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Abstract

Background: Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen, which causes
persisting life-threatening infections in cystic fibrosis (CF) patients. Biofilm mode of growth facilitates its survival in a variety
of environments. Most P. aeruginosa isolates, including the non-mucoid laboratory strain PA14, are able to form a thick
pellicle, which results in a surface-associated biofilm at the air-liquid (A–L) interface in standing liquid cultures.
Exopolysaccharides (EPS) are considered as key components in the formation of this biofilm pellicle. In the non-mucoid P.
aeruginosa strain PA14, the ‘‘scaffolding’’ polysaccharides of the biofilm matrix, and the molecules responsible for the
structural integrity of rigid A–L biofilm have not been identified. Moreover, the role of LPS in this process is unclear, and the
chemical structure of the LPS O-antigen of PA14 has not yet been elucidated.

Principal Findings: In the present work we carried out a systematic analysis of cellular and extracellular (EC) carbohydrates
of P. aeruginosa PA14. We also elucidated the chemical structure of the LPS O-antigen by chemical methods and 2-D NMR
spectroscopy. Our results showed that it is composed of linear trisaccharide repeating units, identical to those described for
P. aeruginosa Lanýi type O:2a,c (Lanýi-Bergman O-serogroup 10a, 10c; IATS serotype 19) and having the following structure:
-4)-a-L-GalNAcA-(1–3)-a-D-QuiNAc-(1–3)- a-L-Rha-(1-. Furthermore, an EC O-antigen polysaccharide (EC O-PS) and the
glycerol-phosphorylated cyclic b-(1,3)-glucans were identified in the culture supernatant of PA14, grown statically in
minimal medium. Finally, the extracellular matrix of the thick biofilm formed at the A-L interface contained, in addition to
eDNA, important quantities (at least ,20% of dry weight) of LPS-like material.

Conclusions: We characterized the chemical structure of the LPS O-antigen and showed that the O-antigen polysaccharide
is an abundant extracellular carbohydrate of PA14. We present evidence that LPS-like material is found as a component of a
biofilm matrix of P. aeruginosa.
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Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium, which can

be found in soil, water, skin flora and many other natural and

artificial environments. It is a cause of life-threatening lung

infections in individuals with cystic fibrosis (CF), which are

impossible to eradicate due to the biofilm lifestyle, adopted by this

microorganism [1], [2].

Biofilms are microbial communities that grow on a surface or at

an interface, and are embedded in a thick extracellular (EC)

matrix [3]. EC matrix of P. aeruginosa biofilms contains

extracellular DNA [4], proteins and exopolysaccharides (EPS),

which are considered as key components of P. aeruginosa biofilm

matrix [5]. Several recent studies have indicated that the switch

from planktonic growth to biofilm mode is under the control of a

complex regulatory network resulting in up-regulation of polysac-

charide biosynthetic genes [6–9].

Alginate, an anionic polymer composed of mannuronic and

guluronic acids, was traditionally considered the major EC matrix

polysaccharide of mucoid P. aeruginosa [10]. However, several

reports suggested that non-mucoid P. aeruginosa strains, represent-

ing most clinical and environmental isolates, do not produce much

alginate but are still capable of forming fully mature biofilms [11].

The analysis of the P. aeruginosa genomic sequence revealed at least

four additional gene clusters which appeared to encode proteins

involved in exopolysaccharide biosynthesis. The structure of

polysaccharide synthesis locus (psl)-dependent polysaccharide has

been recently established [12]. The pel (pellicle) gene cluster was

shown to be involved in the formation of a pellicle, a surface-

associated biofilm on the air-liquid (A–L) interface in standing
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cultures [13,14]. A comparison of carbohydrates produced by

P. aeruginosa PA14 and its isogenic pel deletion mutant suggested

that pel genes are responsible for the production if a glucose-rich

matrix material [13]. In our recent study; we characterized a

family of glycerophosphorylated cyclic b-(1,3)-glucans, which were

the main glucose-containing polymers of the extracellular matrix

of P. aeruginosa PA14 and were coded by the ndvB, and not by the

pel locus [15]. The nature of the Pel polysaccharide thus remains

largely unknown.

The non-mucoid laboratory strain P. aeruginosa PA14 is able to

form thick, shear-forces resistant, biofilms at the A–L interface.

These biofilms (or pellicles) are reported to have a rigid, paper-like

consistency [13]. Molecules responsible for the structural integrity

of such biofilms have not been identified to date, but they may be

extracellular (EC) or covalently bound to the bacterial membrane.

