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ABSTRACT
Large-scale data analysis has become increasingly impor-
tant for many enterprises. Recently, a new distributed com-
puting paradigm, called MapReduce, and its open source
implementation Hadoop, has been widely adopted due to
its impressive scalability and flexibility to handle structured
as well as unstructured data. In this paper, we describe
our data warehouse system, called Cheetah, built on top of
MapReduce. Cheetah is designed specifically for our online
advertising application to allow various simplifications and
custom optimizations. First, we take a fresh look at the data
warehouse schema design. In particular, we define a virtual
view on top of the common star or snowflake data warehouse
schema. This virtual view abstraction not only allows us to
design a SQL-like but much more succinct query language,
but also makes it easier to support many advanced query
processing features. Next, we describe a stack of optimiza-
tion techniques ranging from data compression and access
method to multi-query optimization and exploiting materi-
alized views. In fact, each node with commodity hardware in
our cluster is able to process raw data at 1GBytes/s. Lastly,
we show how to seamlessly integrate Cheetah into any ad-
hoc MapReduce jobs. This allows MapReduce developers
to fully leverage the power of both MapReduce and data
warehouse technologies.

1. INTRODUCTION
Analyzing large amount of data becomes increasingly im-

portant for many enterprises’ day-to-day operations. At the
same time, the size of data being collected and analyzed is
growing rapidly. It’s not uncommon to see Petabyte data
warehouse nowadays [22, 19]. This trend often makes tradi-
tional data warehouse solution prohibitively expensive. As a
result, a shared-nothing MPP architecture built upon cheap,
commodity hardware starts to gain a lot traction recently.

One type of such systems is MPP relational data ware-
houses over commodity hardware. Examples include Aster-
Data, DATAllegro, Infobright, Greenplum, ParAccel, Ver-
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tica, etc. These systems are highly optimized for storing
and querying relational data. However, to date it is hard
for these systems to scale to thousands of nodes. Part of
the reason is that at this scale, hardware failure becomes
common as more nodes are added into the system, while
most relational databases assume that hardware failure is a
rare event [3]. Also, it is difficult for these systems to pro-
cess non-relational data. The other type is MapReduce sys-
tem [8]. Example includes the popular open source MapRe-
duce implementation Hadoop [12]. MapReduce framework
handles various types of failures very well and thus can eas-
ily scale to tens of thousands nodes. It is also more flexible
to process any type of data. On the other hand, since it is
a general purpose system, it lacks a declarative query inter-
face. Users have to write code in order to access the data.
Obviously, this approach requires a lot of effort and techni-
cal skills. At the same time, it may result in redundant code.
The optimization of the data access layer is often neglected
as well.

Interestingly, we start to see the convergence of these two
types of systems recently. On one hand, relational data
warehouses, such as AsterData, GreenPlum, etc, are ex-
tended with some MapReduce capabilities. On the other
hand, a number of data analytics tools have been built on
top of Hadoop. For example, Pig [9] translates a high-level
data flow language into MapReduce jobs. HBase [14], sim-
ilar to BigTable [6], provides random read and write ac-
cess to a huge distributed (key, value) store. Hive [22] and
HadoopDB [3] are data warehouses that support SQL-like
query language.

Background and Motivation Turn (www.turn.com) is
a software and services company that provides an end-to-
end platform for managing data-driven digital advertising.
Global advertising holding companies and the worlds best-
known brands use the Turn platform to more effectively
use data to target custom audiences at scale, optimize per-
formance, and centrally manage campaigns as well as data
across a range of inventory sources. At Turn, we have the
following data management challenges.

• Data: There are frequent schema changes for our re-
lational data due to fast-paced business environment.
There are also large portion of data that are not rela-
tional at all. Plus, the size of data is growing rapidly.

• Simple yet Powerful Query Language: An important
service we provide to our external clients is to allow
them to directly access our data warehouse to perform



their own ad-hoc analysis of their advertising data. For
this, we need to provide them a simple yet powerful
query language.

• Data Mining Applications: Powering the data mining
applications with the capability of going through the
entire dataset may greatly improve their performance.
For this, we need to provide these applications a simple
yet efficient data access method.

• Performance: A high performance data warehouse is
a must. At the same time, it should also be able to
support rapid data growth.

These challenges, in particular, the first three, motivate
us to build a data warehouse that is flexible and scalable.
In this paper, we describe our custom data warehouse sys-
tem, called Cheetah, built on top of Hadoop. In summary,
Cheetah has the following highlighted features.

