
CHEF: A Model of Case-based Planning.* 

Kristian J. Hammond 

Department of Computer Science 
Yale University 

ABSTRACT 

Case-based planning is based on the idea that a machine planner 
should make use of its own past experience in developing new plans, 
relying on its memories instead of a base of rules. Memories of past 
successes are accessed and modified to create new plans. Memories of 
past failures are used to warn the planner of impending problems and 
memories of past repairs are called upon to tell the planner how to 
deal with them. 

Successful plans are stored in memory, indexed by the goals they 
satisfy and the problems they avoid. Failures are also stored, indexed 
by the features in the world that predict them. By storing failures as 
well as successes, the planner is able to anticipate and avoid future 
plan failures. 

These ideas of memory, learning and planning are implemented in 
the case-based planner CHEF, which creates new plans in the domain 
of Szechwan cooking. 

I WHAT IS CASE-BASED PLANNING? 

Case-based planning is planning from experience. A case-based 
planner differs sharply from planners that make use of libraries of 
goals and plans in that it relies on an episodic memory of past plan- 
ning experiences. As a result, memory organization, indexing, plan 
modification, and learning are central issues in case-based planning. 
Because this sort of planner has to be able to reuse the plans that it 
builds, it must be able to understand and explain why the plans that 
it has built succeed or fail in order to properly store them for later 
use. This means that a cased-based planner not only needs to have 
a powerful memory organization, it must also have a strong model of 
the causality of the domain in which it operates. 

The case-based approach to planning is to treat planning tasks as 
memory problems. Instead of building up new plans from scratch, A 
case-based planner recalls and modifies past plans. Instead of seeing 
plan failures as planning problems alone, it treats them as expecta- 
tion failures that indicate a need to modify its understanding of the 
world. And instead of treating plans as disposable items that are used 
once and then forgotten, a case-based planner treats them as valuable 
commodities that can be stored and recalled for later use. In general, 
a case-based planner treats at the problem of building and maintain- 
ing plans as an interaction between its knowledge base and the world. 
Any problem that arises out of a disparity between what the planner 
knows and what is requires that it alter not only its plan but also the 
expectations that led to the creation of that plan. 

II WHY CASE BASED? 

The argument for case-based planning is straightforward: we want 
a planner that can learn complex plans rather than replan every time 

it has to achieve an already planned for set of goals. In the case of a 
single plan from the CHEF domain, a plan for stir fried chicken and 
peanuts for example, the plan itself has seventeen steps performed on 
a dozen ingredients. While such a plan can be built up from a set 
of rules or plan abstractions, it is more efficient to save the entire 
plan and recall it for reuse when the same situation reoccurs. Further, 
the case-based approach seems to much more closely reflect human 
planning behavior than do those approaches that suggest replanning 
for every new case. 

Even going back to the earliest rule-based planners such as STRIPS 
[l], there has always been the desire to save completed plans in a way 
that makes them accessible to the planner in later situations. This 
was especially the case in those situations where a past plan included 
information about how to avoid problems that the planner’s base of 
rules tended to lead into. But the planning algorithm used by most 
planners does not allow for anything but the most obvious reuse of 
existing plans. Most planners build plans for multiple goal situations 
out of the individual plans for each of the goals that the planner is 
handed and then deal with any interactions as they arise. Unfortu- 
nately, this algorithm has resulted in set of planners that recreate and 
then debug past mistakes rather than using the plans that they have 
developed before that avoid those mistakes altogether [2,4,5]. 

The approach taken in CHEF is to anticipate and avoid problems 
due to plan interaction. To do this, CHEF keeps track of what features 
in its domain are predictive of particular problems so it can predict 
when it has to plan for them. It also saves plans in memory, indexed 
by the goals that they satisfy and the problems that they avoid. So the 
prediction of a problem allows CHEF to find the plans in memory that 
avoid it. CHEF’s basic algorithm is to find a past plan that satisfies 
as many of the most important goals as possible and then modify that 
plan to satisfy the other goals as well. 

III CHEF’S OVERALL STRUCTURE 

CHEF is a case-based planner that builds new plans out of its 
memory of old ones. CHEF’s domain is Szechwan cooking and its 
task is to build new recipes on the basis of a user’s requests. CHEF’s 
input is a set of goals for different tastes, textures, ingredients and 
types of dishes and its output is a single recipe that satisfies all of its 
goals. Its output is a single plan, in the form of a recipe, that satisfies 
all of the users goals. 

