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Abstract. Safety-critical chemical processes are the backbone of multi-
billion-dollar industries, thus society deserves the strongest possible guar-
antees that they are safe. To that end, models of chemical processes are
well-studied in the formal methods literature, including hybrid systems
models which combine discrete and continuous dynamics. This paper is
the first to use the KeYmaera X theorem-prover to verify chemical mod-
els with differential dynamic logic. Our case studies are novel in combin-
ing the following: we provide strong general-case correctness theorems,
use particularly rich hybrid dynamics, and have particularly rigorous
proofs. This novel combination is made possible by KeYmaera X.
Simultaneously, we tell a general story about KeYmaera X: recent ad-
vances in automated reasoning about safety and liveness for differential
equations have enabled elegant proofs about reaction dynamics.
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1 Introduction

Modern industry relies critically on all kinds of chemical processes: some occur in
computer-controlled reactors, some occur free of control. Chemical engineering
has provided many classical insights about both: safe and optimal control [12]
of reactors [32] is a field in its own right, as are reaction kinematics (dynamics)
even in the absence of control [30].

Because both controlled and uncontrolled reactions are crucial, we consider
both: an irreversible exothermic reaction with a model-predictive bang-bang
controller (Sec. 3.1) and an uncontrolled reversible reaction (Sec. 3.2). Both
have verification challenges which make for good benchmark problems. The non-
reversible reaction’s nuanced dynamics entail nontrivial correctness arguments
for model-predictive controllers. The reversible reaction’s long-term asymptotic
behavior, though classic, tests the ability of current-generation tools to verify
asymptotic properties, e.g., stability [22] or persistence [31].

Safe reactions are crucial to human safety. Properties like persistence, stabil-
ity, and optimality are crucial to human productivity. Thus, formal methods for
chemical reactions are extensively studied [3,28,20,14,24].

To our knowledge, however, the reaction models and proofs presented here are
the first-ever in a hybrid systems theorem prover. Specifically, we use the KeY-
maera X [11] prover for differential dynamic logic (dL) [26] to achieve a unique
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combination of expressive dynamics, general-case guarantees, and rigor for the
first time. The tradeoffs between theorem-proving and other formal methods are
well-known; see Sec. 4 for detailed discussion.

Our contribution was enabled by new stability [33], variant [33], and Darboux
polynomial [27] proof tools in KeYmaera X, simplifying our proof arguments.
Our case studies make essential use of these features and thus demonstrate the
impacts of the latest advances in proof automation.

2 Background

All our proofs are computer-checked in the KeYmaera X prover, which carefully
prevents the use of unsound reasoning [5]. This rigor is crucial in practice: many
techniques used here had predecessors [33, Table 1] which were found to be
unsound, which is unacceptable for safety-critical systems.

In KeYmaera X, correctness properties are stated and proved in differential
dynamic logic (dL) [26], where hybrid systems are written in hybrid program
notation. We discuss dL, then KeYmaera X usage.

2.1 Differential Dynamic Logic

We provide a primer on dL syntax and semantics (meaning); see the literature [26]
for details. Semantics are state-based: a state ω maps every variable x to a real-
number value ω(x) : R. The syntax consists of terms (with a numeric meaning in
each state), hybrid programs (which can nondeterministically change the state
when run), and formulas (which are true or false in each state). Hybrid programs
and formulas may both contain each other. We use standard notation to define
syntax, e.g., B ::= C | D means every B is either a C or a D.

Definition 1 (Terms). Terms e, ẽ of dL are defined by:

e, ẽ ::= q | x | e+ ẽ | e · ẽ where q ∈ Q

Rational-valued literal numbers are written q. Real-valued variables are written
x. Sum e+ ẽ is the sum of terms e and ẽ. Product e · ẽ is the product of e and
ẽ. In every state, the meaning of every term is some real number.

Definition 2 (Hybrid Programs). Hybrid programs α, β are defined by:

α, β ::= ?P | x := e | {x′ = f(x)&Q} | α ∪ β | α;β | α∗

Hybrid programs are defined by their runs: from a starting state, what final
states are reachable? Hybrid programs can have one run (deterministic), many
runs (nondeterministic), or zero runs (early termination). Programs ?P and
{x′ = f&Q} contain formulas P and Q; see Def. 3 for more about formulas.