• Succinct Query Language: We define virtual views
on top of the common data warehouse star/snowflake
schema. This design significantly simplifies the query
language and its corresponding implementation, op-
timization and integration. As a testimony, we see
clients with no prior SQL knowledge are able to quickly
grasp this language.

• High Performance: Cheetah exploits a stack of Hadoop-
specific optimization techniques ranging from data com-
pression and access method to multi-query optimiza-
tion and exploiting materialized views. Each node
with commodity hardware in our cluster is able to pro-
cess the raw data at 1GBytes per second.

• Seamless integration of MapReduce and Data Ware-
house: Cheetah provides a non-SQL interface for ap-
plications to directly access the raw data. This way,
MapReduce developers can take full advantage of the
power of both MapReduce (massive parallelism and
scalability) and data warehouse (easy and efficient data
access) technologies.

The rest of the paper is organized as follows. Section 2
describes the background of this work. In Section 3, we give
an overview of our data warehouse system. The schema
design and query language in Cheetah is described in Sec-
tion 4. The query processing and optimization are included
Section 5 and 6. We show how to integrate Cheetah into
user program in Section 7. The performance evaluation is
presented in Section 8. We conclude in Section 9.

2. BACKGROUND
MapReduce is a programming model introduced by Dean

et.al. [8] that performs parallel analysis on large data sets.
The input to an analysis job is a list of key-value pairs.
Each job contains two phases, namely, the map phase and
the reduce phase.

The map phase executes a user-defined map function,
which transforms the input key-value pairs into a list of in-
termediate key-value pairs.

map(k1,v1) → list(k2,v2)

The MapReduce framework then partitions these inter-
mediate results based on key and sends them to the nodes
that perform the reduce function. The user-defined reduce
function is called for each distinct key and a list of values
for that key to produce the final results.

reduce(k2, list(v2)) → (k3, v3)

The optional combiner function is quite similar to reduce
function, which is to pre-aggregate the map output so as
to reduce the amount of data to be transferred across the
network. Many real world data processing jobs can be con-
verted into MapReduce programs using these two simple
primitives, such as search engine and machine learning.

While MapReduce system is fairly flexible and scalable,
users have to spend a lot of effort writing MapReduce pro-
gram due to lack of a declarative query interface. Also since
MapReduce is just an execution model, the underlying data
storage and access method are completely left to users to
implement. While this certainly provides some flexibility, it
also misses some optimization opportunity if the data has
some structure in it. Relational databases have addressed
the above issues for a long time: it has a declarative query
language, i.e., SQL. The storage and data access are highly
optimized as well.

This motivates us to build a hybrid system that takes
advantage of both computation paradigms. HadoopDB [3]
leveraged PostgreSQL as the underlying storage and query
processor for Hadoop. In this work, we build a completely
new data warehouse on top of Hadoop since some of our
data are not relational and/or have a fast evolving schema.
Hive [22] is the most similar work to ours. Instead of build-
ing a generic data warehouse system as Hive does, Cheetah
is designed specifically for our own applications, thus allow-
ing various custom features and optimizations ranging from
schema design and query language to query execution and
optimization. Nonetheless, many ideas and even some of
the customizations described in this paper can be shared to
build a general data warehouse system.

3. SCHEMA DESIGN, QUERY LANGUAGE

3.1 Virtual View over Warehouse Schema
Star or snowflake schema is common data warehouse de-

sign [16]. As shown in Figure 1, the central fact table is
connected by a number of dimension tables through typi-
cally the key and foreign key relationship. Note that such
relationship is often stable as a join would only make sense
between key and its corresponding foreign key. Based on
this observation, we define a virtual view on top of the star
or snow-flake schema, which essentially joins the fact table
with all its related dimension tables 1. As can be seen in
Figure 1, this virtual view contains attributes from fact ta-
bles, dimension tables and those pre-defined ones that can
be derived from.

These virtual views are exposed to the users for query. At
runtime, only the tables that the query referred to are ac-
cessed and joined, i.e., redundant join elimination. This ab-
straction greatly simplifies the query language (Section 3.2).

1In this work, we assume only key and foreign key relation-
ship exists in the system. Also the constraints are enforced
during the ETL phase.



As a result, users no longer have to understand the underly-
ing schema design before they can issue any query. They can
also avoid writing many join predicates repetitively. Note
that there may be multiple fact tables and subsequently
multiple virtual views. In Section 3.2, we will describe the
semantics when querying more than one virtual view.

Handle Big Dimension Tables Unlike the filtering,
grouping and aggregation operators, which can be easily
and efficiently supported by Hadoop, the implementation
of JOIN operator on top of MapReduce is not as straight-
forward [24, 5].

