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Abstract A one-dimensional self-consistent model has been developed to study the chemical and

thermal effects of a single sprite streamer in the Earth’s mesosphere. We have used sprite streamer profiles

with three different driving current durations (5 ms, 50 ms, and 100 ms) between 50 and 80 km of altitude

and considering a kinetic scheme of air with more than 90 chemical species. Our model predicts strong

increases in practically all the concentrations of the species studied at the moment of the streamer head

passage. Moreover, their densities remain high during the streamer afterglow phase. The concentration

of electrons can reach values of up to 108 cm−3 in the three cases analyzed. The model also predicts an

important enhancement, of several orders of magnitude above ambient values, of nitrogen oxides and

several metastables species. On the other hand, we found that the 4.26 μm IR emission brightness of CO2

can reach 10 GR at low altitudes (< 65 km) for the cases of intermediate (50 ms) and long (100 ms) driving

currents. These results suggest the possibility of detecting sprite IR emissions from space with the

appropriate instrumentation. Finally, we found that the thermal impact of sprites in the Earth’s mesosphere

is proportional to the driving current duration. This produces variations of more than 40 K (in the extreme

case of a 100 ms driving current) at low altitudes (< 55 km) and at about 10 s after the streamer head.

1. Introduction

Transient luminous events (TLEs) are large and short-lived (< 100 ms) optical flashes that occur between the

lower stratosphere and ionosphere associated to thunderstorm activity in the troposphere as hypothesized

by Wilson [1925]. The most common of these phenomena are the so-called sprites which were discovered

serendipitously by Franz et al. [1990]. Sprites are huge weakly ionized plasma structures [Neubert, 2003;

Pasko, 2003] whose extension goes from the lower ionosphere (80–85 km) through the mesosphere down

to 40 km of altitude approximately. Sprites are produced by air electric breakdown caused by mesospheric

electrons heated by the quasi-electrostatic (QE) fields induced by lightning discharges [Pasko et al., 1995;

Cho and Rycroft, 1998]. The QE field is mainly generated by positive cloud-to-ground (+CG) lightning strokes

[Boccippio et al., 1995] although it can also be produced by negative cloud-to-ground (−CG) lightnings with a

great chargemoment change [Barrington-Leighetal., 1999; Taylor etal., 2008]. The runawayelectronavalanche

process can also be considered as a sprite initiation mechanism. Some previous studies have associated

sprite emissions at low altitude with high energetic runaway electrons [Bell et al., 1995]. Füllekrug et al. [2010],

through low-frequency radio observations, detected electromagnetic pulses associated with an electron

avalanche a few milliseconds after the causative lightning discharge coinciding with the sprite luminosity.

These researchers concluded that relativistic runaway breakdown could emit broadband electromagnetic

pulses and possibly generate sprites.

The first sprite images taken from a plane were published by Sentman et al. [1995]. These first sprite color

pictures showed that reddish optical emission predominates at the top of sprites while bluish emissions are

themost visible at thebottomof sprites. Since then, there havebeenmanyobservations fromground [Rairden

andMende, 1995; Lyons, 1996;Winckler et al., 1996; Stanley et al., 1999;Gerkenetal., 2000; Barrington-Leighetal.,

2001; Stenbaek-Nielsenetal., 2013], fromballoons [Beringetal., 2004;Bhusal etal., 2004], from theSpaceShuttle

[Vaughan et al., 1992; Boeck et al., 1995, 1998; Yair et al., 2004], and from the International Space Station [Blanc

et al., 2004; Jehl et al., 2013]. There are also observations from other space platforms such as FORMOSAT-2,

using the instrument ISUAL (Imager of Sprites and Upper Atmospheric Lightnings) in operation since 2004.

ISUAL has recorded photometric data in the visible and ultraviolet optical range [Kuo et al., 2005;Mende et al.,

2005; Liu et al., 2006; Adachi et al., 2006, 2008; Liu et al., 2009], as well as images [Chen et al., 2008]. It is now
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well established that sprites exhibit a common structure with three distinct regions [Pasko et al., 1998; Pasko

and Stenbaek-Nielsen, 2002]: an upper diffuse region (90–80 km), a middle transition region (80–75 km), and

a lower regionwhere streamers are visible (< 75 km). The values of the abovementioned altitudes are average

anddependon, amongother factors, the characteristics of the lightningprecursor. Subsequent ground-based

observations with better resolution [Gerken et al., 2000; Gerken and Inan, 2003, 2005] and with high-speed

cameras [Marshall and Inan, 2005, 2006; Cummer et al., 2006;McHarg et al., 2007; Stenbaek-Nielsen et al., 2007]

have shown a complex set of streamers in the lower part of sprites as well as various types of sprites [Bór,

2013]. In addition, high-speed sprite imaging has also shown a great similarity with streamer discharges at

atmospheric pressure [Raizer, 1991; Raizer et al., 1998]. Sprite streamers generally develop downward [Moudry

et al., 2003; Cummer et al., 2006; McHarg et al., 2007]. However, some upward streamer propagation has also

been reported [Cummer et al., 2006; Stenbaek-Nielsen andMcHarg, 2008].

The first spectroscopic sprite observations [Mende et al., 1995; Hampton et al., 1996; Morrill et al., 1998] with

low spectral (between 10 nm and 6 nm) and temporal resolution (at standard video rate) identified the 1PN2

transition (N2(B
3Πg)→N2(A

3Σ+
u
)) as the most important optical emissions from sprites in the 550–840 nm

spectral range. Subsequent modeling studies [Pasko et al., 1997] confirmed that 1PN2 and 2PN2 (N2(C
3Πu) →

N2(B
3Πg))were themolecular transitions responsible for the red and blue optical emission features apparent

in sprite spectra as previously suggested by Sentman et al. [1995]. Later on, Heavner [2000] and Heavner et al.

[2010] confirmed the presence of ultraviolet (UV) emission in sprite spectra. The blue optical emission has

also been associated withN+
2
(B2Σ+

u
) [Armstrong et al., 1998, 2000;Morrill et al., 2002], although it is not usually

detected in sprite spectra [Armstrongetal., 2000]. Some studies have reported thepossible presence ofMeinel

(N+
2
(A2Πu)→ N+

2
(X2Σ+

g
)) emission in sprite spectra [Morrill et al., 1998] that tend to bemore apparent at lower

layers of the atmosphere [Bucsela et al., 2003]. On the other hand, the confirmation of the presence of 1NN2

(N+
2
(B2Σ+

u
) → N+

2
(X2Σ+

g
)) in sprite spectra is important since it indicates that sprites can also excite electronic

levels of ionized species.

Sprites (and other TLEs) can also emit in the IR and UV [Liu et al., 2006] due to the excitation of species

such as CO2, N2, NO, and/or N
+
2
. However, the IR and UV emissions are mainly reabsorbed by H2O and

O2 and O3, respectively. Therefore, the detection of IR and UV features in sprite spectra needs to be done

from space, from balloons or from high-altitude planes. There are some models of the near-ultraviolet and

near-infrared (NIR) TLE optical emission and detection from space [Picard et al., 1997;Milikh et al., 1998; Luque

andGordillo-Vázquez, 2011; Gordillo-Vázquez et al., 2011, 2012]. Other modeling work on NO-� ((NO(A2Σ+) →

NO(X2Πr)) emissions in ultraviolet and Lyman-Birge-Hopfield (LBH, N2(a
1Πg) → N2(X

1Σ+
g
)) optical emission

in the far-UV shows that, at 70 km, UV emissions from NO are less intense than those due to LBH emission

from N2 [Liu and Pasko, 2005, 2007]. The LBH emission has been detected by ISUAL [Mende et al., 2004] and

compared with streamer models [Liu et al., 2006]. Contrarily, to LBH optical emissions, the emission of NO-�

from sprites has not yet been detected not even from space.

Regarding precise determination of the gas temperature in the TLE surrounding the atmosphere, it is worth

mentioning that the recording of TLE spectrawith the instrumentGranada Sprite Spectrograph and Polarime-

ter between 700 nm and 800 nm and with a spectral resolution of 0.07 nm/pixel or 0.25 nm will allow to

better resolve TLE spectra and to be able to quantify a possible local heating due to TLE activity in the lower

mesosphere [Passas et al., 2014; Parra-Rojas et al., 2013b].

Although spectroscopic data provide valuable information about the excited species, the full impact of sprites

in the chemical composition of the mesosphere is not well determined by spectroscopic means. Measure-

ments by ISUAL between 40 and 60 km indicate that the mean energy of the electrons and the electric field

underlying the optical spectra of sprites are, respectively, between 6.2–9.2 eV and 243–443 Td [Kuo et al.,

2005]. It is thus possible that these intense electric fields create highly reactive chemical species (such as ener-

getic electrons, ions, and NOx) that can induce local changes in the chemical [Sentman and Wescott, 1995;

Stenbaek-Nielsen et al., 2000] and electrical [Gordillo-Vázquez and Luque, 2010] properties of the mesosphere.

The dipolar electric field and the electromagnetic pulse generated by CG lightning strokes also affect the

electron concentration in the mesosphere and lower ionosphere [Taranenko et al., 1993; Shao et al., 2012].

Recent kinetic simulations of halos carried out by Parra-Rojas et al. [2013a] predicted an increase of up to

70 cm−3 in the mesospheric electron density due to the action of tropospheric +CG lightning. The enhanced

electron concentration can stay high between 10 and 100 s after the current peak of the parent positive light-

ning discharge. In this regard, Luque andGordillo-Vázquez [2012] showed that the electron production due to
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associative detachment (AD) of O− byN2 could be responsible for the delayed sprites [Bell et al., 1998; Cummer

and Füllekrug, 2001] that occur more than 10 ms after the parent lightning stroke.