The rigid pellicles of PA14 could not be disintegrated by mild

procedures [13]. Harsh treatments, which were proposed to

disintegrate the pellicle, such as solubilization in alkali [13],

inevitably affect the bacterial cells and liberates LPS from the

outer membrane. Therefore, the effective localization of carbohy-

drate polymers liberated with such a treatment (cellular or EC)

remains uncertain. In order to have a better idea on the

carbohydrate distribution, we first characterized the chemical

nature of LPS, a major carbohydrate of the P. aeruginosa cell-wall.

Indeed, the LPS structure of the common laboratory PA14 strain

is still unknown. Subsequently, in an effort to identify the

‘‘scaffolding’’ polysaccharides component of P. aeruginosa PA14

biofilms, we performed a systematic analysis of the carbohydrate

composition of the A–L biofilms of P. aeruginosa PA14. Knowledge

of the nature of the EC polymers of PA14, which can potentially

accumulate in the biofilm, could facilitate the task of establishing a

correlation between putative genes encoding for key EPS

biosynthesis and their products.

Results

Preparation of LPS and structural analysis of the LPS O-
antigen
We extracted LPS of PA14 cells by standard hot phenol-water

method [16] and characterized this molecule by monosaccharide

and fatty acids composition analysis. Monosaccharide analysis of

the LPS showed the presence of rhamnose (Rha), 2-diacetamido-

2,6-dideoxy-glucose (N-acetyl-quinovosamine, QuiNAc), and glu-

cose (Glc); as well as small amounts of N-acetyl-glucosamine

(GlcNAc) and heptose (Hep), characteristic for the lipid A-core

region of LPS. Total fatty acid analysis showed the following main

components: 2- and 3-hydroxydodecanoic acid (2-OH C12:0 and

3-OH C12:0; ,20%); n-hexadecanoic acid (C 16:0; ,32%), and n-

octadecanoic acid (C18:0; 31%). Smaller amount of unsaturated

octadecenoic acid (C18:1; ,9%) and fatty alcohols (hexadecanoic

alcohol, C 16-ol, 3%, and octadecanoic alcohol, C:18-ol, 9%) were

also present.

LPS was hydrolyzed by acetic acid and the O-antigen

polysaccharide (O-PS) purified on a Sephadex G-50 column.

The detailed chemical structure of the O-PS was elucidated by

NMR spectroscopy. The HSQC spectrum (Fig. 1, A) indicated the

presence of three anomeric signals A1, B1, and C1; at least two

nitrogen-bearing carbons (A2 and B2), and two N-acetyl groups.

This suggested that the polymer was composed of trisaccharide

repeating units, with two sugar residues corresponding to 2-deoxy-

2-aminosugars. 1H and 13C spectra of the O-PS were fully

assigned using 2D homo- and heteronuclear correlation tech-

niques. Spectra contained signals of a spin system of 2-acetamido-

2-deoxy-a-L-galacturonic acid (GalNAcA, unit A), substituted at

position 4; and spin systems of 3-substitued 2-acetamido-2,6-

dideoxy-a-D-glucose (QuiNAc, unit B) and a-L-rhamnose (Rha,

unit C). The sequence of the repeating unit (A–B–C) was

established by inter-residue NOEs.

The assignments are summarized in Table 1, and the

corresponding structure is schematically shown in Fig. 1, B. This

structure was identical to the one described for P. aeruginosa type

O:2a,c Lanýi classification (O-serogroup 10a,10c of Lanýi-Bergan

or serotype 19 of IATS classification [17],[18]). The 13C

assignments closely corresponded to the structure described

previously [17].

The O-antigen is composed of the trisaccharide repeating units,

containing 2-acetamido-2-deoxy-a-L-galacturonic acid (a-L-Gal-

NAcA, unit A), 2-diacetamido-2,6-dideoxy-a- D-glucose (a-D-

QuiNAc, unit B); and a-L-rhamnose (a-L-Rha, unit C) (Fig. 1, B).

Typically for P. aeruginosa species [18], the PA14 LPS O-antigen is

thus an acidic polysaccharide, rich in aminosugars.