Before searching for a plan to modify, CHEF examines the goals in 
its input and tries to anticipate any problems that might arise while 
planning for them. If a failure is predicted, CHEF adds a goal to avoid 
the failure to its list of goals to satisfy and this new goal is also used 
to search for a plan. Because plans are indexed in memory by the 
problems they avoid, this prediction can be used to find a plan that 
solves the predicted problem. Much of CHEF’s planning power lies 
in this ability to predict and thus avoid failures it has encountered 
before. 

*This report describes work done in the Department of Computer Science 
Yale University. It was supported in part by ONR Grant #N00014-85-K-0108. 

at 

COGNITIVE MODELLING AND EDUCATION / 267 

From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. 



CHEF consists of six processes: 

l Problem anticipation: The planner anticipates planning 
problems by noticing features in the current input that have 
previously participated in past planning problems. 

l Plan retrieval: The planner searches for a plan that satisfies as 
many of its current goals as possible while avoiding the problems 
that it has predicted. 

l Plan modification: The planner alters the plans it has found 
to satisfy any goals from the input that are not already achieved. 

In the sections that follow, each of these modules will be discussed 
in turn. These sections will discuss two examples: one in which CHEF 
creates and then repairs a faulty plan for a stir fry dish including beef 
and broccoli and one in which CHEF uses the knowledge gained from 
the first example to create a plan for a stir fry dish including chicken 
and snow peas. Most of this paper will attend to the second example in 
which the knowledge learned by CHEF in dealing with the first exam- 
ple is actually used, so as to show the power of the processes of problem 
anticipation, plan retrieval and plan modification. In discussing the 

l Plan repair: When a plan fails, the planner fixes the faulty 
plan by building up a causal explanation of why the failure has 
occurred and using it to find the different strategies for repairing 
it. 

processes of failure repair, plan storage and credit assignment, how- 
ever, the first example is discussed. This is because CHEF learns from 
the problems encountered in dealing with this example and these three 
modules make-up CHEF’s repair and learning abilities. 

IV PROBLEM ANTICIPATION 

l Credit assignment: Along with repairing a failed plan, the CHEF’s initial input is a set of goals to include different tastes 
planner wants to repair the characterization of the world that and ingredients in a type of dish, The first step that CHEF takes in 
allowed it to create the failed plan in the first place. It does this dealing with them is to try to anticipate any problems that might arise 
by using the causal explanation of why the failure occurred to in planning for them. CHEF wants to predict problems before they 
identify the features in the input that led to the problem and occur so it can find a plan in memory that already avoids them. 
then mark them as predictive of it. 

l Plan storage: The planner places successful plans in memory, 
indexed by the goals that they satisfy and the problems that 
they avoid. 

The flow of control through these processes is simple. Goals are 
handed to the problem anticipator, which tries to predict any problems 
that might occur as a result of planning for them. If a problem is 
predicted, a goal to avoid it is added to the set of goals to be planned 
for. Once this is done, the goals are handed to the plan retriever, 
which searches for a plan that satisfies as many of the planner’s goals 
as possible, including any goals to avoid any predicted problems. In 

The planner anticipates problems on the basis of a memory of past 
failures that is linked to the features that participated in causing them. 
These links are used to pass markers from the features in an input to 
the memory of failures that those features predict. When the features 
that are related to a past problem are all present, the memory of the 
failure is activated and the planner is informed of the possibility of the 
failure reoccurring. 

For example, one of the failures the planner has in memory relates 
to an attempt to make a stir-fry dish with beef and broccoli. In making 
the dish, the liquid produced when stir frying the beef ruined the 
texture of the broccoli while it was cooking. The failure is indexed in 
memory by the features of the goals that interacted to cause it: the 

order to do this, the plan retriever makes use of a memory of plans 
indexed by the goals they satisfy and the problems they solve. Once a 
base line plan is found, the plan modifier alters the plan to satisfy any 
goals that it does not already deal with. The alteration of the plan is 
done using a set of modification rules that are indexed by the goal to 
be added and the type of plan being altered. 