Apresent line of active research is focussed in understandinghow sprites and their postdischargephase affect

the atmospheric chemistry of NOx and N2O. Variations of NO and O3 concentrations due to blue jets exhibit

enhancements between, respectively, 10% and 0.5% at 30 km altitude [Mishin, 1997]. However, according to

Parra-Rojas et al. [2013a], the concentrations of NO and O3 exhibit a negligible variation due to halos. More-

over, the simulations by Hiraki et al. [2004] predict a substantial increase in the concentration of O(1D), and

themeasurementsmadebyUARS (Upper Atmosphere Research Satellite) indicate a substantial enhancement

of O(1S) [Lee and Shepherd, 2010] due to the possible presence of sprites. Concerning kinetic modeling of

sprites, Sentman et al. [2008] developed a kinetic model with more than 800 chemical reactions to study the

impact of a streamer pulse with Emax = 5Ek (where Ek is the breakdown electric field, Ek∕N = 120 Td) and

Δt = 6 μs at 70 km of altitude in themesosphere. With thismodel, Sentman et al. [2008] estimated an increase

of the streamer head electron density of up to 106 cm−3 persisting about 1 s. These authors also estimated

an increase in the concentration of NO by 50%, while Hiraki et al. [2008] estimated an increase of 4 orders

of magnitude in the density of NO at the same altitude. Enell et al. [2008], however, predicted an increase of

50% in the concentration of NOx at 73 km. Gordillo-Vázquez [2008, 2010], employing a reduced electric field

of 400 Td, found increases of an order of magnitude in the concentration of NO and NO2 while for the density

of NO3 predicted an increase ofmore than 3 orders ofmagnitude at 68 km.Moreover,Gordillo-Vázquez [2008]

was also able to calculate the brightness of the sprite-related CO2 4.3 μm IR emission predicting a value as

high as 100 MR at 68 km of altitude that pointed to its possible detection from space. The substantial differ-

ences found between the different sprite kinetic model predictions may be due to different initial conditions

employed and to the use of different rates for different numbers of processes. The results by Arnone et al.

[2008], through analysis of the data recorded by Michelson Interferometer for Passive Atmospheric Sound-

ing aboard Envisat (Environmental Satellite), showed a possible sprite-induced NO2 enhancement of about

10% at 52 km of altitude in correspondence with active thunderstorm and with a tendency to grow up with

height. Also aboard Envisat but using theGlobal OzoneMonitoring byOccultation of Stars instrument, Rodger

et al. [2008] showed that there is no significant global impact of sprites and other TLEs in the concentration

of NOx at altitudes between 20 and 70 km. The possible chemical impact of the sprite streamer tails in the

mesosphere was also investigated by Sentman and Stenbaek-Nielsen [2009] at 70 km of altitude. In this case,

assuming undervoltage conditions (E = 0.5Ek), the electron concentration decreases smoothly due to disso-

ciative attachment of electrons to molecular oxygen O2. More recently, Evtushenko et al. [2013] developed a

self-consistent model to study the influence of sprites on the mesosphere as a function of the altitude. They

obtained the maximum of the electron density variation at 75 km together with an important increase in the

concentration of the metastable N2(A
3Π+

u
) between 72 and 76 km.

As reported by Stanley et al. [2000], sprites can also occur during daytime triggered by exceptionally large

lightnings. Later on, Farges et al. [2005] and Kumar et al. [2008] also detected daytime sprites through infra-

sound and VLF perturbations, respectively. The chemical fingerprint of daytime sprites on the mesosphere is

not well known presently. In this regard, the simulations byWinkler andNothold [2014] suggest a depletion in

the ozone concentration (∼15%) under the action of diurnal sprites.

In the present work, we aim to contribute to the fundamental understanding of the chemistry of nonequi-

librium plasmas produced by nighttime sprite streamers in the mesosphere and their influence on the

mesosphere chemical composition and thermal evolution. This paper describes the kinetic model used, the

time evolution of the concentration of many important species for the sprite, and its afterglow through

an upgrade of the self-consistent model by Parra-Rojas et al. [2013a]. We study the processes involved in

the chemistry of the atmosphere under the action of sprite streamers with three different driving currents

between 50 km and 80 km. Although the model is less reliable as we descend in altitude because, below

70 km, sprite streamers often branch, we think that the model is quite realistic between 80 and 70 km. It

is nevertheless interesting to show the approximate chemical and thermal evolution of the atmosphere at

lower (< 70 km) altitudes under the action of sprite streamers. We also discuss in the paper themain instanta-

neous optical emission of sprites in the visible (1PN2 and 2PN2) and infrared (4.26 μm and 14.9 μm) together

with the optical emissions as seen by cameras recording at 33 fps and 1000 fps. Finally, we present a detailed

study of the local thermal impact of sprite streamers in the Earth’s mesosphere describing the most impor-

tant mechanisms responsible for the local energy exchange between sprite streamers and the surrounding

atmosphere.
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The structure of this paper consists, first, of a description of the model and its basic equations together with

the processes taken into account (section 2). Then, in section 3, we describe and discuss the main results.

Finally, the conclusions are presented in section 4. Furthermore, in the supporting information we list all the

chemical processes used in the model and their reaction rates. We also provide the statistical weights of CO2

togetherwith all the potential energies (andhow theywere obtained) of the chemical species that are needed

to perform the energy balance.

2. Model

Although sprites have a downward development, this kinetic model does not aim to study the vertical evo-

lution of sprite streamers but to understand how a single sprite streamer can chemically and thermally affect

each layer of the mesosphere. It is known that a single streamer tends to branch as it propagates downward.

For the sake of simplicity we are neglecting here this branching dynamics and, consequently, our model can

only be considered as a pseudo 1-D model.

The kinetic model used here is an upgrade of the one by Parra-Rojas et al. [2013a] with 97 chemical species

and more than 900 kinetic processes. It integrates a set of differential equations to model the chemical and

thermal behaviors of the air plasma generated by sprite streamers. The temporal evolution of the density of

each species i is obtained through
�ni

�t
= Gi − Li, (1)

where ni is the concentration of each chemical species (molecular and atomic neutrals, positive and negative

ions, free electrons, etc.) andGi and Li are the rates of, respectively, the gain and loss processes during the sim-

ulation. The electron energy distribution function (EEDF) is also obtained to calculate the reaction rates of the

electron impact processes. To do this, equation (1) is solved self-consistently with the steady state Boltzmann

transport equation
eE(t)

me

⋅ ∇vf (v, t) =

(

�f

�t

)

collisions

, (2)

where f (v, t) is the velocity distribution function of free electrons at time t and velocity v and e,me, E(t), and

∇v represent the elementary charge, themass of the electron, the local electric field, and the velocity gradient

operator, respectively. The effects of collisions between electrons and heavy particles have been included in

the right-hand side of equation (2). Coulomb interactions between electrons are negligible due to their low

density in the upper atmosphere.

Finally, we studied the thermal influence of sprite streamers in the surrounding atmosphere by considering

the balance between the processes that inject energy into the gas and themechanisms which extract energy

from it. The processes that contribute to increase the gas temperature are partial reabsortion of radiated

energyby the surrounding atmosphere and the absortionof energy fromanexternal power source. The corre-

sponding powers of each of these twomechanisms are Pabs and Pext for the reabsortion and for the absortion

of an external energy, respectively. The reabsorption power is expressed by

Pabs = kcorr
∑

j

nj
Aijh�ji

4�N

gi

gj

1

exp(
h�ji

kbT
bg
gas

) − 1
, (3)

where kcorr is a correction factor of the gas temperature (we will explain it below), nj is the population of the

lower absorbing level in each transition considered,Aij is the Einstein spontaneous emission probability, h�ji is

theenergyneeded toexcite amolecule froma lower level j to anupper level i,N is the total gasnumberdensity,

gi and gj are the statistical weights of the upper and lower excited levels, respectively, kB is the Boltzmann

constant, and T
bg
gas is the background gas temperature. The process represented by Pabs is the radiative power

partially reabsorbed by the air plasma from the surrounding atmosphere at a constant temperature T
bg
gas. The

power directly deposited into the gas by the streamer electric field is whatwe have called external power, Pext,

given by

Pext = eneve
E

N
, (4)
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where e is the elementary charge, ne and ve are the electron density and drift velocity, respectively, and E∕N is

the reduced electric field. The powers deposited into the gas (Pabs and Pext) are redistributed through different

channels. The term Pelec is the power that goes to the translational degrees of freedom of electrons in the

plasma, and it is obtained through

Pelec =
3

2

kB

N

d(neTe)

dt
, (5)

where Te is the electron temperature. A large percentage of the deposited power goes to the translational

degree of freedom of the gas, Pgas, represented by

Pgas =
�

� − 1
kB

dTgas

dt
, (6)

where � is the specific gas heat ratio of dry air (� = 1.4) and Tgas is the gas temperature. Another important

channel in which the powers Pabs and Pext are redistributed into the internal degrees of freedom of the gas is

the chemical power, Pchem, given by

Pchem =
1

N

∑

i

Qi

dni

dt
, (7)

whereQi is the potential energy or the standard enthalpy of formation of species i. Note that Pchem can be pos-

itive or negative depending on the sign of Qi or dni∕dt. In the case of negative chemical power, this released

power can go to the gas heating. Finally, the power released during spontaneous radiative emission, Prad ,

reads as

Prad =
�∗

N

∑

i

h�ijAijni, (8)

where h�ij is the energy released during radiative decay from an upper level i to a lower level j. The assumed

factor �∗ (equal to 0.5) accounts for the reabsortion coefficient calculated through the mean free path of the

CO2 IR photons [López-Puertas, 1982] in a sprite streamer of 50 m of average diameter. All these terms are

included in the power balance equation

Pabs + Pext = Pelec + Pgas + Pchem + Prad. (9)

The zero-dimensional simulationswereperformed for apressure rangeequivalent to altitudesbetween50 km

and80 kmusingZDPlasKin, a tool developedby Pancheshnyi et al. [2008] that incorporates the BOLSIG+ solver

to calculate the EEDF [Hagelaar and Pitchford, 2005].