Identification of extracellular carbohydrates produced in
chemically defined medium
We further carried out a systematic study of polysaccharides,

produced by PA14 grown in standing cultures and in chemically

defined M63 medium. Knowing that P. aeruginosa cells often release

large quantities of extracellular carbohydrates in the growth

medium [12], we examined the carbohydrate extracts both from

the cell-associated EC matrix and from the growth medium. The

extracts were prepared using the procedure developed earlier,

including the precipitation of the EC DNA (eDNA) and proteins

by TCA, followed by complete deproteination by phenol-

chloroform extractions [12], [15]. The crude carbohydrate

preparations were fractionated on the Sephadex G-50 column,

and corresponding fractions screened by 1H-NMR and compo-

sition analysis (Figs. S1 and 2). Typically, most of carbohydrate

material of the cell-associated EC matrix was eluted in the void

volume of the column (Fig. 2, A), and contained Rha, QuiNAc and

Glc in different ratios. In addition, small amounts of GlcNAc and

Hep were identified, indicating the presence of LPS. 1H-NMR

showed the presence of the b-(1,3)-glucans [15] and the O-PS

(described below) as main components of the high molecular

weight (HMW) fraction.

Carbohydrate material of the growth medium was eluted as a

large peak close to the void volume (Fig. 2, B). It was collected,

lyophilized, and solubilized in deuterium oxide. LPS was removed

by high-speed centrifugation (see Materials and Methods), and the

clear supernatant analyzed by 1- and 2-D NMR techniques. NMR

analysis revealed the presence of two components (Fig. 3): a

polysaccharide composed of the trisaccharide repeating units

identical to one of the O-PS (Table 1), and the cyclic glyceropho-

sphorylated b-(1,3)-glucan.

These results allowed us to conclude that LPS, the EC O-PS,

and a family of cyclic glycerophosphorylated b-(1,3)-glucans are

three main extracellular carbohydrates released by P. aeruginosa

PA14 in M63 medium.

Chemical analysis of the A-L biofilms
Growth in standing cultures in T-broth in Erlenmeyer flasks at

room temperature are the conditions known as most favorable for

the A-L biofilm formation of PA14 [13],[19]. When grown under

these conditions, P. aeruginosa PA14 forms a rigid pellicle with a

loosely adherent thick layer of a viscous transparent gelatinous EC

matrix (GEC) (Fig. 4A, B and C). Upon centrifugation of the cell

culture, bacterial cells (and supposedly a part of the ‘‘rigid pellicle’’

holding the cells together) settle to the bottom of the centrifuge

tube, while the GEC forms an adherent layer between the cells

Carbohydrate Analysis of PA14
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and the media (Fig. 4, D). The GEC matrix could be detached

from the bacterial cells by mild procedures, such as mild sonication

or shaking with 5-mm diameter glass beads.

Knowledge of the chemical structure of main carbohydrate

polymers of PA14 enabled us to make the preliminary analysis of

its A–L biofilm using isolation procedures which would minimize

the loss of carbohydrate material (Fig. S2).

The soluble GEC detached by glass beads was dialysed,

lyophilized and used for preliminary analysis (Fig. S2). Cells and

the ‘‘rigid pellicle’’ were solubilized in 1 M NaOH, as recom-

mended by Friedman and Kolter [13].Carbohydrates were

prepared as described in Materials and Methods and shown in

Fig. S2, and subjected to dephosphorylation followed by

composition methylation analysis. In agreement with the previous

findings [13], methylation analysis revealed the presence of 3-

linked Rha and 3-linked 6-deoxyhexosamine residues, which is in

accordance with the proposed structure of the LPS O-antigen

(Fig. 1, B). Smaller amounts of terminal Glc and 3-linked Hep

could be accounted for the LPS core oligosaccharide. The 2-linked

Rha was not detected, which indicated the absence in the pellicle

of the A-band LPS O-antigen [20]. The 3-linked Glc most

probably corresponded to the cyclic glycerophosphorylated b-

(1,3)-glucans [15]. Minor amounts of 2-linked Glc pointed out to

the possible presence of the short branched b-(1,2)-glucan [21],

[15]. Overall, data of chemical analysis of the preparation were

consistent with the presence of the LPS and b-(1,3)-glucans as the

main carbohydrates. Our analytical methods could not allow us to

identify any carbohydrates specific for the formation of the rigid

pellicle.

The chemical composition of the GEC preparations was studied

by colorimetric assays, DOC-PAGE, agarose gels, and monosac-

charide composition analysis. Agarose gel profiles of the GEC

preparations were identical to chromosomal DNA of this strain

(Fig. S3). The amount of DNA could be estimated as up to 30% of

Table 1. 1H and 13C chemical shifts of P. aeruginosa PA14 O-PS.