The test program ?P never modifies the state; if formula P is true, then ?P
ends in the current state, but if P is false, then ?P has no final states, repre-
senting execution failure. Deterministic assignment x := e updates the state by
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storing the current value of term e in variable x. Ordinary differential equation
systems (ODEs) are the defining feature of hybrid programs: ODEs composed
with discrete operations model hybrid systems. ODE {x′ = f(x)&Q} evolves in
continuous time with x′ = f(x), where f(x) is a term. The duration of evo-
lution is nondeterministic. If an evolution domain constraint Q is provided, Q
is tested continuously, and evolution must stop before Q ever becomes false.
Choices α ∪ β nondeterministically run either α or β, as opposed to running
both. Composition α;β runs α, then β in the resulting state(s). Duration of
loops α∗ is nondeterministically-chosen but finite: zero, one, or many repetitions
can occur. If desired, standard conditional and looping constructs are derivable
(where P is a formula, ¬P is its negation, and α is a hybrid program):

if(P ){α}else{β} ≡ {?P ;α} ∪ {?¬P ;β}
while(P ){α} ≡ {?P ;α}∗; ?¬P

Definition 3 (Formulas). There are many formulas P,Q in dL. We only use:

P,Q ::= · · · | e ≥ ẽ | ¬P | P ∧Q | P → Q | [α]P | 〈α〉P

Formulas represent true/false questions about the state ω. Comparison e ≥ ẽ
is true whenever the value of e is at least that of ẽ in a given state. All other
comparisons e > ẽ, e = ẽ, e 6= ẽ, e ≤ ẽ, e < ẽ are definable using e ≥ ẽ and other
logical connectives, so we use them freely. Negation ¬P is true when P is false.
Conjunction P ∧Q is true when both P and Q are. Implication P → Q is true
when P ’s truth would imply Q’s truth.

The defining formulas of dL, [α]P and 〈α〉P, are respectively true in state ω
if every or some of α starting from state ω ends in a state where P is true.

When α is an ODE, all runs equates to all time, e.g., these readings apply:

– P → [α]Q assumes P at first, then proves Q forever
– P → 〈α〉Q, assumes P at first, then proves Q eventually
– P → 〈α〉[α]Q, assumes P at first, then proves Q eventually becomes true,

then stays true forever.

KeYmaera X proves truth in every state, called validity.

Definition 4 (Validity). A dL formula is valid if it is true in every state.

We use standard notation for axioms and proof rules.

Definition 5 (Proof Rules). Each rule has a horizontal line and means: if all
premise formulas above the line are valid, so is the conclusion formula below the
line. Rules can use schema variables such as P or α when the rule applies to all
programs or formulas, respectively.

For example, the loop rule

loop
P → J J → [α]J J → Q

P → [α∗]Q
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means for all P,Q, J, α that if premises P → J, J → [α]J, and J → Q are all
valid, so is P → [α∗]Q. Formula J is proved true for all iterations, thus we call
J the loop invariant. This proven loop invariant should not be confused with
use of the word invariant in hybrid automata to mean an assumed constraint
on ODE evolution. We call such constraints evolution domain constraints.

2.2 KeYmaera X

We briefly discuss the user experience of KeYmaera X [23]. The user inter-
face is displayed in Fig. 1. KeYmaera X is an interactive, tactic-based prover.
This means that the user interactively tells the prover which proof technique
to use, but each technique is implemented as a tactic [10], i.e., a program.

Fig. 1. KeYmaera X screenshot. Clicking
the highlighted symbol performs a proof
step. The last proof rule is shown at bot-
tom. Recommended proof steps are dis-
played as hints.

A proof technique can be a simple,
specific rule or a complex proof search
procedure. For example, there is a de-
fault (or auto) proof procedure which
attempts many proof techniques and
can solve many simpler problems
fully-automatically. In summary, the
amount of user effort can vary greatly
between proofs. Throughout this pa-
per, we will discuss the level of in-
teraction needed for each proof and
discuss how new rules and automa-
tion helped keep the level of user ef-
fort manageable. The tactic-based ap-
proach also means that no matter how
complex proof methods are, they are
implemented using simple steps from
the small trusted core of the prover,
thus proofs stay rigorous.