The simulation process basically consists of three stages. The first step is what we have called electronic relax-

ation of our kinetic schemewhich translates into the relaxation of our systemof kinetic equations. In this stage

(based in the relaxation stage of Sentman et al. [2008] and Parra-Rojas et al. [2013a]) we use a reduced electric

field E∕N ∼ 0 Td during a simulation time t ∼ 106 s. With this preliminary simulation we obtain a chemical

equilibrium consistent with the background electron density estimated by Hu et al. [2007]. In doing this, we

calculated the equilibrium concentrations of the ionized and excited species considered together with con-

sistent rates of ionization and dissociative ionization of N2, O2 due to the flux of galactic cosmic rays [Yelinov

et al., 2009]. The initial ambient densities of the neutral species used at each altitude were taken from the

Whole Atmosphere Community Climate Model [Marsh et al., 2013].

The second step is the thermal relaxationof our systemof equations, and it is very similar to theprevious stage.

Using the concentrations obtained through the previous electronic relaxation stage, we get, for each altitude,

a parameter (kcorr in Pabs) to keep constant the gas temperature at long times (t ∼ 3 × 104). In the nighttime

atmosphere (without solar photochemistry)withnoexternal perturbations (E = 0), thegas temperature tends

to decrease by emitting thermal radiation (cooling). The introduction of the kcorr factor (added ad hoc) in the

expression of Pabs contributes to partially compensate this effect and allows us to obtain a more accurate

thermal impact of sprites on the surrounding atmosphere.

Finally, the third stage is themain simulation inwhichwe calculate the thermal and chemical impact of sprites

in the mesosphere. For this we need to estimate first the local electric field as a function of time at each of
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Figure 1. Dependence of �eN, where �e is the electron mobility and

N is the gas density, upon the reduced electric field in dry air. The

solid red line is the power fit with a correlation coefficient of 0.9808.

the altitudes of interest. However, exter-

nally imposing this electric field as derived

from independent microscopic simula-

tions leads to unrealistic predictions since

small differences in the rates of ionization

between two models grow exponentially

and often result in wildly overestimated

electron densities. Following da Silva and

Pasko [2014], we have found it more con-

venient to impose an electric current as

input, instead of the electric field. As we

will see now, this provides a certain degree

of self-consistency in the sense that an

overshoot in the electron density is quickly

damped by the consequent decrease in

the electric field.

We have calculated the electric field asso-

ciated with a sprite streamer through the

microscopic Ohm law

J = �E, (10)

where J is the currentdensity,� is theelectronconductivity, and E is theelectric field. Theelectronconductivity

has a strong dependence with the electron density and mobility that in turn depends on the electric field as

� = ene�e(E∕N), (11)

where �e is the electronmobility. We used BOLSIG+ to obtain the dependence of �eN on the reduced electric

field in an air plasma with exactly the same composition as ours. Once calculated, we fitted �eN to a power

law (see Figure 1).

�eN = a

(

E∕N

1Td

)b

, (12)

Figure 2. Time evolution of the current density of a sprite streamer at

75 km of altitude. The black, red, and blue lines are for driving

currents of 5 ms, 50 ms, and 100 ms, respectively. Label A

corresponds to the streamer head, B corresponds to the driving

current, and C (black, red, and blue) is associated to the

postafterglow stages.

wherewe found a = 6.3 × 1024 m−1 V−1 s−1

and b = −0.35. Using equations (10) and

(11), we derived and approximate expres-

sion for the reduced electric field in a sprite

streamer channel as

E

N
=

(

J

enea

)
1

b+1

× 1Td. (13)

In our simulations, the externally imposed

current consists of three phases (see

Figure 2): (a) a peak corresponding to

the passage of the streamer head, (b) a

constant plateau, and (c) an exponen-

tial decay with a time constant of 4 ms.

For the streamer head (a) we run micro-

scopic streamer simulations similar to

those described by Luque et al. [2008] and

Luque and Ebert [2010]. For each altitude

h we run a streamer simulation with the
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Figure 3. Reduced electric field (black solid line) and current density

(blue dotted line) temporal behavior of a single sprite streamer at 50 km

of altitude with a driving current duration of 50 ms.

background electron density resulting

from the kinetic electronic relaxation

stage and a Gaussian ionization seed

a few kilometers aboveh that was later

on used as an input in the kinetic

model. We then recorded the result-

ing electric current at h. In Figure 14

of the work by Stenbaek-Nielsen et al.

[2013], we can see an image of a sin-

gle sprite streamer whose width, at

76 km of altitude, could be approxi-

mately 500m. According to Pancheshnyi

et al. [2005], the streamer electrody-

namic radius can be a factor 2 greater

than the optical radius. We have

rescaled the streamer diameter with the

inverse of the density (for each altitude)

establishing a reference sprite streamer

diameter of 1 km at 76 km. With this

sprite streamer rescaling of its radius, the current flowing through the streamer channel is ≃190 A and

≃1120 A at 80 km and 50 km, respectively. In this way, our current density becomes consistent with the sprite

core currents estimated by da Silva and Pasko [2014].

The currents resulting from these simulations contain first a strong peak due to the field enhancement at

the streamer head and then a reenhancement of the field that as argued by Liu [2010] and Luque and Ebert

[2010] corresponds to the streamer afterglow. Microscopic simulations are limited to only a fewmilliseconds,

but Stenbaek-Nielsen and McHarg [2008] report observations of sprite afterglows lasting up to 100 ms. It is

to simulate these long-lasting afterglows that we extended the current input with a constant plateau (b) as

mentioned above. We have used current durations of 5ms, 50ms, and 100ms, as we can see in Figure 2. They

are all terminated by an exponential decay (c) lasting 4 ms. To summarize, our model solves self-consistently

equations (1), (2), (9), and (13) at each altitude of the mesosphere (between 50 km and 80 km) considering a

complete set of chemical species under the action of a sprite streamer.

3. Results and Discussion

In this section, we show and discuss the effects of sprite streamers in the electric, chemical, and thermal prop-

erties of the mesosphere. Therefore, we have performed simulations with different driving current durations

(after the streamer head) since we can have relatively high electric fields during a long time.

3.1. Reduced Electric Field

Westart our analysiswith the reducedelectric field,whichdrivesmanyof the chemical processes in ourmodel.

Figure 3 shows the evolution of the field at 50 kmwhen the driving current lasts 50ms. There the evolution is

characterized by three features: (1) a strong peak, reaching 700 Td, produced by the passage of the streamer

head and approximately coinciding with the peak of the driving current; (2) a reenhancement of the field

to values close to the breakdown field 120 Td that lasts about 0.1 ms; and (3) a train of periodic oscillations

starting around 6 ms and that persists up to the end of the driving current. With the exception of feature

(3), which appears only at low altitudes (< 60 km), the overall behavior of the reduced field is similar at all

altitudes. This is shown in Figures 4a–4f. All six figures extend the plots of reduced electric field and driving

current to the complete range of altitudes considered in our model and to the three durations of the driving

current used: 5 ms (a–d), 50 ms (b–e), and 100 ms (c–f ).

In Figure 5 we plot the dependence with altitude of the maximum values of the reduced electric field and

of the streamer current density, corresponding to the streamer head. Since the reduced field E∕N is driven

by the imposed current density J, the highest value of the reduced electric field and the highest value of the

streamer current density are approximately simultaneous for any given altitude. Both peak values decrease

with increasing altitude, so the absolute maxima are at the lowest considered altitude, 50 km (650 Td with

6.53 A m−2).
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Figure 4. Altitude-time evolution of the (a–c) reduced electric field and (d–f ) current density due to a single sprite

streamer with a driving current of 5 ms (Figures 4a–4d), 50 ms (Figures 4b–4e), and 100 ms (Figures 4c–4f ).

The secondphaseof theelectric fieldevolution is the reenhancement to values close to thebreakdown thresh-

old. Aswewill see later, this reenhancementwill play a relevant role in activatingmanychemistrypathways;we

will refer to it as the high-field phase of the simulation. Figures 4a–4c show that the duration of this high-field

phase depends on the altitude, scaling as 1∕N, and ranges from 10−4 s at 50 km to 10−2 s at 80 km of altitude.

As wementioned above, the third stage of the evolution of the electric field consists in a set of periodic oscil-

lations and, as we appreciate in Figures 4b and 4c, they are only present below 60 km and when the driving

current lasts 50 or 100 ms. This is a consequence of typical times scaling as 1∕N combined with a duration of

the driving current that does not depend on altitude.

The high-field phase and the oscillations appear during the driving current. Therefore, as shown in

equations (10) and (11), the evolution of the electric field is partly determined by the electron concentration

(the reduced electric field is inversely proportional to the electron density ne and directly proportional to the

Figure 5. Altitude evolution of the maximum reduced electric field

(black line) and maximum streamer current density (blue line).

current density). The high-field phase is

produced by a small decrease in the elec-

tron concentration, just after the streamer

head, caused by dissociative attachment

of O2

P35 ∶ e + O2 → O− + O.