Unit H/C 1 H/C 2 H/C 3 H/C 4 H/C 5 H/C 6a H/C 6b

a-GalNAcA A 5.16 4.17 4.10 4.40 4.97

98.2 50.7 67.6 80.0 71.6

a-QuiNAc B 4.87 4.12 3.90 3.28 4.10 1.26

95.9 54.9 76.4 75.2 69.2 17.8

a-Rha C 4.84 3.95 3.78 3.50 4.05 1.26

102.3 68.8 77.1 71.4 70.5 17.8

Spectra were recorded at 25uC in D2O with acetone standard. 13C chemical
shifts are shown in italic.
doi:10.1371/journal.pone.0014220.t001

Figure 1. NMR spectra and the structure of the O-PS. 1H-13C HSQC spectrum along with the corresponding 1D 1H-NMR spectrum (A), and the
structure of the trisaccharide repeating unit (B) of the LPS O-antigen (O-PS) from P. aeruginosa PA14.
doi:10.1371/journal.pone.0014220.g001
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the dry weight of the crude EC preparation. This is consistent with

previous studies that demonstrate that DNA was the main

component of EC matrix of several P. aeruginosa strains, in

particular PAO1 [4], [22], [23].

Furthermore, colorimetric assays and DOC-PAGE indicated

that at least 20–25% of dry weight of this material consisted of LPS

or LPS-like product. Interestingly, the DOC-PAGE profile of the

GEC preparation was similar, but not identical, to the one of LPS

extracted from cells by hot phenol-water method: In GEC, bands

corresponding to the core-lipid A region were of relatively lower

intensity, and O-antigen pattern indicated higher MW bands

(Fig. 5). Main monosaccharide components of the GEC

preparations were Rha and Glc along GlcN and Hep, character-

istic for the core-lipid A region of the LPS. GEC produced it T-

medium also contained Man and ribose (Rib). Unlike the PA14

LPS, only small amounts or no QuiNAc was detected, depending

on the preparation. The combined data indicate that GEC

contains, along with eDNA, Kdo-containing LPS-like material,

which may be different from the cell-wall LPS of P. aeruginosa

PA14. The detailed identification of this material requires further

elucidation, and is currently under investigation.

Comparative studies of extracellular carbohydrates of the
wild type and pel mutants
EC and cell-associated carbohydrate extracts were prepared for

the PA14DpelC mutant using the same procedures as for the wild-

type (WT) strain. Monosaccharide composition, fatty acid and

methylation analysis of corresponding fractions did not show

significant differences between the two strains. Consistent with our

previous studies [15], the glycerophosphorylated cyclic b-(1,3)-

glucans were present in EC matrix of the PA14DpelC strain. eDNA

was also detected in the GEC of the mutant strain (Fig. S3, lane 5)

and the DOC-PAGE profile of the LPS-like material of GEC was

similar to one of the WT strain (data not shown). In an attempt to

answer the question if the production of the EC O-PS was related

to the function of the pel locus, we prepared the EC and cell-

associated carbohydrate extracts of the WT and DpelC mutant

strains, as described in Materials and Methods. Crude extracts

Figure 2. Typical elution profiles of crude carbohydrate extracts of the EC biofilm matrix (A) and culture medium (B) of P. aeruginosa
PA14 on Sephadex G-50 column. Aliquots (400 ml) of each 5-ml fraction were assayed colorimetrically for neutral sugars [52]. Fractions used for
NMR analysis are marked with an arrow.
doi:10.1371/journal.pone.0014220.g002
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were fractionated on a Sephadex G-50 column, and the

corresponding HMW fractions were analysed by 1H-NMR

spectroscopy and DOC-PAGE. 1H-NMR spectra characteristic

for O-PS were detected in the WT, but not in the corresponding

DpelC preparations. These data thus suggest that pel locus could be

involved in the production of the EC O-PS.

We also attempted to estimate the correlation between the

phenotypic difference of the WT and DpelC strain and the amounts

of carbohydrate material produced by the cells and accumulated

in the biofilm matrix. We compared the quantities of EC LPS-like

component of two strains, grown in chemically defined M63

medium at 25uC, optimal temperature for the expression of the pel

genes [19]. Crude extracts were prepared as described in Materials

and Methods, and quantities of Kdo-containing carbohydrate

material were compared. Overall, we observed an accumulation of

the cell-associated material and a decreased amount of the

material released in the growth media, in the WT strain compared

to the isogenic DpelC mutant (Fig. 6). This may indicate that pel

genes are involved in the production of a factor(s) which favour an

accumulation the EC carbohydrates, and in particular the Kdo-

containing polymers, within the complex network of the A-L

biofilm.