There are two ways to implement the JOIN operator,
namely, either at the map phase or at the reduce phase [22,
24]. The implementation at the reduce phase is more gen-
eral and applicable to all scenarios. Basically, it partitions
the input tables on the join column at the map phase. The
actual join is performed at the reduce phase for each parti-
tion. Obviously, when the input tables are big, this approach
results in massive data redistribution.

The implementation at the map phase is applicable only
when one of the join tables is small or the input tables are
already partitioned on the join column. For the first case,
we can load the small table into memory and perform a
hash-lookup while scanning the other big table during the
map phase. We can easily generalize this technique to multi-
way join if there are m small tables to be joined with one
big table. For the second case, the map phase can read
the same partitions from both tables and perform the join.
Unfortunately, we notice that current Hadoop implementa-
tion lacks some critical feature that there is no facility in
HDFS (Hadoop File System) to force two data blocks with
the same partition key to be stored on the same node. As
such, one of the join tables still has to transferred over the
network, which is a significant cost for big table. Hence it
is difficult to do co-located join in Hadoop at this point.

Based on this observation, we choose to denormalize big
dimension tables. Its dimension attributes are directly stored
into the fact table. For example, we store URL data as addi-
tional attributes in the fact table instead of creating a huge
URL dimension. Note that our big dimension tables are ei-
ther insertion-only or are slowly changing dimensions [16],
and the queries require to see the snapshot of dimension at-
tributes at the time of event. Hence this denormalization
approach works well for our applications.

Handle Schema Changes Frequent schema changes of-
ten pose significant challenges to relational databases, es-
pecially when the changes are on the huge fact tables. In
Cheetah, we allow schema versioned table to efficiently sup-
port schema changes on the fact table. In particular, each
fact table row contains a schema version ID. The metadata
store records the columns that are available for that version.
This way, adding or removing columns becomes straightfor-
ward without touching any prior data.

Handle Nested Tables In Cheetah, we also support fact
tables with a nested relational data model. For example, in
our user profile store, a single user may have different types
of events, where each of them is modeled as a nested table 2.
Similarly, we define a nested relational virtual view on top of

2This can be viewed as another form of denormalization to
avoid a costly join on different user events at query time.
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Figure 1: Virtual Views over Warehouse Schema

it by joining each nested table with all its related dimensions.
We also design a query language that is much simpler than
the standard nested relational query [15]. We omit the full
details here since it is outside the scope of this paper.

3.2 Query Language
Currently, Cheetah supports single block, SQL-like query.

We describe the query syntax via a sample query below.

SELECT advertiser name,
sum(impression), sum(click), sum(action)

FROM Impressions, Clicks, Actions
DATES [2010 01 01, 2010 06 30]
WHERE site in (‘cnn.com’ ,‘foxnews.com’)

First, we provide an explicit DATES clause to make it
easier for users to specify interested date ranges. Next, the
FROM clause may include one or more virtual views. When
there is only one virtual view, its semantics is straightfor-
ward. When there are two or more virtual views in the
FROM clause, its semantics is defined as follows. Union all
the rows from each individual virtual view. If a specific col-
umn referred in the query does not exist in the view, treat
it as NULL value. To have meaningful query semantics, all
group by columns are required to exist in each of the views
in the FROM clause. Note that this union semantics still
allow the query to be executed in parallel.

In our application, there are three fact tables / virtual
views, namely, Impressions, Clicks and Actions. An impres-
sion is an event that a user is served an ad when browsing
a web page. A click is an event that user clicks on the ad.
An action is a conversion event at advertiser website, such
as purchase, after receiving at least one impression.

In the above example, advertiser name is a dimension at-
tribute (through join on the ID column). All three virtual
views, namely, Impressions, Clicks and Actions, contain that
column. The impression column only exists in Impressions
view, the click column only exists in Clicks view, while the
action column only exists in Actions view. Finally, the SE-
LECT and WHERE clauses have the same semantics as
standard SQL. As a simplification, the GROUP BY clause is
omitted that all the non-aggregate columns in the SELECT



clause are treated as GROUP BY columns.
As a final remark, this query language is fairly simple that

users do not have to understand the underlying schema de-
sign, nor do they have to repetitively write any join predi-
cates. For example, an equivalent query written in standard
SQL would be much lengthier than the sample query above.
In practice, we found that even clients with no prior SQL
knowledge were able to quickly grasp this language.