This process pushes upward the electric

field until it is high enough to cause sig-

nificant electron impact ionization of O2

and N2:

P33 ∶ e + O2 → O+
2
+ e + e,

P22 ∶ e + N2 → N+
2
+ e + e
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Figure 6. Altitude-time evolution of the (a–c) electron density and (d–f ) O− density due to a single sprite streamer with

a driving current of 5 ms (Figures 6a–6d), 50 ms (Figures 6b–6e), and 100 ms (Figures 6c–6f ).

and associative detachment of O− by N2:

P346 ∶ O− + N2 → N2O + e.

The strong ionization produced by the streamer head (see times between 10−6 s and 10−4 s in Figures 6a–6c)

screens the electric field so that after 10−4 s (at 50 km) and 10−2 s (at 80 km), it drops to around 20 Td. Conse-

quently, the reaction constantof associativedetachment (thatdependsonE∕N) decreases to2 ×10−13 cm3 s−1

(see supplementary documentation of Luque and Gordillo-Vázquez [2012]), and electrons are removed by

P107 ∶ e + O+
4
→ O2 + O + O.

With this decrease of the electron density (due to electron recombination with O+
4
) the reduced electric field

increases strongly again during the constant driving current stage (see Figure 3) and activates the production

ofO− (see Figure 6) through dissociative attachment ofO2. The strong periodic decrease of the reduced elec-

tric field from the pulse peak is due to the contribution of the three processes explained previously (P33, P22,

and P346). Finally, when the driving current drops to zero, the reduced electric field vanishes.

We note that the oscillations in the electric field are, to some degree, a consequence of the imposition in our

model of a constant electric current. They would probably disappear or be modified in models with a fully

self-consistent calculation of the electric field. However, they may also indicate a physical tendency of the

electric field to rise due to the removal of electrons at time scales of some tens of milliseconds. This higher

electric field would be seen as a rebrightering of the lower portions of decayed sprite tendrils. In Figure 7 we

show the electric field at the lowest altitudes of our simulations; there we see that the oscillations appear as

upwardmoving spots of increased luminosity.We speculate that these spotsmaybe relatedwith the so-called

crawlers, described byMoudry [2003] as bright segments that move upward with a velocity of 104−105 m/s.

As seen in Figure 7, we obtain a velocity of about 105 m/s at 60 km.

3.2. Chemical Impact

In this section we discuss the evolution of atmosphere’s chemical composition under the action of sprite

streamers. We will illustrate it with two different kinds of figures: figures with six panels represent the evolu-

tion of twodirectly related chemical species, while figureswith three panels represent a species. In both cases,
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Figure 7. Altitude-time evolution of the reduced electric field oscillations during the driving current (50 ms duration)

and between 54 and 62 km of altitude. The black line shows the upward movement of the possible crawlers

[Moudry, 2003].

the first, second, and third columns are associated to a sprite streamer with driving current durations of 5 ms,

50 ms, and 100 ms, respectively.

3.2.1. Electron Density and O−

Wesee in Figures 6a–6c the altitude and timedependenceof the electrondensity for the threedriving current

durations that we considered. In the three cases, above 65 km, the electron concentration increases between

4 and 5 orders of magnitude in the streamer head due to N2 and O2 electron impact ionization:

P22 ∶ e + N2 → N+
2
+ e + e,

P33 ∶ e + O2 → O+
2
+ e + e,

electron impact ionization is themainmechanism producing electrons above breakdown (E∕N> 120 Td) sce-

narios. When the reduced electric field falls down to subbreakdown values (after the streamer head), the

electron concentration grows again by a factor 6 due to the associative detachment (AD) of O− by N2:

P346 ∶ O− + N2 → N2O + e.

The electron density remains high for a few seconds due to AD, and it decreases later to background values

due to the recombination processes

P107 ∶ e + O+
4
→ O2 + O + O,

and

P108 ∶ e + O+
4
→ O2 + O2.

Below 65 km and at the time of passage of the streamer head, the electron density increases between 8 and

11 orders of magnitude due to ionization of N2 and O2. Between 10−4 s and 10−3 s after the passage of the

streamer head, an increase of a factor of 6 occurs due to associative detachment (AD) of O− by N2. In the

cases of 50 ms and 100 ms driving current durations (Figures 6b and 6c), and following the oscillations of

the reduced electric fields, electron concentration changes due to the mechanisms P22, P33, P35, P107,

and P346 commented in the previous section. After the electric field oscillations, the electron concentration

remains elevated, around 105 cm−3, up to nearly 100 s. Finally, the electron density returns to ambient values

due to three-body electron attachment:

P39 ∶ e + O2 + O2 → O−
2
+ O2.
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The concentration of the O− anion is closely related to the temporal evolution of the electron density. The

largest increase in the concentration of O− is produced by the streamer head field, increasing between

14 and 5 orders of magnitude above its ambient value at, respectively, 50 km and 80 km of altitude (see

Figures 6d–6f ). Themain chemical mechanism responsible for this strong increase is dissociative attachment

(DA) of O2

P35 ∶ e + O2 → O− + O.

When the reduced electric field goes below ∼60 Td, the O− density decreases by associative detachment of

O− by N2, producing N2O. This drop in the O− ion concentration is directly related with the increase of the

electron density through associative detachment. In the final stage of the simulation, when the electric field

has dropped to zero, the O− density returns to its ambient value due to AD with CO and O2:

P359 ∶ O− + CO → CO2 + e,

and

P347 ∶ O− + O2 → O3 + e.

For current durations of 50 ms and 100 ms, we observe in Figures 6e and 6f that the density of O− decreases

faster than in the case of 5 ms duration (see Figure 6d). This is due to the stronger influence of AD of O− in

those cases (50 ms and 10 ms). In these cases, and at middle altitudes (60–70 km), we see a small increase of

O− during the final stage of negligible reduced electric field due to charge transfer:

P362 ∶ O−
2
+ O → O− + O2,

The O− density returns smoothly to background values by associative detachment (AD) processes

P347 ∶ O− + O2 → O3 + e,

P351 ∶ O− + O3 → O2 + O2 + e,

and charge transfer

P356 ∶ O− + O3 → O−
3
+ O.

At low altitudes (below 60 km) we obtain variations in the concentration of O− associated with the oscilla-

tions of the reduced electric field that we described above. The density of O− remains at values between

103–105 cm−3 up to 100 s after the passage of the streamer head.

3.2.2. N(2D) and NO

Figures 8a–8c represent the density of excited atomic nitrogenN(2D). The evolution of these species is closely

relatedwith the reduced electric field. Consequently, when the reduced electric field reaches amaximum, the

N(2D) density reaches values of up to 107 cm−3 and 105 cm−3 at, respectively, 50 km and 80 km of altitude.

The main production process of N(2D) is direct electron impact N2 dissociative excitation:

P25 ∶ e + N2 → N(2D) + N + e.

These maximum values of the N(2D) density persist during the high-field phase due to the balance between

the electron impact dissociative excitation of N2 (P25) and quenching by O2:

P169 ∶ N(2D) + O2 → NO + O(1D).
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Figure 8. Altitude-time evolution of the (a–c) N(2D) density and (d–f ) NO density due to a single sprite streamer with a

driving current of 5 ms (Figures 8a–8d), 50 ms (Figures 8b–8e), and 100 ms (Figures 8c–8f ).

At the end of the high-field phase, the concentration of N(2D) decreases slightly since P25 is less effective than

quenching by O2. When the reduced electric field vanishes, the density of N(2D) still increases up to 2 orders

of magnitude due to dissociative recombination of electrons with NO+:

P101 ∶ e + NO+
→ N(2D) + O,

once this process (P101) stops, the density of N(2D) slowly returns to its background value due to quenching

byO2 (P169) at longer times. Between 65 and 50 km and in the cases of 50ms and 100ms of current durations

(see Figures 8b and 8c, respectively), the density of N(2D) grows more than 7 orders of magnitude above its

background values due to the action of the reduced electric field oscillations.

The altitude and time dependence of the ground state NO density are shown in Figures 8d–8f. Note that,

above 74 km, the impact of a sprite streamer in the NO concentration is negligible. Below this altitude the

density of NO increases up to 8 orders of magnitude during the passage of the streamer head. The main

mechanisms responsible for this strong variation are

P169 ∶ N(2D) + O2 → NO + O(1D)

and

P168 ∶ N(2D) + O2 → NO + O.

When the driving current lasts 5 ms the density of NO remains unchanged during the complete simulation

due to the balance between the gain and loss reactions

P413 ∶ O + NO2 → NO + O2,

P333 ∶ O+
2
+ NO → NO+ + O2.

In the rest of the considered cases, we see a secondary increase of up to 109 cm−3 in the concentration of

NO. The oscillations of the reduced electric field underlie this strong NO enhancement since they induce the

production of N(2D) which generates NO after quenching (P168 and P169).
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Figure 9. Altitude-time evolution of the (a–c) N+
2
(A2Πu) density and (d–f ) N+

2
(B2Σ+

u ) density due to a single sprite

streamer with a driving current of 5 ms (Figures 9a–9d), 50 ms (Figures 9b–9e), and 100 ms (Figures 9c–9f ).

3.2.3. N+

2
(A2�

u
) and N+

2
(B2�

+

u
)

Figures 9a–9c show the altitude and time dependence of the density of the N+
2
(A2Πu) ion, responsible for

the Meinel band emission, in the red and near-infrared spectral regions. Its behavior is similar to that of the

reduced electric field shown in Figures 4a–4c. Due to the streamer head field, the concentration of N+
2
(A2Πu)

increases a magnitude between 105 cm−3 and 101 cm−3 at, respectively, 50 km and 80 km of altitude due to

direct electron impact ionization of N2:

P24 ∶ e + N2 → N+
2
(A2Πu) + e + e.