Discussion

Nonmucoid strains of P. aeruginosa are the predominant

environmental phenotype, and are also involved in colonization

of CF lung at early stages of infection. It was shown that alginate is

not a major component of the EC matrix of two nonmucoid

laboratory strains, PAO1 and PA14 [11], and EC biofilm matrix

of PAO1 consisted primarily of DNA [4], [22].

P. aeruginosa PA14 is a strain that has traditionally been used to

study biofilms. This is largely due to its ability to form strong

biofilm at the A–L interface. In the present work, we attempted to

identify the carbohydrate polymers of the PA14 EC matrix.

Knowledge of the nature of carbohydrate polymers which

constitute the A–L biofilm of this strain could significantly

facilitate establishing the identity of genes involved in their

biosynthesis and, consequently, in the biofilm formation process.

LPS is the major carbohydrate component of the cell envelope

of Gram-negative bacteria, and has been proposed to be involved

in bacterial attachment to abiotic surfaces and biofilm formation

[24], [25]. We showed that PA14 LPS O-antigen was composed of

a trisaccharide repeating unit and contained Rha, QuiNAc and a

2-acetamido-2-deoxy-glacturonic acid (Fig. 1). Typically for P.

aeruginosa LPS, PA14 O-PS is an anionic polymer, rich in amino-

sugars and containing 6-deoxy-sugar residues [18]. Analysis of the

extracellular polysaccharides released in the growth medium

allowed us to identify a family of highly glycero-phosphorylated

cyclic b-(1,3)-glucans [26], [15] and an acidic extracellular

polysaccharide of P. aeruginosa PA14, which is composed of

trisaccharide repeating units with a structure identical to the LPS

O-antigen.

Goldman and co-workers first showed that E. coli serotype O11

expressed a half of its O-antigen in the LPS-unlinked capsular

form [27]. Such ‘‘O-antigen capsules’’, with the structure of

repeating unit identical to the LPS O-antigen but not linked to the

lipid A-core were later described for a number of gram-negative

bacteria (reviewed in [28]). ‘‘O-antigen capsules’’ of E. coli were

assigned to Group 4 capsules [29]. Salmonella enteriditis [28] and

Francisella tularensis [30] were shown to produce capsular

polysaccharides (CPS) structurally identical to the LPS O-antigen,

Figure 3. 1H-13C HSQC spectrum of the EC carbohydrate of the growth medium of P. aeruginosa PA14. Signals corresponding to the b-
(1,3)-cyclic glucans are labelled; G = Glc, Gro = glycerol. Signals in square and other unlabeled signals belong to the EC O-PS.
doi:10.1371/journal.pone.0014220.g003
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but expressed by distinct genetic loci and relying on a separate

biosynthetic and transport apparatus. Presence in the CPS

preparations of S. enteriditis of octadecanoic acid and unsaturated

fatty acids, which are not normally seen in LPS of Gram negative

bacteria and are rather common for phospholipids of bacterial

membranes, led the authors to speculate that the lipid anchor for

this CPS could be a phospholipid(s).

To date, the presence of CPS has not been described for P.

aeruginosa. However, a HMW immunogenic, non-toxic form of the

LPS O-antigen has been previously isolated from culture

supernatants of several P. aeruginosa strains [31–34] after prolonged

growth. Isolation procedure of these PS included acid treatment,

and therefore no conclusion about the presence of a possible lipid

anchor could be drawn. Similarly to the case of Salmonella CPS

[28], occurrence of hexadecanoic, octadecanoic and unsaturated

fatty acids in our LPS and EC preparations could point out to a

possible phospholipids anchor for the EC O-PS in P. aeruginosa

PA14.

Knowledge of the chemical identity of the cell-wall LPS and EC

carbohydrates allowed us to make a preliminary analysis of the

composition of A–L biofilms of PA14. These biofilms formed in T-

broth comprise rigid shear-forces resistant pellicle containing

bacterial cells, and a loosely adherent transparent gelatinous

material (Fig. 4). In P. aeruginosa PAO1, similar gelatinous material

of solid surface-associated (SSA) biofilms was reported to consist

mainly of DNA [22]. Our results showed that the EC material of

A-L and SSA biofilms of PA14 contained, in addition to eDNA, up

to and 25-30% (dry weight) of Kdo-containing LPS-like material.

This is the first evidence of accumulation of an extracellular LPS-

like material as an important ‘‘scaffolding’’ component of P.

aeruginosa biofilms.