3 Results

We contribute case studies on two classic kinds of chemical reactions. The first is
an irreversible reaction in a well-mixed adiabatic batch reactor, which we chose
because batch reactors [30, §2.10] are a foundational technology for chemical
plants throughout industry. The second case study is a reversible reaction be-
tween two compounds, i.e., where the output can react again and form the input.
We chose reversible reactions because they too are essential to industry. Notably,
ammonia synthesis is a reversible reaction that provides the backbone for mod-
ern fertilizer-based, industrial-scale agriculture [16]. Both case studies emphasize
recent advances in KeYmaera X proof automation, which contributed to highly
general results. Remaining limits on generality are discussed in each subsection.
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3.1 Controlled Irreversible Reactions

We formalize a classic scenario: an irreversible, exothermic reaction in an adi-
abatic, well-mixed batch reactor. Irreversible [30, §2.1] means the reaction is
one-way: outputs do not react to create inputs. Adiabatic [30, §2.14] means heat
does not leave or enter the reactor. Well-mixed [30, §2.12] means the reaction
occurs evenly in space throughout the reactor. In this basic synthesis reaction,
two (first-order) reactants react to form a third, plus heat:

A+B −→ C + heat

The case study contains four models, each with proof. The first shows con-
servation of energy, validating that adiabatic reactors are closed systems. The
remaining three models add a model-predictive bang-bang controller [12], which
predicts future behavior according to the model, then applies an all-or-nothing
control action. It is proved that the control ensures a safety property: overheat-
ing is prevented. We use this standard control approach in order to focus on
the continuous reaction dynamics. The driving difference between the last three
models is their increasingly complex reaction dynamics, which mandate increas-
ingly complex controls and proofs. In the second model, the reaction rate is
constant. In the third model, the rate depends linearly on temperature, chang-
ing exponentially with respect to time. In the final model, the rate is proportional
to the product of temperature and each concentration, with resulting dynamics
beyond a simple exponential, yet still approximate. Approximate results are the
best that can be expected. We discuss why, including verification challenges.

Each model approximates textbook [30, Eq. 2.93] reaction dynamics, where
the reaction rate is proportional to the product of concentrations of each reactant
A and B multiplied by a coefficient. Recall that the concentration of a reactant in
a mixture is the quantity of that reactant per unit quantity of the mixture. The
rate equation is rate = kAB where k is an exponential given by the Arrhenius
equation [30, Eq. 5.1]. That is, k(T ) = k0e

−E/RT where T is temperature, R is
the ideal gas constant, E is the reaction’s activation energy and k0 a constant.

Analysis of the reaction rate dynamics is nontrivial: rate is a product of three
continuously-changing quantities, resulting in a non-linear ODE. Moreover, k(T )
is exponential in T, resulting in a non-polynomial ODE. KeYmaera X handles
non-linear ODEs well, but is restricted to polynomial ODEs, as is standard. We
thus reach out first limitation: to ensure a polynomial ODE, we approximate
the temperature dependence as linear. This assumption is reasonable because
polynomial ODEs are a standard assumption, and our nonlinear dynamics are
still richer than prior models [36,28,20,14,24]. Our second limitation is that the
reactants are first-order, so their influence on rate is linear. We do so because
such reactions are common and lead to elegant equations. KeYmaera X supports
polynomials of any degree, so we expect the approach to work for higher-order
reactions, so long as the order is fixed. Notwithstanding these limitations, the re-
sults are fully general in the sense that they are fully parametric, e.g., the results
can be applied to any reactants in any amount by plugging in new coefficients
and concentrations.
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Energy Conservation The basic dL model for energy conservation is presented
in Fig. 2. Energy conservation is interesting in its own right, because it implies
the system is closed. This helps support our claim that the model is adiabatic:
heat energy does not leave nor enter.

E ≡ KE + U U ≡ min(A/kA,B/kB) kT KE ≡ T rate ≡ Ts A0 B0 kra + krb

const ≡ kra > 0 ∧ krb ≥ 0 ∧ kA > 0 ∧ kB > 0 ∧ kC > 0 ∧ kT > 0

ode ≡ {A′ = −rate kA,B′ = −rate kB ,C′ = rate kC ,T
′ = rate kT}

(P → [α]Q) ≡ (const ∧ E0 = E→ [ode]E0 = E)