After the plan is built it is handed to a simulator, which runs the 
plan using a set of rules concerning the effects of each action in CHEF’s 
domain under different circumstances. If the plan runs without fail, 
it is placed in memory, indexed by the goals that it satisfies. If there 
are failures, the plan is handed to the plan repair mechanism. This 
process builds a causal description of why a plan has failed and then 
uses that description to find the repair strategies that will alter the 
causal situation to fix the fault. After the plan has been repaired, it is 
placed in memory, indexed by the goals it satisfies and the problems 
it now avoids. Because a problem has to be anticipated before it can 
be planned for, however, the planner has to do more than just store 
plans by the fact they they solve particular problems. It also has to 
build up a knowledge base that can be used to infer problems on the 
basis of the features in the world that predict them. The planner must 
decide which features in the input are responsible for the problem and 
mark them as such. This credit assignment is done whenever a failure 
occurs and the features that are blamed for the failure are linked to 
the memory of the failure itself. These links are later used to predict 
failures so that plans can be found that avoid them. 

These six processes make up the basic requirements for a case-based 
planner. Plan retrieval, modification and storage are essential to the 
basic planning loop that allows old plans to be modified in service of 
new goals. A plan repair process is need for those situations in which 
plans fail. A process that assigns blame to the features responsible 
for failures is required for the planner to be able to later anticipate 
problems. And problem anticipation is needed in order for the planner 
to avoid making mistakes that it has already encountered. 

goal to include meat, the goal to include a crisp vegetable and the 
goal to make a stir fry dish. When these features are present in an 
input the planner can predict that the failure will occur again. Once a 
problem is predicted, the planner can add a goal to avoid the problem 
to the set of goals that will be used to find a plan. 

In planning for the goals to include SNOW PEAS and CHICKEN 
in a STIR FRY dish, the planner is is reminded of the past failure it 
encountered in building the beef and broccoli plan. This failure was 
due to the fact that CHEF tried to stir fry some beef and broccoli 
together in a past plan, allowing the liquid from the beef to make 
the broccoli soggy. The surface features of the goal to include meat 
and the goal to include a crisp vegetable are the same, so the planner 
predicts that it will make this mistake again if it does not attend to 
this problem. 

Searching for plan that satisfies input goals - 
Include chicken in the dish. 
Include BROW pea in the dish. 
Make a stir-fry dieh. 

Collecting and activating teste. 

Ie the dieh STYLE-STIR-FRY. 
Is the item a MEAT. 
Is the item a VEGETABLE. 
Ie the TEXTURE of item CRISP 

Chicken + Snow Pea + Stir frying = Failure 
“Meat aweata when it is stir-fried. 
"Stir-frying in too much liquid makes 
CriBp Vegetablea Soggy." 

Reminded of a failure in the 
BEEF-AND-BROCCOLI plan. 
Failure = 'The vegetable ia now Boggy' 

Once a failure has been anticipated, CHEF builds a goal to avoid 

268 I SCIENCE 



it and adds this goal to the set of goals which will be used to search 
for a plan. This set of goals is then handed to the plan retriever. 

V PLAN RETRIEVAL 

The function of the plan retriever is to find the best plan to use 
in satisfying a set of goals. It seeks what we call the Ybest match” in 
memory, the plan for a past situation that most closely resembles the 
current situation. In CHEF, this notion of “best match” is defined 
as finding a plan that satisfies or partially satisfies as many of the 
planner’s most important goals as possible. Finding a raspberry soufflC 
recipe that can be turned into a strawberry soufflC or finding a beef stir 
fry dish that can be turned into one for pork. The plan retriever uses 
three kinds of knowledge in finding the best match for a set of goals: a 
plan memory that is indexed by the goals that the plans satisfy and the 
problems that they avoid, a similarity metric that allows it to notice 
partial matches between goals and a value hierarchy that allows it to 
judge the relative importance of the goals it is planning for. 

The planner’s goals, including the goal to avoid the problem of the 
soggy vegetable are all used to drive down in a discrimination network 
that organizes past plans. 

Driving down on: Make a stir-fry dish. 
Succeeded - 

Driving down on: 
Avoid failure exemplified by the state 

‘The broccoli ie now Soggy' in recipe BEEF-AND-BROCCOLI. 
Succeeded - 

Driving down on: Include chicken in the dish. 
Failed - Trying more general goal. 

Driving down on: Include meat in the dish. 