Accumulation of LPS in the A-L biofilm is consistent with the

physico-chemical properties expected for a molecular framework

build up at the interface between air and liquid. Formation of an

A-L biofilm would require the presence of components with both

hydrophilic and hydrophobic properties. The amphiphilic LPS

Figure 4. A-L biofilms of P. aeruginosa PA14 grown in standing cultures. Cells were grown in T-medium in 2-l Erlenmeyer flask at 25uC for 6
days. Photographs: top (A) and side view (B); schematic representation of the culture in the flask (C) and after centrifugation (D). Cells are shown in
dark green, growth medium – in light green, rigid pellicle in orange and gelatinous EC matrix (GEC) in yellow.
doi:10.1371/journal.pone.0014220.g004
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molecule with an anionic, viscous and highly hydrated O-PS,

seems to be a good candidate for this function.

Previous studies pointed out LPS as a candidate molecule that

could provide structural integrity of P. aeruginosa biofilms [11]. P.

aeruginosa LPS was shown to contribute to biofilm function and

architecture by influencing bacterial adhesion, cell-to-cell adher-

ence, and viscoelastic properties of biofilms [35]. Abraham et al.

[36] recently demonstrated that P. aeruginosa LPS is able to form

stable monolayer at the air-water interface. It is therefore tempting

to speculate that formation of such monolayer by the amphiphilic

LPS molecules may occur in initial steps of pellicle formation.

Otherwise, uppermost layers of the pellicle might be formed by

cells with increased cell surface hydrophobicity. Interestingly, it is

known that low concentrations of P. aeruginosa rhamnolipids cause

a release of LPS from the outer membrane and an increase of the

cell surface hydrophobicity [37]. The product of algC, one of the

alginate biosynthetic genes, whose expression is induced upon

attachment to a surface [38], is also involved in the biosynthesis of

rhamnolipid and LPS [11]. These phenomena may play an

important role in the mechanisms of formation of biofilm and in

particular A-L biofilms in P. aeruginosa.

The spontaneous release of LPS by Gram-negative bacteria

during normal growth is a well-established phenomenon, which

gave rise to the term ‘‘free endotoxin’’ [39,40]. It was shown that

P. aeruginosa [40], Neissseria [41], Vibrio cholerae [42], E. coli and

Salmonella typhimurium [43] release the ‘‘free LPS’’ by a process

apparently distinct from cellular autolysis. The mechanism of this

release is not well established. One known mechanism of LPS

release in P. aeruginosa during normal growth occurs via the

production of membrane vesicles [44].

To our knowledge, this and our previous study [15] are first

examples of a cyclic b-glucans as components of bacterial biofilm

matrix. However, other glucose polymers were reported to play an

important role in the formation of a biofilm at the A-L interface.

For example, overproduction of cellulose and its acetylated form

was causing the colonization of the A-L niche by Pseudomonas

fluorescens and Salmonella spp. [45,46,47]. Biofilm formation in

Salmonella is associated with the multicellular behaviour, which is

characterized by the elaboration of thin aggregative fimbriae

(Tafi), cellulose, and a yet uncharacterized EPS [48]. It is of

interest that O-Ag capsule of S. enteriditis was found to play an

essential role in the protection of cells against desiccation stress via

the formation of a hydrated gel, but did not affect the formation of

the extracellular network between cells [49]. In case of a wrinkly

spreader of P. fluorescens, it was shown that cellulose fibers and LPS

were required for strength and structural integrity of A-L biofilms,

and defects in LPS expression affected the A-L biofilm strength

[45]. Friedman and Kolter [13] have demonstrated that cellulose

was not produced by P. aeruginosa. It is possible to hypothesise that

cyclic b-(1,3)-glucans, which are known as good molecular

chelating agents and are capable to bind to aminoglycoside

antibiotic [26], [15], are also able to form molecular complexes

with other components of the pellicle matrix, such as proteins,

lipids, polysaccharides or LPS within of P. aeruginosa biofilms.

In conclusion, in this work we identified three abundant

extracellular carbohydrates of P. aeruginosa PA14: LPS-like

material, EC O-PS and the cyclic b-(1,3)-glucan and provide the

experimental evidence of accumulation of extracellular LPS-like

material and cyclic b-(1,3)-glucans in the P. aeruginosa biofilm

matrix. Understanding the involvement of these carbohydrates in

the biofilm formation process of different non-mucoid P. aeruginosa

strains is an attractive challenge and yet requires further

investigation.

