processors

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

211 213210 212 215214

LowerBound
PeriodLB

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1.1

1

0.9

215

number of processors

210 212 214

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

211 213

LowerBound
PeriodLB

DalyHigh

Young
DalyLow

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1.1

1

0.9

212 213210 214 215211

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1.1

1

0.9

212 213211 214 215210

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB

DalyLow
Young

DalyHigh

Liu
Bouguerra
OptExp

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1.1

1

0.9

number of processors

211 213210 212 215

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

214

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

OptExp

DPMakespan

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (1/2)

1.1

1

0.9

210 211

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 215212 213

LowerBound
PeriodLB

DalyHigh
DalyLow
Young

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Petascale, MTBF = 125 years



Parallel jobs under Exponential failures (2/2)

1.1

1

0.9

210 211

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 215212 213

LowerBound
PeriodLB

DalyHigh
DalyLow
Young

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Petascale
MTBF = 125 years

1.1

1

0.9

210 211 212 213

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 215

DalyHigh
DalyLow
Young

LowerBound

OptExp

PeriodLB

Liu
Bouguerra

DPMakespan
DPNextFailure

Petascale
MTBF = 500 years



Parallel jobs under Exponential failures (2/2)

1.1

1

0.9

210 211

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 215212 213

LowerBound
PeriodLB

DalyHigh
DalyLow
Young

Liu
Bouguerra
OptExp

DPMakespan
DPNextFailure

Petascale
MTBF = 125 years

1.1

1

0.9

215 217 219216

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 218 220

DalyHigh
DalyLow
Young

LowerBound

DPMakespan

OptExp
Bouguerra
Liu

PeriodLB

DPNextFailure

Exascale
MTBF = 1250 years



Parallel jobs under Weibull failures (1/2)

1

1.1

0.9

number of processors

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

211 213210 212 215214

LowerBound
PeriodLB

Petascale, MTBF = 125 years, k = 0.70



Parallel jobs under Weibull failures (1/2)

0.9

1

1.1

211 213210 212 215214

number of processors

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

LowerBound
PeriodLB

DalyHigh

Young
DalyLow

Petascale, MTBF = 125 years, k = 0.70



Parallel jobs under Weibull failures (1/2)

1.1

1

0.9

212 213210 214 215211

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Liu
Bouguerra

Petascale, MTBF = 125 years, k = 0.70



Parallel jobs under Weibull failures (1/2)

1.1

1

0.9

212 213211 214 215210

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB

DalyHigh

Young
DalyLow

Liu
Bouguerra
OptExp

Petascale, MTBF = 125 years, k = 0.70



Parallel jobs under Weibull failures (1/2)

0.9

1.1

1

211 213210 212 215214

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

OptExp
DPNextFailure

Petascale, MTBF = 125 years, k = 0.70



Parallel jobs under Weibull failures (2/2)

0.9

1.1

1

211 213210 212 215214

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

OptExp
DPNextFailure

Petascale
MTBF = 125 years

k = 0.70

1.1

1

0.9

210 211 212 213

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

214 215

DalyHigh
DalyLow
Young

LowerBound

OptExp
Bouguerra
Liu

PeriodLB

DPNextFailure

Petascale
MTBF = 500 years

k = 0.70



Parallel jobs under Weibull failures (2/2)

0.9

1.1

1

211 213210 212 215214

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

OptExp
DPNextFailure

Petascale
MTBF = 125 years

k = 0.70

0.5

1

1.5

2

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Weibull shape parameter (k)

Bouguerra
Liu

DPNextFailure

PeriodLB

OptExp

DalyHigh
DalyLow
Young

LowerBound

Petascale
MTBF = 125 years
45,208 processors



Parallel jobs under Weibull failures (2/2)

0.9

1.1

1

211 213210 212 215214

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

number of processors

LowerBound
PeriodLB
Young
DalyLow
DalyHigh

Bouguerra
Liu

OptExp
DPNextFailure

Petascale
MTBF = 125 years

k = 0.70

0.9

1

1.1

218 219216 217 220215214

number of processors

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

DalyHigh
DalyLow
Young

LowerBound

OptExp
Bouguerra

PeriodLB

Liu

DPNextFailure

Exascale
MTBF = 1250 years

k = 0.70



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



LANL trace set

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

215214

number of processors

213212

Young
DalyLow
DalyHigh

Petascale / LANL Cluster 18



LANL trace set

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

213212 215214

number of processors

Young
DalyLow
DalyHigh
OptExp

Petascale / LANL Cluster 18



LANL trace set

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

213212 215214

number of processors

PeriodLB
Young
DalyLow
DalyHigh
OptExp

Petascale / LANL Cluster 18



LANL trace set

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

213212 215214

number of processors

PeriodLB
Young
DalyLow
DalyHigh
OptExp
DPNextFailure

Petascale / LANL Cluster 18



LANL trace set

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

213212 215214

number of processors

PeriodLB
Young
DalyLow
DalyHigh
OptExp
DPNextFailure

Petascale / LANL Cluster 18

1

1.01

1.02

1.03

1.04

1.05

av
er
ag
e
m
ak
es
pa
n
de
gr
ad
at
io
n

213212 215214

number of processors

DPNextFailure

PeriodLB

OptExp
DalyHigh
DalyLow
Young

Petascale / LANL Cluster 19



Outline

1 Single-processor jobs
Solving Makespan
Solving NextFailure

2 Parallel jobs
Solving Makespan
Solving NextFailure

3 Experiments
Simulation framework
Sequential jobs under synthetic failures
Parallel jobs under synthetic failures
Parallel jobs under trace-based failures

4 Conclusion



Conclusion and perspectives

Complete analytical solution for Makespan/ Exponential

Dynamic programming algorithms for
NextFailure / Arbitrary distribution

Makespan decreased by DPNextFailure
(for the hardest cases)

Future work
Target non-coordinated checkpointing (e.g., hierarchical
checkpointing with message logging)



Bibliography

M.-S. Bouguerra, T. Gautier, D. Trystram, and J.-M. Vincent.
A flexible checkpoint/restart model in distributed systems.
In PPAM, volume 6067 of LNCS, pages 206–215, 2010.

J. T. Daly.
A higher order estimate of the optimum checkpoint interval for
restart dumps.
Future Generation Computer Systems, 22(3):303–312, 2004.

Y. Liu, R. Nassar, C. Leangsuksun, N. Naksinehaboon,
M. Paun, and S. Scott.
An optimal checkpoint/restart model for a large scale high
performance computing system.
In IPDPS 2008, pages 1–9. IEEE, 2008.

J. W. Young.
A first order approximation to the optimum checkpoint
interval.
Communications of the ACM, 17(9):530–531, 1974.


	Single-processor jobs
	Solving Makespan
	Solving NextFailure

	Parallel jobs
	Solving Makespan
	Solving NextFailure

	Experiments
	Simulation framework
	Sequential jobs under synthetic failures
	Parallel jobs under synthetic failures
	Parallel jobs under trace-based failures

	Conclusion