When CHEF’s retriever is searching for a past case on which to base 
its planning, it is searching for a plan that was built for a situation 
similar to the one it is currently in. The idea behind this search is 
that the solution to a past, problem similar to the current one will 
be useful in solving the problem at hand. But this means that the 
vocabulary used to describe the similarity between the two situations 
has to capture the relevant aspects of the planning problems that the 
planner deal with. This vocabulary consists of two classes of objects: 
the goals in a situation, (which in the case of stored plans are satisfied 
by those plans) and the problems that have been anticipated (which 
in the case of the stored plans are avoided by them). CHEF gets its 
goals directly from the user in the form of a set of constraints that 
have to be satisfied. It gets information about the problems that it 
thinks it has to avoid while planning for those goals from its problem 
anticipator, which examines the goals and is reminded of problems 
that have resulted from interactions between similar goals in the past. 

CHEF’S domain is Szechwan cooking, so the goals that it plans 
for are all related to the taste, texture and style of the dish it is 
creating. The basic vocabulary that CHEF uses to describe the effects 
of its plans, and the effects that it wants a plan to accomplish include 
descriptions of the foods that it can include, (e.g., Beef, chicken, snow 
peas and bean sprouts), the tastes that the user wants (e.g., Hot, 
spicy, savory and fresh), the textures that the dish should include, 
(e.g., Crunchy, chewy and firm) and the type of dish that the user is 
looking for, (e.g., STIR-FRY, SOUFFLE, and PASTA). In searching 
for a past situation which might be useful, the plan retriever uses the 
goals that it is handed to index to possible plans. The plan it finds, 
then, will satisfy at least some of the goals it is looking for. 

Succeeded - 
Driving down on: Include BROW pea in the dish. 

Failed - Trying more general goal. 

Driving down on: Include vegetable in the dish. 
Succeeded - 

Found recipe -> RECQ BEEF-AND-BROCCOLI 

Here CHEF finds a past plan that avoids the problem due to goal 
interactions that has been predicted while still partially satisfying the 
other more surface level goals. 

VI PLAN MODIFICATION 

CHEF’s memory of plans is augmented by the ability to modify 
plans for situations that only partially match the planner’s present 
problems. CHEF’s plan modifier, the module that handles these 
changes, makes use of a modification library that is indexed by the 
changes that have to be made and the plan that they have to be made 
in. The modification rules it has are not designed to be complete plans 
on their own, but are instead descriptions of the steps that have to 

be added and deleted from existing plans in order to make them sat- 
isfy new goals. Along with the modification rules are a set of object 
C&U that look at a plan and, on the basis of the items or ingredi- 
ents involved, correct difficulties that have been associated with those 
ingredients in the past. 

The process used by CHEF’s modifier is simple. For each goal 
that is not yet satisfied by the current plan, the modifier looks for the 
modification rule associated with the goal and the general plan type. 
If no modification rule exists for the particular goal, the modifier steps 
up in an abstraction hierarchy and finds the modification rule for the 
more general version of the goal. Once a rule is found, the steps 
it describes are added to the plan, merged with existing steps when 
possible. 

The problems that CHEF tries to avoid, by finding plans that work 
around past instances of them, also relate to the planner’s goals. In 
searching for a plan, CHEF uses the predictions of any problems that 
it has anticipated to find plans that avoid those problems. Because 
plans are indexed by the problems that they solve, the planner is able 
to use these predictions to find the plans that will avoid the problems 
they describe. In searching for a base-line plan for the chicken and 
snow peas situation, CHEF searches for a plan that, among other 
things, avoids the predicted problem of soggy vegetables. Because the 
beef and broccoli plan is indexed by the fact that it solves the problem 
of soggy vegetables due to stir frying with meats, the plan retriever 
is able to find it on the basis of the prediction of this problem, even 
though the surface features of the two situations are dissimilar. 

If the goal in question is already partially satisfied by the plan, 
(this happens when the plan satisfies a goal that is similar to the 
current one), the planner does not have to go to its modification rules. 
It replaces the new item for the old item, removing any steps that 
were added by the old item’s ingredient critics and adding any steps 
required by the new item’s ingredient critics. 

In altering the BEEF-AND-BROCCOLI plan to include chicken 
and snow peas, the planner has the information that both new ingre- 
dients are partial matches for existing ones and can be directly substi- 
tuted for them. A critic under the concept CHICKEN then adds the 
step of boning the chicken before chopping. 