Figure 5. DOC-PAGE analysis of crude GEC extract of from P.
aeruginosa PA14 A–L biofilm. Lane 1, crude GEC extract of from P.
aeruginosa PA14 pellicle (30 mg); lane 2, P. aeruginosa PA14 LPS control
(15 mg); lane 3, Salmonella enteriditis LPS control. O-antigen and core-
lipid A regions of the LPS are indicated. Corresponding HMW bands of
the LPS and GEC are indicated with arrows.
doi:10.1371/journal.pone.0014220.g005

Figure 6. Comparative analysis of Kdo-containing material
released in the growth medium and associated with cells for P.
aeruginosa PA14 (WT) and its isogenic DpelC mutant. Cells were
grown in M63 medium (3 ml of inoculum at OD of 0.0025 in 12-ml
plastic tubes) at 25uC statically for 6 days. Extracts were prepared by
sonication of the cell pellet in saline or by solubilizing it in 1 M NaOH
(see Materials and Methods). Kdo-assays for the WT preparations are set
at 100% and shown with an arrow. Data represent a typical experiment
performed in triplicate. Experiments were performed at least three
times by two researchers independently.
doi:10.1371/journal.pone.0014220.g006
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Materials and Methods

Bacterial strain and growth conditions
P. aeruginosa PA14 was used for all studies. Cells were grown in

Erlenmeyer flasks (500 ml per 2-liter flask, 75 ml per 250-ml flask)

at 37uC for 3 days in M63 minimal medium; supplemented with

0.5% Casaminoacids ((Difco), 1 mM MgCl2, and 0.4% Glc [50],

or at 25uC for 6–7 days in T-broth medium (10 g l21 bacto

peptone, 5 g l21 NaCl). Standing cultures were inoculated with

plate-grown bacteria to an OD600=0.0025, as recommended by

Friedman and Kolter [13]. For comparative studies, PA14DpelC

mutant [14] was used. Standing cultures containing 3 ml of M63

medium were grown for 6 days at 25uC in 12-ml polystyrene

culture tubes (176100 mm, Greiner Bio-one). For LPS prepara-

tion, cells were grown in Erlenmeyer flasks at 37uC for 24 hrs in

LB-broth with shaking.

LPS extraction and preparation of the LPS O-antigen
Cells were collected by centrifugation, washed with saline and

extracted with 50% aqueous phenol at 65–70uC with intensive

stirring [16]. The mixture was transferred into centrifuge tubes,

cooled in ice, and the phases were separated by centrifugation

(1 200 g, 4uC, 30 min). Joined aqueous and phenol phases were

dialysed and lyophilised. The LPS preparation was further de-

proteinated by TCA precipitation (5%), followed by dialysis and

lyophilisation. This LPS preparation was used for a calibration

curve in Kdo assays and as a control for DOC-PAGE.

For the preparation of the O-antigen, LPS was hydrolysed with

3% aqueous AcOH with stirring. Lipid A was removed by

centrifugation, the supernatant lyophilised and fractionated on a

Sephadex G-50 column. HMW fractions were collected and used

for NMR analysis.

Preparation of the carbohydrate extracts
The crude carbohydrate extract of the growth media and the

extracellular biofilm matrix were prepared from M63 cultures and

fractionated on Sephadex G-50 as described earlier [12]. The

corresponding fractions were pooled and lyophilized. For NMR

analysis, preparations were taken in 300 ml of D2O and

centrifuged (14 000 g, 10 min); clear supernatants were used for

NMR analysis.

For the chemical analysis of the pellicle, cell pellets which

remained after mild sonication (rigid pellicle) were solubilized in

1 M NaOH at room temperature, with stirring for 10 min. The

viscous solution was neutralized with glacial acetic acid, and the

insoluble material removed by centrifugation (9 000 g, 15 min).

Clear supernatant was diluted with water, dialyzed and lyophi-

lized. It was used for monosaccharide composition and methyl-

ation analysis, preceded by dephosphorylation (51% hydrofluoric

acid, 48 h, 4uC). Alternatively to alkaline treatment, the pellicles

were extracted with hot phenol-water as described above.