Multi-Block Query Cheetah also supports CREATE
TABLE AS (CTAS) statement. To answer a multi-block
non-correlated query, user can first create a table and then
query over the result table.

3.3 Security and Anonymity
Cheetah supports row level security [23] based on virtual

views. For a given user, it may restrict the columns that
are queryable by this user. It may also automatically add
some additional predicates to remove those rows that should
not be accessed by that user. The predicates can be defined
on any of the dimension attributes, fact table attributes or
derived attributes. Hence the system may join a dimension
table for access control purpose even when the user query
does not refer to it at all.

Cheetah also provides ways to anonymize data [21], which
is done through the definition of user-dependent derived at-
tributes in the virtual views. For example, for a given user,
a derived attribute can be defined as simple as a case expres-
sion over a fact table attribute, which returns a default value
under certain conditions. For a different user, the definition
of this derived attribute can be completely different. Simi-
larly, joins can be included automatically for the purpose of
anonymizing data.

These fine-grained access control mechanisms are fairly
important so that external clients are able to access and
protect their own data. Our virtual view based approach
makes these mechanisms fairly easy to define and fairly easy
to implement.

Metadata The metadata store records the table defini-
tion, versioned schema information, user and security infor-
mation etc. It is replicated to all nodes in the cluster and
synchronized with the master.

4. ARCHITECTURE
In this section, we provide an overview of our data ware-

house system. In particular, we design the system to accom-
plish the following two goals.

• Simple yet efficient: The core query engine is able to
efficiently process the common data warehouse queries,
i.e., star joins and aggregations (Section 3.2).

• Open: It should also provide a simple, non-SQL inter-
face to allow ad-hoc MapReduce programs to directly
access the raw data.

Figure 2 depicts the architecture of Cheetah. As can
be seen, user can issue query through either Web UI, or
command line interface (CLI), or Java code via JDBC. The
query is sent to the node that runs the Query Driver. The
main task for Query Driver is to translate the query to a
MapReduce job, which includes the map phase plan and
the reduce phase plan.

Query  Driver Metadata

CLI JDBC Web UI

Query

MR Job

Ad-Hoc

MR Job

HaDoop
Node

Node

Node

DAP

DAP

DAP

…

Figure 2: Cheetah Architecture

Several possible optimizations are considered during this
query translation phase. For example, it needs to config
the query MapReduce job by setting a proper number of
reducers. It may also decide to batch process multiple user
queries if they are sharable, or to use a pre-defined materi-
alized view if it matches the query. Overall, however, these
are quite lightweight optimizations.

As for query execution, each node in the Hadoop cluster
provides a data access primitive (DAP) interface, which es-
sentially is a scanner over virtual views. The query MapRe-
duce job utilizes this scanner, which performs SPJ portion
of the query. The ad-hoc MapReduce job can issue a similar
API call for fine-grained data access as well.

5. DATA STORAGE AND COMPRESSION

5.1 Storage Format
We distinguish between several methods for storing tabu-

lar data, namely, text (in CSV format), serialized java object,
row-based binary array and columnar binary array.

Text is the simplest storage format and is commonly used
in web access logs. A java class can implement the seri-
alization method to write its members to a binary output
stream, and implement the deserialization method to read
from a binary input stream to reconstruct the java object.
Row-based binary array is commonly used in row-oriented
database systems, where each row is deserialized into a bi-
nary array, which is then being written and read as a whole.
In the case of read, only interested columns are extracted
from the binary array for further processing.

The above three methods conceptually correspond to a
row-oriented store. Columnar binary array conceptually is
a hybrid of row-column store [4]. That is, n rows are stored
in one cell 3. Within one cell, the values of the same col-
umn are stored together as a column set. As we will show in
Section 9, storage format has a huge impact on both com-
pression ratio and query performance. In Cheetah, we store
data in columnar format whenever possible.

3n <= N . We let N = 200, 000 in our system to balance
between better compression ratio and memory usage.
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5.2 Columnar Compression
Column-oriented DB has shown great potential especially

for data compression. The intuition is that the values of
the same column are more likely to be similar to each other.
Hence the increasing similarity of adjacent data offers better
compression opportunity [1].

Figure 3 depicts the storage format of a single cell in Chee-
tah. The header includes the schema version and the number
of rows in this cell. The data portion includes all the column
sets and the pointers to the beginning of each column set.
Each column set starts with a compression flag (CT), which
can be one of the following: dictionary encoding, run length
encoding, default value encoding or no compression [1, 10,
20].