In searching for a plan that includes chicken and snow peas, the 
planner is also trying to find a plan that avoids the problem it has 
predicted of the vegetables getting soggy as a result of being cooked 
with the meat. The fact that it has predicted this problem allows it 
to find a plan in memory that avoids it, even though the plan deals 
with surface features that are not in the current input. The planner is 
able to find this plan even though a less appropriate plan with more 
surface features in common with the current situation, a recipe for 
chicken and green beans, is also in memory. 

Modifying new plan to aatiefy: 
Include chicken in the dish. 

Substituting chicken for beef in new plan. 

Modifying new plan to aatisfy: 
Include snow pea in the dish. 

Subetituting enow pea for broccoli in new plan. 

Considering critic: 

COGNITIVE MODELLING AND EDUCATION / 269 



Before doing step: Chop the chicken 
do: Bone the chicken. - Critic applied. 

situation. 

This past failure occurred when CHEF was planning for the goals 
of including beef and broccoli in a stir fry dish. CHEF originally 
built a simple plan in which the two main ingredients were stir fried 
together. Unfortunately, this plan results 
stir frying the beef making the vegetables 

in the liquid produced by 
soggy as they are cooking. 

This explanation of the failure in this example indexes to the TOi 
SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT, a mem- 
ory structure related to the interaction between concurrent plans in 
which a side effect of one violates a precondition of the other. This is 
because the side effect of liquid coming from the stir-frying of the beef 

VII PLAN REPAIR 

Because CHEF cannot avoid making errors, it has to be able to 
repair faulty plans in response to failures. As it is, CHEF’s plan 

repairer is one of the most complex parts of both the CHEF program 
and the case-based theory that it implements. It is complex because 
it makes the most use of the planner’s specific knowledge about the 
physics of the CHEF domain and has to combine this knowledge with 
a more abstract understanding of how to react to planning problems 
in general. 

Once it completes a plan, CHEF runs a simulation of it using a 
set of causal rules. This simulation is CHEF’s equivalent of the real 
world. At the end of the simulation, it checks the final states that have 
been simulated against the goals of the plan it has run. If any goal 
is unsatisfied or if any state has resulted that CHEF wants to avoid 
in general, an announcement of the failure is handed to the the plan 
repairer. 

CHEF deals with plan failure by building a causal explanation of 
why the failure has occurred. This explanation connects the surface 
features of the initial plan to the failure that has resulted. The plan- 
ner’s goals, the particular steps that it took and the changes that were 
made are all included in this explanation. This explanation is built 
by back chaining from the failure to the initial steps or states that 
caused it, using a set of causal rules the describe the results of actions 
in different circumstances. 

The explanation of the failure is used to find a structure in memory 
that organizes a set of strategies for solving the problem described 
by the explanation. These structures, called Thematic Organization 
Packets or TOPS [3], are similar in function to the critics found in 
HACKER [4] and NOAH [2]. Each TOP is indexed by the description 

of a particular type of planning problem and each organizes a set of 
strategies for deal with that type of problem. These strategies take the 
form of general repair rules such as REORDER steps and RECOVER 
from side-effects. Each general strategy is filled in with the specifics 
of the particular problem to build a description of a change in the 
plan that would solve the current problem. This description is used as 
an index into a library of plan modifiers in the cooking domain. The 
modifications found are then tested against one another using rules 
concerning the efficacy of the different changes and the one that is 
most likely to succeed is chosen. 

The idea behind these structures is simple. There is a great deal of 
planning information that is related to the interactions between plans 
and goals. This information cannot be tied to any individual goal or 
plan but is instead tied to problems that rise out of their combina- 
tion. In planning, one important aspect of this information concerns 
how to deal with problems due to the interactions between plan steps. 
Planning TOPS provide a means to store this information. Each TOP 
corresponds to a planning problem due to the causal interaction be- 
tween the steps and the states of a plan. When a problem arises, a 
causal analysis of it provides the information needed to identify the 
TOP that actually describes the problem in abstract terms. Under 
each TOP is a set of strategies designed to deal with the problem the 
TOP describes. By finding the TOP that relates to a problem, then, a 
planner actually finds the strategies that will help to fix that problems. 