Preparation and analysis of the crude biofilm extract
Biofilm pellicles, formed in T-broth, were collected and washed

gently with water. In order to detach the gelatinous extracellular

material, they were suspended in water, and 5-mm glass beads

were added to the suspension. The mixture was vortexed for

1 min, the cell suspension centrifuged (9 000 g, 20 min, 4uC). The

remaining pellet was re-suspended in water and the procedure

repeated. The clear supernatant represented the crude EC biofilm

matrix solution and was used to assay the relative amount of LPS

and DNA. Aliquots of this extract were used lyophilized to

estimate the dry yield. The lyophilized material was further

analyzed by agarose gel electrophoresis, DOC-PAGE, monosac-

charide composition, fatty acid and methylation analysis. The

remaining pellet (rigid pellicle) was solubilized in 1 M NaOH and

analyzed as described above.

DNA preparation
The eDNA from the growth media and GEC preparations was

precipitated by 3 volumes of ethanol, collected by centrifugation

and re-solubilized in water. Chromosomal DNA extractions were

carried out on planktonic cultures of P. aeruginosa PA14 and the

isogenic DpelC mutant, using WizardH Genomic DNA purification

kit according to the manufacturer’s recommendations. DNA was

subjected to electrophoresis on 1% agarose gels and visualized

with GelRedTM (Interchim).

Quantification of carbohydrates in the wild type and
DpelC mutant strains
3-ml cultures were transferred in the eppendorf tubes, and cell

with cell-associated material was collected by centrifugation. Cell

pellets were washed gently with saline (2 ml). Joined supernatants

(‘‘Growth media’’) were dialyzed, lyophilized, and suspended in

water (2 ml). Cell pellets were suspended in saline (2 ml) and

subjected to sonication (IKA Labotechnik sonicator, 50%

intensity, 0.5 cycle, 3610 sec) to give a ‘‘sonication’’ extract. In

a separate experiment, the pellet was solubilized in 1 M NaOH

(3 ml, ‘‘NaOH’’ preparation). In the three preparations, the

amount of Kdo-containing material was assessed by the Kdo assay

[51], using a purified PA14 LPS as a standard. Quantities were

expressed in % of the PA14DpelC mutant compared to the WT

strain.

General and analytical methods
Gel-permeation chromatography was carried out on a Sepha-

dex G-50 column (1.6695 cm; Pharmacia), irrigated with water.

Aliquots (200 mL) of each 5 mL fraction were assayed by

colorimetry for aldose [52]. Carbohydrate samples were dephos-

phorylated by treatment with 48% HF (Acros Organic) for 48 hrs

at 4uC.

Methylation analysis and GC were performed as described

before [15]. Total fatty acids were liberated by hydrolysis with

4 M KOH (100uC, 16 h), and extracted by chloroform-methanol

(2:1) and hexane from neutralized solution. They were converted

into methyl esters by methanolysis (2 M methanolic hydrogen

chloride, 80uC, 4 h), acetylated by conventional methods.

GC-MS was performed with a Hewlett Packard mass

spectrometer 5989A equipped with a fused silica capillary column,

as described before [53]. 1H and 13C NMR spectra were recorded

using a Varian Inova 500 MHz and 400 MHz spectrometers as

described before [12].

Relative amount of LPS in crude samples was estimated using

the Kdo assay [51], with a purified PA14 LPS as a standard.

DOC-PAGE was performed as described by Reuhs et al. [54].

Supporting Information

Figure S1 Schematic representation of the protocol used for

purification of EC carbohydrates of P. aeruginosa PA14, grown in

standing culture in M63 medium. Fractions obtained from cells,

GEC and growth medium are color coded as explained in the

legend of Fig. 4.

Found at: doi:10.1371/journal.pone.0014220.s001 (2.36 MB EPS)

Figure S2 Schematic representation of the experimental proto-

col used for preliminary analysis of A-L biofilms of P. aeruginosa

PA14, grown in standing culture in T-medium. T-medium is rich
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in complex carbohydrates and therefore was not analyzed.

Fractions are color coded as explained in the legend of Fig. 4.

Found at: doi:10.1371/journal.pone.0014220.s002 (1.87 MB EPS)

Figure S3 Agarose gel-electrophoresis of eDNA of crude GEC

extract of from P. aeruginosa PA14 A-L biofilm and purified

chromosomal DNA. Lane 1, Ladder 100 pb; Lane 2, purified

chromosomal DNA of P. aeruginosa PA14 WT, lane 3, purified

chromosomal DNA of P. aeruginosa PA14DpelC; lane 4, eDNA of

crude GEC extract of from P. aeruginosa PA14 WT; lane 5, eDNA

of crude GEC extract of from P. aeruginosa PA14DpelC.

Found at: doi:10.1371/journal.pone.0014220.s003 (0.35 MB EPS)
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