The choice of compression type for each column set is dy-
namically determined based on the data in each cell. During
ETL phase, the statistics of each column set is maintained
and the best compression method is chosen. We also pro-
vide heuristics to the ETL process on which columns to sort
in order to take full advantage of the run length encoding
method, and on how to put similar data into the same cell
in order to maximize the compression ratio.

After one cell is created, it is further compressed using
GZIP. Put together, we achieve 8X compression ratio com-
pared to when the data is stored in the row-oriented binary
array format.

In the case of decompression, the entire cell is first loaded
into memory. Only those column sets that are referred in
the query are decoded through an iterator interface.

6. QUERY PLAN AND EXECUTION
In this section, we show how to translate the query to a

Hadoop MapReduce job. In general, to submit a Hadoop
MapReduce job, first we need to specify the input files,
which are stored on Hadoop distributed file system (HDFS).
We also need to supply query-specific map function and re-
duce function.

6.1 Input Files
The input files to the MapReduce job are always fact ta-

bles. Hadoop framework will schedule map tasks to scan
those fact table files in parallel. There is no need to spec-
ify any dimension tables as input. They will be picked up
automatically during the map phase.

The fact tables are partitioned by date. The DATES

Dimension 

Files
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Scanner

Aggregation

Files

Fact Table 

Blocks

Node

Metadata

Figure 4: Query Processing: Map Phase

Parameters:

Security: (uid,passwd)

Output Columns: (c1, …, cn)

Filter Condition: f

Input: cell

Output: <Tuple>

Figure 5: Scanner Interface

clause helps to find related partitions (Section 3.2). Ac-
tually the fact tables are further partitioned by a dimension
key attribute, referred as DID. A predicate on DID in the
query will certainly help choose the right partition, which
may further reduce the amount of data to be processed. In
Cheetah, we also exploit functional dependency to maximize
the possibility of using this partition property. For example,
assume that we have a functional dependency D′

A → DID

and a query predicate D′

A = a. By querying related dimen-
sions, we can add an additional predicate DID = id to the
query. Since these dimensions are small, this additional cost
is insignificant compared to the potential big performance
gain. As a custom data warehouse, we can easily incorporate
these domain-specific optimizations into the query engine.

6.2 Map Phase Plan
As can be seen in Figure 4, each node in the cluster stores

some portion of the fact table data blocks and (small) di-
mension files.

The map phase of the query contains two operators, namely,
scanner and aggregation. Externally, the scanner operator
has an interface which resembles a SELECT followed by
PROJECT operator over the virtual view (Figure 5). That
is, a filter condition on the input rows and a list of columns
that are interested as output. Here a column can be an ex-
pression, such a case statement, as well. The output tuples
have an iterator interface such that they can be retrieved
by a getNext function call. For proper access control (Sec-
tion 3.3), a user ID and password is also required.

Internally, the scanner operator translates the request to
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an equivalent SPJ query to pick up the attributes on the
dimension tables. Note that only those dimension tables
referred in the query need to be accessed and joined. We
exploit the multi-way join algorithm (Section 3.1) here since
the dimensions to be joined are small (big dimension tables
are denormalized and thus joins are not required). As an
optimization, these dimensions are loaded into in-memory
hash tables only once if different map tasks share the same
JVM.

Besides selection pushdown, the scanner also explores an
optimization that it first retrieves the columns required in
the filter condition. If the condition is not satisfied, then it
can skip fetching the rest columns. Obviously, this optimiza-
tion is very useful when the filter condition is selective. Con-
ceptually, it is similar to the late tuple construction strategy
in column DB [2].

The aggregation operator is to perform local aggregation
of the current block when the aggregate function is alge-
braic [11]. By default, we use a hash-based implementation
of group by operator.

6.3 Reduce Phase Plan
The reduce phase of the query is straightforward as shown

in Figure 6. It first performs global aggregation over the re-
sults from map phase. Then it evaluates any residual expres-
sions over the aggregate values and/or the HAVING clause.

Lastly, if the ORDER BY columns are group by columns,
then they are already sorted by Hadoop framework during
the reduce phase. We can leverage that property. If the
ORDER BY columns are the aggregation columns, then we
sort the results within each reduce task and merge the final
results after MapReduce job completes. If in addition there
is a LIMIT by n clause, each reduce task only needs to
output the top n rows for the final merge.

7. QUERY OPTIMIZATION
In this section, we present some unique optimization op-

portunities that are specific to our virtual view design and
MapReduce framework.