CHEF does not run into any failures while planning for the stir fry 
dish with chicken and snow peas. This is because it is able to avoid 
the problem of the liquid from the meat making the vegetables soggy 
by anticipating the failure and finding a plan the avoids it. It can only 
do this, however, because it has handled this problem already in that 
it built a similar plan that failed and was then repaired. This earlier 
plan is the same one that CHEF selected as the base-line plan for this 
situation, because it knows that this is a plan that it repaired in the 
past to avoid the same problem of liquid from the meat .making the 
vegetables soggy that is now predicted as a problem in the current 

is disabling a precondition attached to the broccoli stir-fry plan that 
the pan being used is dry. 

The causal description of the failure is used to access this TOP out 
of the twenty that the program knows about. All of these TOPS are 
associated with causal configurations that lead to failures and store 
strategies for fixing the situations that they describe. For example, 
one TOP is DESIRE@EFFECT:DISABLED-CONDITION:SERIAL, 
a TOP that describes a situation in which the desired effect of a step 
interferes with the satisfaction conditions of a later step. The program 
was able to recognize t,hat the current situation was a case of SIDE- 
EFFECT:DISABLED-CONDITION:CONCURRENT because it has 
determined that no goal is satisfied by the interfering condition (the 
liquid in the pan), that the condition disables a satisfaction require- 
ment of a step (that the pan be dry) and that the two steps are one 
and the same (the stir fry step). Had the liquid in the pan satisfied a 
goal, the situation would have been recognized as a case of DESIRED- 
EFFECT:DISABLED-CONDITION:CONCURRENT because the vi- 
olating condition would actually be a goal satisfying state. 

Found TOP TOP1 -> SIDE-EFFECT:DISABLED-CfJNDITION:CONCURRENT 
TOP -> SIDE-EFFECT:DISABLED-CONDITION:CONCURRENT has 3 

etrategies aseociated with it: 
SPLIT-AND-REFORM 
ALTER-PLAN:SIDE-EFFECT 
ADJUNCT-PLAN 

These three strategies reflect the different changes that can be 
made to repair the plan. They suggest: 

l ALTER-PLAN:SIDE-EFFECT: Replace the step that causes the 
violating condition with one that does not have the same side- 
effect but achieves the same goal. 

l SPLIT-AND-REFORM: Split the step into two separate stens 
and run them independently. 

1 

l ADJUNCT-PLAN:REMOVE: Add a new step to be run along 
with a step that causes a side-effect that removes t.he side-effect 
as it is created. 

In this case, only SPLIT-AND-REFORM can be implemented for 
this particular problem so the change it suggests is made. As a result 
the single stir fry step in the original plan in which the beef and broc- 
coli were stir fried together is changed into a series of steps in which 
they are stir fried apart and joined back together in the final st,ep of 
the plan. 

Once a plan is repaired it can be described as a plan that now avoids 
the problem that has just be fixed. When it is stored in memory, then, 
it is stored as a plan that avoids this problem so it can be found if a 
similar problem is predicted. 

VIII PLAN STORAGE 

Plan storage is done using the same vocabulary of goals satisfied 
and problems avoided that plan retrieval uses. Once a plan has been 
built and run, it is stored it in memory, indexed by the goals it satisfies 

270 / SCIENCE 



and the problems it avoids. The plans are indexed by the goals that 
they satisfy so the planner can find them later on when it, is asked to 
find a plan for a set, of goals. They are also stored by the problems 
that they avoid so that CHEF, if it knows that a problem is going to 
result from some planning situation, can find a plan that avoids that 
problem. 

The repaired BEEF-AND-BROCCOLI is indexed in memory under 
the goals that it satisfies as well as under the problems that it avoids. 
So it is indexed under the fact that is a plan for stir frying, for including 
beef and so on. It is also indexed by the fact, that it avoids the problem 
of soggy vegetables that rises out the interaction between meat and 
crisp vegetables when stir fried. The fact that, the plan is associated 
with the problem that it solves allows the plan retriever to later find 
the plan to use when confronted with the later task of finding a plan 
that avoids the problem of soggy vegetables that results when meats 
and crisp vegetables are stir fried together. 

Indexing BEEF-AND-BROCCOLI under goals and problems: 

If this plan is successful, the following should be true: 
The beef is now tender. 
The broccoli is now crisp. 
Include beef in the dish. 
Include broccoli in the dish. 
Make a stir-fry dish. 

The plan avoids failure exemplified by the 
state 'The broccoli is now soggy’ in 
recipe BEEF-AND-BROCCOLI. 