N+
2
(A2Πu) remains constant during the high-field phase due to the chemical balance between P24 and the

collisional deexcitation process

P248 ∶ N+
2
(A2Πu) + N2 → N+

2
+ N2.

Below 65 km, and in the cases of 50 ms and 100 ms of current duration (see Figures 9b and 9c), the con-

centration of N+
2
(A2Πu) reaches values close to 103 cm−3 due to the reduced electric field oscillations. The

evolution of the electronically excited N+
2
(B2Σ+

u
) ion is similar to the one of the previously discussed species

(see Figures 9d–9f ). At 50 km of altitude theN+
2
(B2Σ+

u
) concentration reaches values close to 104 cm−3, and at

80 km, it reaches just 10−3 cm−3. At low altitudes this behavior is due to direct electron impact ionization of N2

P23 ∶ e + N2 → N+
2
(B2Σ+

u
) + e + e,

which is activated by a very high reduced electric field in the streamer head (see Figure 5). After the high-field

phase, the N+
2
(B2Σ+

u
) density returns to ambient values by spontaneous radiative decay:

P716 ∶ N+
2
(B2Σ+

u
) → N+

2
+ h�.
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Figure 10. Altitude-time evolution of the (a–c) NO2 density and (d–f ) NO3 density due to a single sprite streamer with

a driving current of 5 ms (Figures 10a–10d), 50 ms (Figures 10e), and 100 ms (Figures 10f ).

3.2.4. NO2 and NO3

The temporal evolution of the density of NO2 at different altitudes for three different driving current durations

investigated is shown in Figures 10a–10c. The impact of the streamer head and the high-field phase between

58 km and 80 km is negligible due to the balance of

P352 ∶ O− + NO → NO2 + e,

P411 ∶ O + NO3 → NO2 + O2,

and

P413 ∶ O + NO2 → O2 + NO.

At low altitudes, we also see a constant NO2 density due to the previous processes (P352 and P413), except

P411, and

P368 ∶ O−
2
+ N → NO2 + e.

However, 0.1 s after the streamer head, the concentration of NO2 decreases up to 1 order of magnitude

because thedetachmentofO−
2
byN (P391) is less effective. Finally, at longer times, thedensity ofNO2 increases

above its background value due to an enhanced ozone concentration at these times and the process

P418 ∶ O3 + NO → NO2 + O2.

This NO2 increase is proportional to the driving current duration.

The behavior of the NO3 concentration (see Figures 10d–10f ) is very similar to the previous case of NO2. The

NO3 density is not affected by the streamer passage due to the balance between

P285 ∶ NO−
3
+ O+

2
→ NO3 + O + O,
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and

P411 ∶ NO3 + O → NO2 + O2.

For the case of the 5ms driving current, below 60 km and starting approximately 10 s after the streamer head,

wehave small increases (up to a factor 4) due to the process P285. For the driving currents of 50ms and 100ms

duration, and in the same way as for the NO2 case, the density of NO3 decreases between 59 km and 62 km

almost 2 orders of magnitude 1 s after the streamer head due to the process P411. The concentration of NO3

reverts to background values due to the increase of ozone and NO2 densities for long times, which activate

the process

P408 ∶ NO2 + O3 → NO3 + O2.

Due to the altitude at which sprites occur, we only have experimental data of their optical emissions that are

proportional to the concentration of the excited emitting states. We can compare our results with previous

models [i.e., Sentman et al., 2008; Gordillo-Vázquez, 2008]. In the case of the nitrogen oxides we obtain differ-

ent results and behaviors. This is mainly due to the use of different initial conditions and different reduced

electric field characteristics. However, as in previous models, we obtain a higher impact in these species at

low altitudes although our values are somewhat higher than in those models.

3.2.5. Metastable Excitations of Atomic Oxygen

The altitude and time dependence of themost importantmetastable excited species densities of atomic oxy-

gen, i.e., O(1D) andO(1S), are shown in Figure 11. The concentrationof the excited atomic oxygenO(1D),whose

lifetime is 110 s, is shown in Figures 11a–11c. At high altitudes the behavior of the density of O(1D) is very

similar in the three cases studied: the density of O(1D) increases strongly in the streamer head and remains

elevated during the high-field phase. TheO(1D) density reaches values between 108 cm−3 at 50 kmof altitude

and 104 cm−3 at 80 km of altitude. These increases are due to electron impact dissociative excitation

P37 ∶ e + O2 → O(1D) + O + e.

After the high-field phase, the O(1D) density returns slowly to its background value through the quenching

reactions

P207 ∶ O(1D) + N2 → O + N2,

and

P208 ∶ O(1D) + N2 → N2(v1) + O.

For the cases of 50 ms and 100 ms current duration and at altitudes below 65 km (see Figures 11b and 11c),

there are fast variations in the O(1D) density between 10−3 s and 10−1 s associated to the reduced elec-

tric field oscillations acting during the afterglow. The reduced electric field oscillations increase the O(1D)

concentration up to 108 cm−3 due to the direct electron impact dissociative excitation process P37.

Similar toO(1D), theO(1S) density, with a lifetime of 0.7 s, also increases strongly in the streamer head reaching

about 107 cm−3 and 103 cm−3 at 50 km and 80 km of altitude, respectively (see Figures 11d–11f ). The main

processes responsible for these increases are the direct electron impact dissociative excitation during the

passage of the streamer head and the quenching of N2(C
3Πu) by O2 during the afterglow

P38 ∶ e + O2 → O(1S) + O + e,

P188 ∶ N2(C
3Πu) + O2 → O(1S) + N2 + O.

Above 75 km, the concentration of O(1S) maintains these values until 1 s due to process P188. Later, O(1S)

slowly returns to its background density by collisional deexcitation with molecular oxygen:

P224 ∶ O(1S) + O2 → O + O2.

For the cases of 50 ms and 100 ms driving current (see Figures 11e and 11f, respectively) we see a number

of variations in the O(1S) density between 10−3 s and 10−1 s due to direct electron impact dissociative
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Figure 11. Altitude-time evolution of the (a–c) O(1D) density and (d–f ) O(1S) density due to a single sprite streamer

with a driving current of 5 ms (Figures 11a–11d), 50 ms (Figures 11b–11e), and 100 ms (Figures 11c–11f ).

excitation of O2 (P38). Recent measurements made by UARS [Lee and Shepherd, 2010] indicate sudden and

significant 557.7 nm optical outbursts from O(1S) between 73 km and 87 km in coincidence with lightning

flashes (or some seconds after lightning) that could have produced sprites in the upper atmosphere. The tran-

sient enhancement of the O(1S) concentration (and subsequent sudden optical outbursts) can be produced

by electron impact dissociative excitation (e + O2→O +O(1S) + e) due to the abundant presence of energetic

free electrons released by sprite streamer ionization events.
3.2.6. Atomic Oxygen and Ozone

The behavior of the ground state atomic oxygen concentration (see Figures 12a–12c) is very similar to the

evolution of the NO density (see Figures 8d–8f ). At the moment of the streamer head, the concentration of

O increases between 10 orders of magnitude at 50 km of altitude and 1 order of magnitude at 80 km. This is

produced by the direct electron impact dissociative excitation process (P37) of molecular oxygen. For longer

times, the O density remains high due to the balance between quenching and dissociation:

P37 ∶ e + O2 → O(1D) + O + e,

P195 ∶ N2(A
3Σ+

u
) + O2 → N2 + O + O,

P80 ∶ e + O3 → O2 + O + e,

and

P424 ∶ O + O2 + N2 → O3 + N2.

On the other hand, below 60 km the processes are

P193 ∶ N2(B
3Πg) + O2 → N2 + O + O,

P195 ∶ N2(A
3Σ+

u
) + O2 → N2 + O + O,
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Figure 12. Altitude-time evolution of the (a–c) O density and (d–f ) O3 density due to a single sprite streamer with a

driving current of 5 ms (Figures 12a–12d), 50 ms (Figures 12b–12e), and 100 ms (Figures 12c–12f ).

P178 ∶ N2(a
1Πg) + O2 → N2 + O + O,

P80 ∶ e + O3 → O2 + O + e,

and

P424 ∶ O + O2 + N2 → O3 + N2,

which decrease the density of O starting 10 s after the streamer head. For the cases of 50 ms and 100 ms

driving current (see Figures 12b and 12c, respectively), low altitudes and 10−2 s after the streamer head, the

density of O increases through 1 order of magnitude by quenching of N2(B
3Πg) by O2 (P193) following the

oscillations in the reduced electric field.

Looking now at ozone, Figures 12d–12f show that the O3 density barely changes between 55 km and 80 km

of altitude due to the balance between

P424 ∶ O + O2 + N2 → N2 + O3,

and

P80 ∶ e + O3 → O2 + O + e.

Below 56 km, there is an increase of O3 by more than 1 order of magnitude for the case of 100 ms driving

current (see Figure 12f ) due to efficient three-body recombination of atomic oxygen (P424) at lower altitudes.

This increase occurs 1 s after the streamer head because the electron density is too low and therefore the

electron impact dissociation of O3 (P80) is not as effective as the three-body recombination of O (P424).
3.2.7. Molecular Oxygen Metastables

We have also studied themetastables O2(a
1Δg), with a lifetime of about 45min, and O2(b

1Σ+
g
), with a lifetime

of 12 s (see Figure 13). Regarding the first one, the O2(a
1Δg) density shows a strong increase coinciding with

the streamer head and reaches values close to 109 cm−3 and 106 cm−3 at, respectively, 50 km and 80 km of
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Figure 13. Altitude-time evolution of the (a–c) O2(a
1Δg) density and (d–f ) O2(b

1Σ+
g ) density due to a single sprite

streamer with a driving current of 5 ms (Figures 13a–13d), 50 ms (Figures 13b–13e), and 100 ms (Figures 13c–13f ).

altitude (see Figure 13a–13c). The main mechanism controlling the variation of O2(a
1Δg) is direct electron

impact excitation

P31 ∶ e + O2 → O2(a
1Δg) + e.