7.1 MapReduce Job Configuration
For a given Hadoop MapReduce job and input files for

that job, the number of map tasks are determined by Hadoop

Shared Scanner

Aggregation … Aggregation

Figure 7: Multi-Query Processing : Map Phase

framework based on the number of input files and the num-
ber of blocks per file. The number of reduce tasks however
needs to be supplied by the job itself and has a big impact on
performance. When the query output is small, map phase
dominates the total cost. Having a large number of reducers
is a waste of resources and may slow down the query as well.
However, when the query output is large, it is mandatory to
have sufficient number of reducers to partition the work.

We use some simple heuristics to automatically config the
number of reducers for the query job. First, the number of
reducers is proportional to the number of group by columns
in the query. Second, if the group by column includes some
column with very large cardinality, e.g., URL, we increase
the number of reducers as well. These simple heuristics work
well for majority of our queries.

7.2 Multi-Query Optimization
One of our typical application scenarios is that an ana-

lyst picks a particular data range such as month-to-date or
quarter-to-date, and issues a number of queries to analyze
the data from different perspective. Another scenario is that
we have a lot nightly scheduled queries. One important re-
quirement is to have them processed within a specific time
window.

In Cheetah, we allow users to simultaneously submit mul-
tiple queries and execute them in a single batch, as long as
these queries have the same FROM and DATES clauses. For
example, the query below can be executed together with the
query in Section 3.2.

SELECT publisher name,
sum(impression), sum(click), sum(action)

FROM Impressions, Clicks, Actions
DATES [2010 01 01, 2010 06 30]

As shown in Figure 7, to execute this combined query, the
map phase now has a shared scanner, which shares the scan
of the fact tables and joins to the dimension tables. Note
that we take a selection pushup approach as in [7] in order
to share the joins among multiple queries.

The scanner will attach a query ID to each output row,
indicating which query this row qualifies. This ID will also
be used as an additional group by column. The output from
different aggregation operators will be merged into a single
output stream. Hence it is important to have the query ID
otherwise reduce phase is not able to distinguish between
the rows for different queries.

The reduce phase (Figure 8) will first split the input rows
based on their query IDs and then send them to the corre-
sponding query operators.
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The above scenario assumes user supply a bunch of queries
that can be shared. In fact, the system is also able to share
the queries across different query workloads. The Query
Driver in Figure 2 determines the queries in the process
queue that can be shared before submitting them to the
Hadoop system. Note that once a query is started, it is
difficult to attach another query to it under current Hadoop
implementation. Nonetheless, this technology is still useful
when the system is under a high load that there are many
concurrent queries.

As a final remark, our virtual view abstraction makes this
sharing transparent to users. That is, it becomes fairly easy
for them to decide what queries can be shared, i.e., same
FROM and DATES clauses, while how to create a shared
query plan is done automatically by the system. Otherwise
users have to modify the query to first create a shared tem-
porary table [22] or add SPLIT/MULTIPLEX operators [9].
In other words, users have to create a shared plan them-
selves. This is non-trivial work if there are a large number
of queries to be batched.

7.3 Exploiting Materialized Views
Exploiting materialized views is a common technique for

data warehousing [13]. In this section, we show how to apply
this technique based on our virtual view abstraction.

7.3.1 Definition of Materialized Views
First, each materialized view only includes the columns in

the face table, i.e., excludes those on the dimension tables.
Second, it is partitioned by date as well. That is, we create
one materialized view every day. Below is a sample materi-
alized view defined on Impressions fact table.

CREATE MATERIALIZED VIEW pub AS
SELECT publisher id,

sum(impression) impression
FROM Impressions

As can be seen, first, both columns referred in the query
reside on the fact table, Impressions. Second, for simplicity,
we do not include any filtering condition in the WHERE
clause to simplify the query matching. It also maximizes
the matching possibility.

Then we create a virtual view, (for easy description) still
referred as pub, on top of this materialized view, which joins
all related dimension tables. In this case, only publisher
dimension is related. The resulting virtual view has two
types of columns, namely, the group by columns and the
aggregate columns. From now on, we will refer this resulting
virtual view as the materialized view for easy description.

7.3.2 View Matching and Query Rewriting
To make use of materialized view, two problems need to be

addressed, namely, view matching and query rewriting [13].
The following conditions must satisfy for a materialized view
to match a query 4.

• The query must refer the virtual view that corresponds
to the same fact table that the materialized view is
defined upon.

• The non-aggregate columns referred in the SELECT
and WHERE clauses in the query must be a subset of
the materialized view’s group by columns.

• The aggregate columns must be computable from the
materialized view’s aggregate columns.