IX CREDIT ASSIGNMENT 

CHEF’s approach to failures is two fold. It repairs the plan to 
make it run and it repairs itself to make sure that it will not make the 
same mistake again. Part of assuring that the same mistake will not 
be repeated is storing the repaired plan so that it can be used again. 
But the fact that the original plan failed and had to be repaired in the 
first place indicates that CHEF’s initial understanding of the planning 
situation was faulty in that it built a failure when it thought it was 
building a correct plan. When it encounters a failure, then, CHEF has 
to also find out why the failure occurred so that it can anticipate that 
failure when it encounters a similar situation in the future. 

CHEF’s makes use of the same causal explanation used to find 
its TOPS and repair strategies to figure out which features should 
be blamed for a failure. The purpose of this blame assignment is to 
track down the features in the current, input that could be used to 
predict this failure in later inputs. This ability to predict, planning 
failures before they occur allows the problem anticipator to warn the 
planner of a possible failure and allow it to search for a plan avoiding 
the predicted problem. The power of the problem anticipator, then, 
rests on the power of the process that figures out which features are 
to blame for a failure. 

CHEF’s steps through the explanation built by the plan repairer 
to the identify goals that interacted to cause the failure. After being 
pushed to the most general level of description that the current expla- 
nation can account for, these goals are turned into tests on the input. 
This allows the planner to later predict failures on the basis of surface 
features that are similar to the ones that participated in causing the 
current problem. 

As a result of the beef and broccoli failure, a test on the texture 
of vegetables, is built and associated with the concept VEGETABLE 
because a goal for a crisp vegetable predicts this failure while goals for 
other vegetables do not. It is associated with VEGETABLE rather 
than BROCCOLI because the rule explaining the failure is valid for 
all crisp vegetables not just broccoli. Because any meat will put off 
the liquid like that which participated in the failure no test is needed 
and a link is built directly from the presence of the goal to the memory 

of the failure. 

Building demon: DEMON0 to anticipate interaction between rules: 
"Meat sweats when it is stir-fried." 
"Stir-frying in too much liquid makes crisp vegetables soggy." 

Indexing marker passing demon under item: MEAT 
by test: Is the Item a MEAT. 

Indexing marker passing demon under item: VEGETABLE 
by test: 

Is the item a VEGETABLE. 
and Is the TEXTURE of item CRISP. 

Goal to be activated = Avoid failure exemplified 
by the state 'The broccoli is now soggy' in 
recipe BEEF-AND-BROCCOLI. 

These links between surface features and memories of failures are 
used later to predict the same problem when it is handed the goals to 
makes a stir fry dish with chicken and snow peas. This prediction is 
then used to find the plan that avoids the problem. 

X CHEF 

The idea behind CHEF is to build a planner that learns from its 
own experiences. The approach taken in CHEF is to use a representa- 
tion of those experiences in the planning process. To make this possi- 
ble, CHEF requires what any case-based planner requires, a memory 
of past events and a means to retrieve and store new them, a method 
for modifying old plans to satisfy new goals, a way to repair plans that 
fail, and a way to turn those failures into knowledge of how to better 
plan. 

By choosing plans on the basis of the problems that they solve as 
well as the goals they satisfy, CHEF is able to avoid any problem that it 

is able to predict. By also treating planning failures as understanding 
failures and repairing its knowledge base as well as its plans, CHEF 
is able to predict problems that it has encountered before. And by 
using an extensive causal analysis as a means of diagnosing problems, 
CHEF is able to apply a wide variety of repairs to a single failure. 

PI 

PI 

PI 

bl 

PI 

REFERENCES 

Fikes, R., and Nilsson, N., STRIPS: A neul approach to the appli- 
cation of theorem proving to problem solving, artificial Intelligence, 
2 (1971). 

Sacerdoti, E., A structure for plans and behavior, Technical Report 
109, SRI Artificial Intelligence Center, 1975. 

Schank, R., Dynamic memory: A theory of learning in computers 
and people, Cambridge University Press, 1982. 

Sussman, G., Artificial Intelligence Series, Volume 1: A computer 
model oj skill acquisition, American Elsevier, New York, 1975. 

Wilensky, R., META-PLANNING, Technical Report M80 33, UCB 
College of Engineering, August 1980. 

COGNITIVE MODELLING AND EDUCATION / 27 1 