After the production of O2(a
1Δg) by P31, its high concentration persists due to the balance between

P241 ∶ O2(b
1Σ+

g
) + N2 → O2(a

1Δg) + N2

and

P721 ∶ O2(a
1Δg) → O2 + h�,

P236 ∶ O2(a
1Δg) + O2 → O2 + O2.

Below55 km, there is a secondary increase ofO2(a
1Δg) up to 10

12 cm−3 (in the 100ms case) due to the electron

production by the oscillations of the electric field. Electrons accelerated by a high E∕N produce O2(a
1Δg) by

direct electron impact excitation of O2 (P31). At very long times (longer than 102 s), theO2(a
1Δg) density tends

to its ambient values due to collisional deexcitation with NO:

P240 ∶ O2(a
1Δg) + NO → NO + O2.

The behavior of the mestastable O2(b
1Σ+

g
) is similar to that of O2(a

1Δg). Figures 13d–13f show values, imme-

diately after the streamer head, between 108 cm−3 and 106 cm−3 at 50 km and 80 km of altitude, respectively.

As for O2(a
1Δg), the main mechanism producing O2(b

1Σ+
g
) is direct electron impact excitation of O2

P32 ∶ e + O2 → O2(b
1Σ+

g
) + e,

Above 60 km, the concentration of O2(b
1Σ+

g
) remains constant up to 1 s after it is produced. This is due to the

balance between the processes

P209 ∶ O(1D) + O2 → O2(b
1Σ+

g
) + O,
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Figure 14. Altitude-time evolution of the atomic nitrogen density (N) due to a single sprite streamer with (a) 5 ms, (b)

50 ms, and (c) 100 ms driving current.

P206 ∶ N2(A
3Σ+

u
) + O2 → O2(b

1Σ+
g
) + N2,

and the reaction

P241 ∶ O2(b
1Σ+

g
) + N2 → O2(a

1Δg) + N2.

The removal of O2(b
1Σ+

g
) is explained by the lowering of the electron density and the subsequent decrease of

the density of O(1D) and N2(A
3Σ+

u
). For this reason, the quenching of O2(b

1Σ+
g
) by N2 becomesmore effective.

Below 60 km, we see another increase of O2(b
1Σ+

g
) up to 1011 cm−3 for the cases of 50 ms and 100 ms driving

current (see Figures 13e and 13f) due to the quenching of O(1D) by O2 (P236).
3.2.8. Atomic Nitrogen

The evolution of the density of ground state nitrogen is shown in Figure 14. We can see how the N concen-

tration increases by 7 orders of magnitude (up to 108 cm−3) at 50 km at the moment of the streamer head

and 2 orders of magnitude (up to 105 cm−3) at 80 km. There is a further increase of 1 order of magnitude in

the atomic nitrogen concentration during the high-field phase (between 10−5 and 10−4 s). The underlying

mechanism of this later enhancement of N is the direct electron impact dissociative excitation of N2:

P25 ∶ e + N2 → N(2D) + N + e.

The N density remains high during a long time, e.g., up to 10 s (at 50 km) due to the balance between

P171 ∶ N(2D) + N2 → N + N2,

P180 ∶ N2(a
1Πg) + NO → N2 + N + O,

P274 ∶ O−
2
+ NO+

→ O2 + N + O,

P100 ∶ e + NO+
→ N + O,

and

P395 ∶ N + O2 → NO + O.
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Figure 15. Altitude-time evolution of the N2O density due to a single sprite streamer with (a) 5 ms, (b) 50 ms, and (c)

100 ms driving current.

Above 67 km, a high concentration of N persists for more than 1000 s due to the balance between the pro-

cesses P171, P100, and the process P395. For the cases of 50 ms and 100 ms driving current durations (see

Figures 14b and 14c, respectively) and below about 62 km, the density of ground state N increases up to fac-

tor 5, driven by the oscillations of the reduced electric field. The cause of this secondary increase is the direct

electron impact dissociative excitation of N2 (P25).
3.2.9. N2O

The altitude and time dependence of the density of N2O (a greenhouse gas and a very important species in

the ozone cycle) is shown in Figure 15. We see that after the streamer head, the N2O density increases up to 1

order of magnitude due to associative detachment (AD) of O− by N2:

P346 ∶ O− + N2 → N2O + e.

As we have previously discussed, this process (P346) strongly depends on the reduced electric field. The N2O

density remains at these enhanced values during all the simulation due to the AD process together with

P397 ∶ N + NO2 → N2O + O,

and

P83 ∶ e + N2O → N2 + O + e,

P353 ∶ O− + N2O → NO− + NO.

In a similar way but at altitudes above 75 km, the concentration of N2O increases by a factor 6 due to AD and

remains high due to the balance between AD, P397, P353,

P200 ∶ N2(A
3Σ+

u
) + N2O → NO + N2 + N.

We also see in Figures 15b and 15c (50 ms and 100 ms driving current, respectively) that the N2O density

grows one additional order of magnitude due to the influence of the reduced electric field oscillations on the

AD process of O− by N2 at low altitudes (below 62 km in the case of 100 ms current afterglow).
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Figure 16. Altitude-time evolution of the N2O
+
2
ion density due to a single sprite streamer with (a) 5 ms, (b) 50 ms, and

(c) 100 ms driving current.

3.2.10. N2O
+

2

The concentration of N2O
+
2
ions at the moment of the streamer head passage exhibits a sharp increase of 8

orders of magnitude at low altitudes (see Figure 16). The N2O
+
2
density also shows a smooth increase of one

additional order of magnitude following the high-field phase. Both increases of the concentration of N2O
+
2

are produced by three-body associative recombination

P335 ∶ O+
2
+ N2 + N2 → N2O

+
2
+ N2.

Afterward, it decays toward to its ambient value due to dissociative recombination:

P345 ∶ N2O
+
2
+ O2 → O+

4
+ N2,

P344 ∶ N2O
+
2
+ N2 → O+

2
+ N2 + N2.

Above 75 km, the concentration of N2O
+
2
increases up to 4 orders of magnitude by the three-body associative

recombination P335 but then slowly returns to its initial value due to dissociative recombination (P345). For

the cases of 50 ms and 100 ms driving current (see Figures 16b and 16c, respectively) and below 60 km, the

concentration of N2O
+
2
barely changes during the oscillations of the reduced electric field oscillations.

3.2.11. N2(A
3�

+

u
)

The time evolution of the metastable N2(A
3Σ+

u
) density is shown in Figure 17. The behavior of the N2(A

3Σ+
u
)

concentration is very similar to that of the reduced electric field (see Figures 4a–4c). Below 60 km, it increases

sharply to 108 cm−3 at the moment of the streamer head due to direct electron impact excitation

P11 ∶ e + N2 → N2(A
3Σ+

u
) + e,

Later, the elevated density persists due to the spontaneous decay of N2(B
3Πg)

P703 ∶ N2(B
3Πg) → N2(A

3Σ+
u
) + h�.

The density of N2(A
3Σ+

u
) finally returns to initial ambient values due to quenching with O2 when the reduced

electric field vanishes:

P195 ∶ N2(A
3Σ+

u
) + O2 → N2 + O + O.
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Figure 17. Altitude-time evolution of the metastable N2(A
3Σ+

u ) density due to a single sprite streamer with (a) 5 ms,

(b) 50 ms, and (c) 100 ms driving current.

Above 75 km, the density of N2(A
3Σ+

u
) increases smoothly to about 106 cm−3 due to the spontaneous radiative

decay of N2(B
3Πg) to N2(A

3Σ+
u
). For the cases of 50 ms and 100 ms durations of the current (see Figures 17b

and 17c, respectively) we have fast variations in the N2(A
3Σ+

u
) density associated to the reduced electric field

oscillations, and the N2(A
3Σ+

u
) density reaches its maximum at the streamer head. These fast variations are

caused by

P192 ∶ N2(B
3Πg) + N2 → N2(A

3Σ+
u
) + N2,

P703 ∶ N2(B
3Πg) → N2(A

3Σ+
u
) + h�,

P11 ∶ e + N2 → N2(A
3Σ+

u
) + e,

and

P195 ∶ N2(A
3Σ+

u
) + O2 → N2 + O + O.

3.3. Optical Emission Brightness

In this section we will show and discuss the results of the optical emission brightness of the first and second

positive band systems of N2 as well as the NIR (near-infrared) emission brightness of the Meinel band of N+
2

and those of the 4.26 μm and 14.9 μm IR bands of CO2 under the action of single sprite streamer. As in the

previous section, we have used three different driving current durations (53 ms, 50 ms, and 100 ms) to study

thepossible detection scenarios at different altitudes using suitable instrumentation. The emissionbrightness

measured in Rayleighs (1R = 106 photons cm−2 s−1) is calculated through the expression

EB(R) = 10−6 ∫ V(l)dl, (14)

where V(l) is the so-called volume emission rate (in photons cm−3 s−1) and the integral is taken along the

line of sight through the emission volume over a characteristic length l. In our case, the magnitude l is the

diameter of a sprite streamer, and we have considered the value of ∼500 m [Stenbaek-Nielsen et al., 2013] at

76 km, rescaledwith the inverse of the density (for each altitude). The volume emission rate V(l) is Aij (s
−1)×Ni

(cm−3), that is, the product of the Einstein coefficients (Aij) for spontaneous emission times the concentration

of the i emitting excited state density (Ni).
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Figure 18. Altitude-time evolution of the (a–c) N2(B
3Πg) density and (d–f ) the first positive band system (1PN2)

emission brightness due to a single sprite streamer with a driving current of 5 ms (Figures 18a–18d), 50 ms

(Figures 18b–18e), and 100 ms (Figures 18c–18f ).