For example, the materialized view, pub, defined in Sec-
tion 7.3.1 matches the query in Section 7.2. To rewrite this
query, we can simply replace the virtual view in the query
with the matching materialized view. Below is the resulting
rewritten query.

SELECT publisher name,
sum(impression), sum(click), sum(action)

FROM pub, Clicks, Actions
DATES [2010 01 01, 2010 06 30]

At runtime, the partitions of materialized view pub are
scanned instead of the Impression table. They are joined
with publisher dimension to get the name column.

7.4 Low-Latency Query Optimization
The current Hadoop implementation has some non-trivial

overhead itself, which includes for example job start time,
JVM start time, etc [3]. For small queries, this becomes a
significant extra overhead.

To address this issue, during the query translation phase,
if the Query Driver detects that the size of the input file
is small, e.g., hitting a materialized view, it may choose
to directly read the file from HDFS and then process the
query locally. This avoids invoking a MapReduce job at all.
We pick a file size threshold so that the query can typically
finish within 10 seconds. This way, we can improve the
responsiveness of the low-latency queries as well as reduce
the cluster workload.

8. INTEGRATION
Cheetah provides various ways to connect to user program

(Figure 2). First, it has a JDBC interface such that user
program can submit query and iterate through the output
results. Second, if the query results are too big for a single
program to consume, user can write a MapReduce job to
analyze the query output files which are stored on HDFS.
Lastly, Cheetah provides a non-SQL interface that can be
easily integrated into any ad-hoc MapReduce jobs to access
the data at the finest granularity.

To achieve this, the ad-hoc MapReduce program needs
to first specify the input files, which can be one or more
fact table partitions. Then in the Map program, it needs to
include a scanner in Figure 5 to access individual raw record

4After security predicates (Section 3.3) are added to the
query.
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(Figure 9). After that, user has complete freedom to decide
what to do with the data.

There are several advantages to have this low-level, non-
SQL interface open to external applications. First, it pro-
vides ad-hoc MapReduce programs efficient and more im-
portantly local data access, which means that there is no
data moving across different systems or even different nodes.
Second, the virtual view-based scanner hides most of the
schema complexity from MapReduce developers. That is,
they need not to be aware of how to retrieve the columns,
what and where the dimension tables are, how to join them,
etc. They can now solely focus on the application itself.
Third, the data is well compressed and the access method is
fairly optimized inside the scanner operator. In summary,
ad-hoc MapReduce programs can now automatically take
full advantage of both MapReduce (massive parallelism and
scalability) and data warehouse (easy and efficient data ac-
cess) technologies.

9. PERFORMANCE EVALUATION

9.1 Implementation
The Cheetah system has been built completely from scratch

in Java. One important experience we learned is that the
query engine must have low CPU overhead. This includes
for example choosing the right data format (Section 9.2) and
efficient implementation of various components on the data
processing path. For example, we implemented an efficient
hashing method to support multi-column group by.

The system has been deployed to production on Dec. 2008.
Today, it has become the primary data platform that sup-
ports all data warehouse analytics and machine learning ap-
plications at Turn. In fact, a number of machine learning
algorithms have been developed or strengthened by having
the ability to go through the entire dataset, while exter-
nal clients were able to discover many interesting custom
insights using our simple yet powerful query language.

In this section, we present some experimental results of
the system. All the experiments are performed on a clus-
ter with 10 nodes. Each node has two quad core, 8GBytes
memory and 4x1TBytes 7200RPM hard disks. We also set
big readahead buffer at OS level in order to support multi-
ple concurrent sequential reads, which is typical for Hadoop
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Figure 10: GZIP on Different Storage Format

workload.
We use Cloudera’s Hadoop distribution version 0.20.1.

The size of the data blocks for fact tables is 512MBytes.
The main reason for having such a big block size is that
since the query map task is quite efficient, it finishes quickly
for smaller data blocks. In this case, a small data block
would make it harder for job scheduler to keep pace with
the map tasks. A big data block thus allows the system to
exploit all available system resources.

9.2 Storage Format
The first set of experiments study the difference between

different storage formats (Section 5.1) in terms of compres-
sion ratio as well as query performance.

First, we store one fact table partition into four files,
which correspond to four different data formats, namely,
Text (in CSV format), Java object (equivalent to row-based
binary array), column-based binary array, and finally column-
based binary array with compressions described in Section 5.2.
Each file is further compressed by Hadoop’s GZIP library at
block level.