Fig. 2. Basic irreversible model conserves energy

The variables A,B, and C stand for the current concentration of each reactant
present in the reactor. Reactor temperature is written T. In our analysis, we de-
compose energy into kinetic (heat) and potential (chemical) energy: E ≡ KE+U.
Potential energy U ≡ min(A/kA,B/kB) kT is the product of the amount (con-
centration) of C remaining to be produced (the reaction ends when either A or
B is exhausted) with the heat released per unit amount (C). That is, we model
C as if it possesses no potential energy, since we are interested only in energies
relevant to the current reaction. We model the reaction rate as Ts A0 B0 kra +krb,
which makes two intentional simplifications. First, we use approximate current
concentrations A,B with initial concentrations A0,B0. Secondly, we simplify the
temperature factor to Ts, which is a constant even as temperature T changes,
thus the influence of heat is static throughout the reaction. We determine the
reaction rate as a product of the concentration factor and temperature factor.
For generality, the coefficients kra, krb let the rate be any linear function of the
product. Formula const simply specifies the signs of constants.

The ode indicates that all concentrations A,B,C and the reactor temperature
T all change proportional to the reaction rate; A and B are lost as C and heat
are gained. Coefficients kA, kB , kC , kT indicate the rates at which each changes,
which may depend respectively on the stoichiometric coefficients of the reaction
or how strongly exothermic it is.

Finally, the theorem statement (P → [α]Q) states that under the simple
constant assumptions, energy is conserved because at all times the current energy
E remains equal to its initial value E0. We now describe the proof of the theorem
in KeYmaera X.

Proof. The default proof procedure of KeYmaera X (Sec. 2.2) proves the theorem
automatically with differential invariants [26, Lem. 11.3], demonstrating the
capabilities of this standard dL rule. We present (the relevant case of) differential
invariant [26, Lem. 11.3] rule

DI
Q→ [x′ := f(x)](e)′ = (ẽ)′

e = ẽ→ [{x′ = f(x)&Q}]e = ẽ
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which shows e = ẽ is true throughout an ODE if it holds initially and differ-
entials are equal throughout. We prove E0 = E thus: E0 is constant, so prov-
ing E′ = 0 throughout suffices. Expanding the definition of E yields (E)′ =
(T + min(A/kA,B/kB) kT)′ = rate kT + min((A)′/kA, (B)′/kB) kT = rate kT +
min(−rate kA/kA,−rate kB/kB) kT = rate kT + min(−rate,−rate) kT = (rate −
rate) kT = 0. Due to KeYmaera X’s automation, the entire proof is automatic.

On-Off Reactions This model keeps the basic heating dynamics but adds
bang-bang control. Fig. 3 describes the model in full. Parts unchanged from Fig.
2 are grayed out to aid comparison. The impact of this theorem is that the
reactor is provably safe under idealistic assumptions, i.e., when concentrations
and temperatures change very little or have little impact on reaction rate.

rate ≡ Ts A0 B0 kra + krb

const ≡ kra > 0 ∧ krb ≥ 0 ∧ kA > 0 ∧ kB > 0 ∧ kC > 0 ∧ kT > 0 ∧ T > 0 ∧ ε > 0

ctrl ≡ {if(Tmax − T ≤ ε rate kR){isOn := 0}else{isOn := 1}}; t := 0

ode ≡ {A′ = isOn · −rate kA,B′ = isOn · −rate kB ,C′ = isOn · rate kC ,
T′ = isOn · rate kT, t′ = 1 ∧ t ≤ ε ∧ A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0}

(P → [α]Q) ≡ (const∧T ≤ Tmax → [{ctrl; ode}∗]T ≤ Tmax )

Fig. 3. Bang-bang irreversible model safe

The greatest change is the addition of a time-triggered controller: the system
now repeats in a loop, with the controller guaranteed to run at least every
ε > 0 time units. The controller (ctrl) is model-predictive because it predicts
whether it would be dangerous to keep the reaction running for ε time. If so,
the reaction shuts off (isOn := 0), else it turns on (isOn := 1). Note isOn is an
indicator variable; its only possible values are 0 and 1. Specifically, the controller
linearly predicts the maximum temperature change as ε rate kR and shuts off if
the safe temperature would be exceeded. Importantly, this approach predicts
unsafe events before they occur and shuts off before the damage is done. Either
way, the timer t is reset to 0.