In Figures 18a–18c we can see the time evolution of the N2(B
3Πg) density, whose radiative decay to N2(A

3Σ+
u
)

is responsible for the first positive band system (1PN2) of N2. The emissionbrightness (EB) of the 1PN2 is shown

in Figures 18d–18f. The EB of the 1PN2 exceeds 1 MR in almost all altitudes considered. This high brightness

is produced by the strong N2(B
3Πg) excitation in the streamer head and during the afterglow by, respectively,

direct electron impact excitation

P15 ∶ e + N2 → N2(B
3Πg) + e

and

P704 ∶ N2(C
3Πu) → N2(B

3Πg) + h�,

The main deexcitation mechanism of N2(B
3Πg) is, at high altitudes, quenching by O2

P193 ∶ N2(B
3Πg) + O2 → N2 + O + O,

and, at low altitudes, the radiative decay responsible for the 1PN2 emission

P703 ∶ N2(B
3Πg) → N2(A

3Σ+
u
) + h�,

At very low altitudes (between 55 km and 50 km), the brightness of the reddish emission of 1PN2 can exceed

10 GR. The variations in the emission brightness (and therefore in the density of N2(B
3Πg)) are associated to

the reduced electric field oscillations.

The behavior of the 2PN2 emission brightness (see Figure 19) is very similar to that of 1PN1. In this case, the

EB also exceeds 1 MR in almost all the altitudes for the three cases considered due to the strong increase of

the N2(C
3Πu) density by electron impact excitation

P17 ∶ e + N2 → N2(C
3Πu) + e
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Figure 19. Altitude-time evolution of (a–c) the N2(C
3Πu) density and (d–f ) the second positive band system (2PN2)

emission brightness due to a single sprite streamer with a driving current of 5 ms (Figures 19a–19d), 50 ms

(Figures 19b–19e), and 100 ms (Figures 19c–19f ).

and its subsequent radiative decay

P704 ∶ N2(C
3Πu) → N2(B

3Πg) + h�.

Similar to the previous case, at low altitudes, the EB of the 2PN2 can exceed 10 GR for the blue emission

corresponding to 2PN2.

In Figures 20a–20c, we can see that the IR (4.26 μm) emission brightness predicted by the present kinetic

model simulations can also exceed 1MRbelow 75 kmof altitude for the case of 100ms driving current (reach-

ing 100 GR at 50 km) and below 70 km of altitude for the case of 5 ms driving current (exceeding 1 GR at

50 km). Just before the end of the driving current, the IR (4.26 μm) emission begins to increase due to the

radiative deexcitation from CO2(00
01) to the fundamental state CO2(00

00).

P594 ∶ CO2(00
01) → CO2(00

00) + h� (4.26μm).

In order to achieve this strong IR emission, a high rate of CO2(00
01) production is necessary, being the direct

electron impact vibrational excitation of CO2 the main production mechanism of CO2(00
01) during the first

stages of the emission

P48 ∶ e + CO2 → CO2(00
01) + e,

while when the reduced electric field falls to negligible values, the production of CO2(00
01) is dominated by

the vibrational-vibrational process

P572 ∶ N2(v2) + CO2(00
00) → N2(v1) + CO2(00

01).
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Figure 20. Altitude-time evolution of the (a–c) 4.26 μm and (d–f ) 14.9 μm infrared emission brightness of CO2 due to a

single sprite streamer with a driving current of 5 ms (Figures 20a–20d), 50 ms (Figures 20b–20e), and 100 ms

(Figures 20c–20f ).

However, for the IR emission brightness at 14.9 μm, it can reach values above 1 GR for low altitudes (< 60 km)

only for the cases of 50 ms and 100 ms driving currents (see Figures 20e and 20f). This 14.9 μm emission is

produced by the radiative decay of the first vibrationally excited state of CO2 to the ground state

P579 ∶ CO2(01
10) → CO2(00

00) + h� (14.9μm).

The production of CO2(01
10), necessary for the 14.9 μm IR emission, is dominated by vibrational-translational

(VT) and vibrational-vibrational (VV) processes whose initial vibrationally excited states have been generated

by electron impact excitation. The sumof several VT processes explains the increase of the CO2(01
10) density:

P485 ∶ N2 + CO2(00
00) → N2 + CO2(01

10),

P486 ∶ N2 + CO2(02
00) → N2 + CO2(01

10),

P487 ∶ N2 + CO2(02
20) → N2 + CO2(01

10),

together with the VV processes

P533 ∶ CO2(00
00) + CO2(03

10) → CO2(02
00) + CO2(01

10),

and

P534 ∶ CO2(00
00) + CO2(03

10) → CO2(02
20) + CO2(01

10).

The main loss mechanisms of CO2(01
10) are radiative decay (P579) and quenching of CO2(01

10) by N2

P485 ∶ N2 + CO2(01
10) → N2 + CO2(00

00).

Considering now that the atmosphere, frommesosphere to space, behaves as optically thin, we think that the

IR emissions associated to sprites could be detectedwith suitable space instrumentation pointing to the limb

as in the case of LBH emissions [Gordillo-Vázquez et al., 2011].
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Figure 21. Altitude-time evolution of the Meinel (N+
2
(A2Πu)→ N+

2
(X2Σ+

g )) emission brightness due to a single sprite

streamer with (a) 5 ms, (b) 50 ms, and (c) 100 ms driving current.

Finally, we show in Figure 21 the Meinel emission brightness due to a single sprite streamer for different driv-

ing currentdurations.Ourmodelpredicts, for the three cases studied (5ms, 50ms, and100ms), that theMeinel

emission brightness does not reach 1MR or barely reaches it at 50 km of altitude. Our predicted Meinel emis-

sion brightness grows with decreasing altitudes. Therefore, we speculate that the brightness due to Meinel

emissions could reach and exceed 1 MR at tendrils altitudes and, consequently, the chances to detect it from

ground or space platforms are small or none.

Figure 22 shows the altitude evolution of the possible detected number of photons per cm−2 per frame inte-

gration time as would be recorded by a camera of 33 fps (standard video rate) due a single sprite streamer

with 50 ms driving current. We see in Figure 22 that the number of emitted photons per unit area of all the

Figure 22. Altitude evolution of the detected number of photons per unit area per frame integration time due to a

single sprite streamer with 50 ms driving current as would be measured by a 33 fps camera. The red, blue, and purple

lines correspond, respectively, to the first and second positive band systems of N2 and to the Meinel band of N+
2
. The

black and green lines correspond to the 4.26 μm IR and 14.9 μm IR bands of CO2 .
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Figure 23. Altitude evolution of the detected number of photons per unit area per frame integration time due to a

sprite streamer with 50 ms driving current as would be measured by a 1000 fps camera. The red, blue, and purple lines

correspond, respectively, to the first and second positive band systems of N2 and to the Meinel band of N+
2
. The black

line corresponds to the 4.26 μm IR band of CO2. In this case, we have not included the integrated number of photons

per unit area of the 14.9 μm IR band because our model does not have sufficient temporal resolution at these timescales.

bands studied is above 1010 photons cm−2 (except for the Meinel band) in our model most reliable altitude

range (70–80 km of altitude). It is also interesting to note that the CO2 IR number of emitted photons per

unit area (4.26 μm and 14.9 μm) could even exceed values of 1013 photons cm−2 between 60 and 50 km. The

possibility of detection of sprite infrared emissions from space depends basically on the characteristics of the

instrumentation. Even so, if we consider an optically thin atmosphere above 50 km, the infrared absoption

is negligible. The emission brightness of the 4.26 μm band with respect the atmospheric background could

be estimated through the ratio between the population of the CO2(00
01) after the streamer passage and the

background population of the CO2(00
01). In this regard, the post streamer infrared emission brightness of the

Figure 24. Altitude-time evolution of the gas temperature variation due to a single sprite streamer with (a) 5 ms,

(b) 50 ms, and (c) 100 ms of driving current.
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Figure 25. Altitude evolution of the maximum variation of the gas temperature. The solid black, red, and blue lines are

for driving currents of, respectively, 5 ms, 50 ms, and 100 ms.

4.26 μmband ismore than 2 orders ofmagnitude higher than the IR emission of the atmospheric background

at 50 km and 1 order of magnitude higher at 65 km (see Figure 20).

In the sameway, for the case of a camera recording at 1000 fps (see Figure 23) thedetectednumber of photons

per unit area of 1PN2, 2PN2, and 4.26 μm IR bands can exceed, according to our model, 1010 photons cm−2

below 75 km. As stated before, we need to be careful about our model results below 70 km since at these

altitudes sprite streamers tend to branch and our model does not follow streamer branching dynamics.

As in the case of the nitrogen oxides, our emission brightness results disagree with previous models. We

obtain higher values for the optical emission brightness than those reported by Sentman et al. [2008] and

Gordillo-Vázquez [2008]. However, at altitudes between 68 km and 63 km, our calculations are in good agree-

ment with the results by Gordillo-Vázquez [2008] for the N2 second positive system band emission, which

predict EB between 100 MR (68 km) and 10 GR (63 km). Finally, at 75 km, our model predicts sprite optical

emissions between 10 MR and 1 GR for the first positive band system of N2. These results agree, in the upper

limit, with the observations reported by Stenbaek-Nielsen et al. [2007].