Figure 10 depicts the comparison of file size after GZIP
compression. We use the compressed Text file as baseline
for comparison. As can be seen, binary format consumes
20% less storage compared to text format after GZIP com-
pression. There is another 25% storage reduction by simply
storing the rows in columnar format. This is due to the fact
that the values of the same column are more likely to be
similar to each other, which offers better compression op-
portunity if they are stored adjacent to each other. Lastly,
our compression method in Section 5.2 provides an addi-
tional significant lift in the compression ratio. Overall, it is
more than 3X better than Text based compression.

Next, we show that storage format has a significant impact
on query performance as well. We run a simple aggregate
query over three different data formats, namely, Text, Java
Object and Columnar (with compression). We use iostat
to monitor the CPU utilization and IO throughput at each
node.

Figure 11 and 12 record the average CPU utilization and
IO throughput of a single node after the system resources
are fully utilized, i.e., when each node runs the maximum
number of map tasks. This is a good indicator of system’s
query processing capability.

As can be seen, both Text and Java Object formats in-
cur a very high CPU overhead (above 90%). The disk IO
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throughput is merely 40MBytes per second, since the query
essentially is CPU bound. In comparison, the columnar for-
mat has much less than CPU overhead (less than 60%) and
much higher disk IO throughput (130MBytes per second, or
about 1GBytes per second over uncompressed data). The
same query now becomes IO bound (we observe an average
20% IO wait time from iostat).

The main reason for such a big difference is that the de-
serialization for both Text and Java Object format is fairly
CPU-intensive. It extracts every single column even when
the query does not ask for it. In comparison, the colum-
nar format reads the entire binary as a whole and then only
enumerates those columns that are interested.

In summary, columnar storage format is more preferred
method for storing and accessing data than the common
Text or Java Object format used on Hadoop.

9.3 Small .vs. Big Queries
In this section, we study the impact of query complexity

on query performance. We create a test query with two
joins 5, one predicate, 3 group by columns including URL,
and 7 aggregate functions. By varying the selectivity of
the predicate, we are able to control the number of output
groups.

In Hadoop, the reduce phase of a MapReduce job contains
three phases, namely, shuffle (copy partial aggregates from
map tasks), sort and reduce. The shuffle task overlaps well
with the map phase, while sort and reduce start only when

5In fact, adding more joins has little impact on performance
since the tables to be joined are small.
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the map phase completes. For this experiment, we measure
not only the total query evaluation time, but also the time
spent on processing the map tasks and the time spent on
sort and reduce portion of the reduce tasks.

Figure 13 depicts the results, where x-axis is the number
of output groups and y-axis is the relative performance be-
tween these three queries. As can be seen, the total evalua-
tion time increases merely 10% for a query that returns 10M
groups compared to a query that returns just 10K groups.
The difference can be explained by the extra cost spend on
the reduce phase. Overall, however, the increase is insignif-
icant since we have sufficient reduce tasks for big queries.
Note that if only one reduce task is specified for this MapRe-
duce job, the performance will get much worse.

9.4 Multi-Query Optimization
In this section, we present the experimental results for

multi-query optimization (Section 7.2).
We randomly pick 40 queries from our query workload.

The number of output rows for these queries ranges from few
hundred to 1M. We compare the time for executing these
queries in a single batch to the time for executing them
separately. As can be seen in Figure 14, at the batch size
of 10 queries, the speed up is 7 times. For 40 queries, the
speed up is 10 times. However, since the workload becomes
quite CPU intensive, adding more queries to the batch no
longer offers much gain.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we present our Cheetah data warehouse



system built on top of the MapReduce technology. The vir-
tual view abstraction plays a central role in designing the
Cheetah system. Not only this abstraction fits nicely to
the common data warehouse schema design, but also it al-
lows some quite interesting optimization opportunities such
as multi-query optimization. Lastly, we show how ad-hoc
MapReduce programs can access the raw data by exploiting
this virtual view interface.

There are a number of interesting future works. First,
the current IO throughput 130MBytes (Figure 12) has not
reached the maximum possible speed of hard disks. We sus-
pect this is due to concurrent sequential reads. A native
Hadoop implementation of readahead buffer may be help-
ful here. We also observe that sometimes one of the four
disks does not have any reads (we use JBOD setup which
is commonly used for Hadoop), while the other three disks
are quite busy. Hence, the job scheduler ideally should also
be aware of the load on the hard disk in order to have more
balanced IO workload. Second, our current multi-query op-
timization only exploits shared data scan and shared joins.
It is interesting to further explore predicate sharing [18] and
aggregation sharing [17]. Some other interesting ideas in-
clude caching of previous query results for answering similar
queries later. This would need a further predicate matching
beyond the matching described in Section 7.3.
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