3.4. Thermal Impact

Finally,wediscuss in this section the result shown in Figures 24a–24c in connectionwith the thermal impact of

sprite streamers with 5 ms, 50 ms, and 100ms driving current in the Earth’s mesosphere. The most important

increase in the gas temperature occurs at lower altitudes, between 60 km and 50 km, and it is proportional

Figure 26. Temporal evolution of the gas temperature (blue line) and the reduced electric field (black line) at 50 km of

altitude for the 50 ms driving current.
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Figure 27. Time-dependent distribution of the energy density dissipated by a single sprite streamer with 50 ms driving

current at an altitude of 50 km.

to the afterglow duration. At higher altitudes the variation of the gas temperature is negligible compared to

that produced at lower layers.

We can see in Figure 25 the altitude evolution of the maximum variation of the gas temperature under the

action of a sprite streamer. As previously discussed, the maximum gas temperature is reached at 50 km and

it is strongly related with the duration of the driving current so that the temperature variation is greater for

longer driving currents. The gas temperature maxima are 2.3 K, 15 K, and 29 K with 5 ms, 50 ms, and 100 ms

driving currents, respectively.

The chemical mechanisms responsible for the gas heating are the same in the three cases studied, and con-

sequently, we will only show from now on the results for the intermediate case (50 ms of afterglow) at 50 km

of altitude. In Figure 26 we show the temporal evolution of the gas heating (blue line) and the reduced elec-

tric field (black line) at 50 km of altitude for the 50 ms afterglow case. We can see two different behaviors in

the temporal evolution of the gas temperature related with the evolution of the reduced electric field. The

first one is called “afterglow stage” and corresponds to the driving current, while the second one is called

“postafterglow stage” and is related with the regime of negligible values taken by the reduced electric field

between 54 ms and 33.6 s.

Figure 28. Time-integrated contribution to gas temperature of each energetic channel in the afterglow stage (red bars)

and in the postafterglow stage (yellow bars) after the streamer head at 50 km of altitude and for the 50 ms driving

current. Note that a negative sign of the temperature contribution corresponds to the temperature absorbed by the gas

in nonthermal processes.
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Figure 29. Electron energy loss fractions through electron impact collision processes producing the species above at

50 km of altitude for the 50 ms driving current. Note that in O2(v) and N2(v) we have taken into account all the

vibrational levels considered.

Figure 27 shows the evolutionof the energy contained in thegas under the actionof a sprite streamer at 50 km

of altitude. We can compare Figure 26 with Figure 27 for a better understanding of the energetic channels

responsible for the gas heating. The red area in Figure 27 shows the total energy density imposed on the gas

(Pext + Pabs), the green area is the energy density of the chemical channel (Pchem), and the yellow area is the

energy density correspondingwith the radiative channel (Prad). The electron energy channel Pelec is negligible.

In the afterglow stage (up to 54 ms) the reduced electric field is the main mechanism injecting energy in

the system being a large fraction of this electric field energy absorbed through the chemical channel. The

difference between the energy density injected by the electric field and the energy density absorbed by the

chemical processes is the net gas heating of the afterglow stage. When the reduced electric field goes to

zero (postafterglow stage), the energy densities of the chemical and radiative channels decrease and the gas

temperature increases again (see postafterglow stage in Figure 26).

From the thermal point of view, we can see in Figure 28 the time-integrated contribution of each channel

to gas heating in the afterglow (red bars) and postafterglow (yellow bars) stages. We represent in Figure 28

the gas temperature variations produced by absorption/emission of external, chemical, and radiative power.

We can note that, in the afterglow stage (up to 54 ms), the reduced electric field, through Pext, produces an

increase ofmore than 20K (in thegas temperature). However, 15 Kof those 20K are deposited into the internal

Figure 30. Fractions of electron energy partitioned into the excitation, ionization, and dissociation of molecules. These

values are calculated at 50 km of altitude for the 50 ms driving current. Note that in O2(v) and N2(v) we have taken into

account all the vibrational levels considered.
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Figure 31. Time-integrated contribution of different kinetic processes to gas heating up to 33.6 s at 50 km of altitude for

the 50 ms driving current.

degreesof freedomof thegas, i.e.,Pchem (note that anegative signof the temperature contribution in Figure 28

corresponds to the temperature absorbedby thegas innonthermal processes). The temperature losses due to

radiative decay are negligible (0.04 K) during afterglow. Therefore, the total (net) temperature increases in the

afterglow stage is approximately of 4.5 K. The energy loss fraction of electrons by electron impact collisions

in the afterglow stage is shown in Figure 29. Out of the 16 K deposited by the sprite streamer in Pchem, 92.7%

goes to vibrational excitation ofmolecular nitrogenN2(v), 2.63% to rotational excitation ofmolecular nitrogen

N2(rot), and 1.96% to vibrational excitation of molecular oxygen O2(v). This results is consistent with what we

see in Figure 30, where we show the different energy loss fractions as a function of E∕N for direct electron

impact processes. The reduced electric field reached by the streamer head is approximately 650 Td (at 50 km

of altitude) but for a very short time (of about severalmicroseconds). However, themean reduced electric field

of all the sprite streamers E∕N profile is below breakdown values, and consequently, direct electron impact

vibrational excitation of N2 is the main kinetic mechanism where the Pchem energy is stored.

Once the reduced electric field has dropped to negligible values, the Pext channel only provides 0.2 K to the

gas (see Figure 28, yellow bars) in the postafterglow stage. However, the external energy, mainly stored in

the vibrational states of molecular nitrogen N2(v), is now transferred by vibrational-vibrational processes to

CO2(v1 v
l
2
v3). The vibrational quenching of CO2(v1 v

l
2
v3) by N2 and the radiative decay of vibrational excited

CO2 levels are the responsible for the ∼11 K gas temperature increase during the postafterglow stage. The

main processes underlying gas heating in the postafterglow stage are shown in Figure 31.

4. Conclusions

We have studied the electrical, chemical, and thermal impacts of a single sprite streamer with different driv-

ing current durations in the terrestrial mesosphere (50–80 km). In order to quantify the temporal evolution

of each chemical species, our model solves a set of differential continuity equations for each of the chemical

species considered (1) coupled with the Boltzmann equation (2), the Ohm law (10), and the energy conser-

vation equation (9). Using as initial conditions the current density profiles provided for a set of altitudes by

the streamer model by Luque and Ebert [2010], we have extended them using different constant driving cur-

rent durations (5 ms, 50 ms, and 100 ms). For this, we have obtained the reduced electric field of a single

sprite streamer for each of the altitudes considered so that the maximum current density occurs at the same

time as themaximum reduced electric field. The constant driving current generates a high-field phase shorter

than the driving current whose duration and value are, respectively, directly proportional to the altitude

considered and close to breakdown (≃120 Td). At low altitudes and for the cases of 50 ms and 100 ms

driving currents, we found a set of oscillations at the final stage of the E∕N afterglow. We think that these

undervoltage E∕N oscillations built upon the opposite trends of electron production by associative detach-

ment of O− by N2 and electron loss by dissociative recombination of electrons with O+
4
during the driving

current. At low altitudes, the electric field of the streamer head causes a huge growth in the electron
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concentration up to 12 orders of magnitude (108 cm−3) above ambient values. The tremendous increase in

the electron concentration is driven by direct electron impact ionization of N2 and O2. In a similar way, the

density of O− exhibits a sharp enhancement past the streamer head due to dissociative attachment ofO2. Our

model also predicts a quite significant enhancement in the concentration of metastable species (N2(A
3Σ+

u
),

O2(a
1Δg), O2(b

1Σ+
g
), O(1D), and O(1S)) capable of storing energy for a relatively long time. The production of

metastables is mainly caused by electron impact processes fueled by the high electron concentration caused

by the streamer head electric field. We have also found an important (more than 2 orders ofmagnitude above

ambient values at 50 km of altitude) and long-lasting (more than 103 s) enhancement of the N2O density in

themesosphere. The presence of significant N2O concentrations in the atmosphere for long times could sub-

stantially affect the ozone concentration. We have also evaluated the emission brightness of the first (1PN2)

and second (2PN2) positive band systems of N2 associatedwith key visible optical emissions of sprites, the CO2

infrared emission at 4.26 μm and 14.9 μm, and the Meinel band of N+
2
associated with red and near-infrared

emissions. As expected, at low altitudes the reddish and bluish emission brightness of 1PN2 and 2PN2 exceed

1MR by 4 orders of magnitude both at the streamer head and during the afterglow. In the same range of alti-

tudes but at the final stages of the E∕N afterglow, the 4.26 μm IR emission brightness can exceed 100 GR due

to the high CO2(00
01) density production by electron impact collision and by VV processes involving N2(v).

We think that this IR emission could be recorded from space detectors pointing toward the limb. Moreover,

we found that the Meinel band emission brightness under the action of a single sprite streamer does not

reach 1 MR at any altitude. However, we can conclude from our simulations that it could exceed 1 MR at ten-

dril altitudes. Finally, our model predicts a relatively important increase in the temperature of the low altitude

(< 65 km) atmosphere surrounding a single sprite streamer. This gas temperature enhancement increases at

lower altitudes anddependsdirectly on thedurationof thedriving current. Agas temperature increase (ΔT∕T)

of up to ∼ 6.1% could be reached at 50 km for the intermediate case considered (50 ms of driving current).

This gas temperature enhancement is mainly caused by the collisional quenching of the vibrationally excited

CO2(v1 v
l
2
v3) (previously excited through VV collisions with N2(v)) with ground N2 and, also, by the radiative

decays ofCO2(00
01) underlying the 4.26μmIR emission. Futureworkwill extendour simulations to blue jets at

lower altitudes where our model predicts an important local heating in the atmosphere surrounding the TLE.
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