The ode is updated so that each reaction equation is multiplied by isOn,
causing no physical changes to occur when the reactor is turned off. This model
is best-suited for situations where it is possible to quickly halt a reaction. The
ode gains an evolution domain constraint, which serves to restrict its duration
of evolution: an ODE may evolve only while the constraint remains true. Our
constraint serves two purposes. Firstly, t ≤ ε implements time-triggering: if each
iteration takes at most ε time, there is at most ε delay between control cycles.
Secondly, the constraints A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0 model the physical assumption
that concentrations cannot be negative. For example, the reaction would end if
A or B reach zero.

Finally, the updated theorem statement (P → [α]Q) is now a safety state-
ment, stating that the reactor never exceeds its maximum safe temperature.
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Proof. As the model now contains a loop, the proof uses loop invariant reason-
ing in addition to differential invariant reasoning, both distinct concepts from
evolution domain constraints. We prove that the safety condition T ≤ Tmax is a
loop invariant, meaning it holds before and after every loop repetition. We use
the standard loop rule from Sec. 2.1.

Already, a lemma arises in the ODE proof. Certain differential invariant
proofs can only succeed by first proving lemmas, called differential cut formulas.
which are then available as assumptions in the invariant proof. Specifically, we
prove the following cut:

– Tmax − T > (ε − t) rate kT, meaning the remaining safe temperature gap
exceeds the projected temperature change during the remaining time.

The cut proves automatically by differential invariant, from which the loop in-
variant, then safety condition, follow by automatic proof.

Fixed Exponents For the next model, the first fundamental change is that
we update the definition of rate to use the current temperature, so that the
reaction rate evolves exponentially over time. Because dynamic reaction rates
are an increase in complexity, we simply other aspects of the reaction rate for-
mula by dropping kra and krb. The remaining changes follow from that one:
amts is a helper definition to definitions such as taylor+(x, t), which is an upper
bound on temperature over time, constructed as a Taylor series approximation.
This use of a Taylor series approximation represents a fundamental change in
proof approach for a fundamentally more complicated dynamics: for exponential
dynamics, polynomial approximations are a crucial tool to simplify reasoning.
However, this Taylor bound is only provably an upper bound on a limited time
interval which happens to be 1/(2 amts), which we thus take as our upper limit
on ε. In practice, we hypothesize that the time limit is artificial: time could be
expressed in any desired units, increasing the interval. The constants are up-
dated to include assumptions on initial values of amounts and the controller is
updated to use the Taylor approximation. The ode is updated to explicitly as-
sume nonnegative temperature, which is a safe assumption since our goal is to
avoid high, not low, temperatures. This new result shows safety with idealized
modeling of concentrations under more realistic heating assumptions.

Proof. The loop invariant is unchanged. We add several differential cuts; order
matters since each one can serve as an assumption in following proofs:

– t ≥ 0 just means time moves forward,
– A0 B0 TkT ≥ 0 ensures forward reaction rate, and
– taylor+(Told, t)−T ≥ 0 bounds temperature T above with taylor+() in terms

of old temperature Told.

The final cut requires advanced proof techniques because term taylor+(Told, t)−T
decreases; differential invariants alone are provably [25, Thm 6.1] insufficient
for such terms. The earliest suitable techniques required defining new (ghost,
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rate ≡ TA0 B0 ε ≡ 1/(2 amts) amts ≡ kT A0 B0 taylor+(x, t) ≡ (1 + 2 t amts)x

const ≡ kA > 0 ∧ kB > 0 ∧ kC > 0 ∧ kT > 0 ∧ ε > 0 ∧ A0 ≥ 0 ∧ B0 ≥ 0

ctrl ≡ {if(Tmax ≤ taylor+(T, ε)){isOn := 0}else{isOn := 1}}; t := 0

ode ≡ {A′ = isOn · −rate kA,B′ = isOn · −rate kB ,C′ = isOn · rate kC ,
T′ = isOn · rate kT, t′ = 1 ∧ t ≤ ε ∧ A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0 ∧ T ≥ 0}

(P → [α]Q) ≡ (const ∧ T > 0 ∧ T ≤ Tmax ∧ A = A0 ∧ B = B0 → [{ctrl; ode}∗]T ≤ Tmax )

Fig. 4. Bang-bang irreversible model safe with fixed exponent

or auxiliary) variables in each proof, but constructing suitable definitions can
be non-obvious in practice. Fortunately, KeYmaera X has provided proof rules
based on Darboux polynomial (inequality) reasoning [27, Corr. 3.2] which can
prove the same problems, but are higher-level:

dbx<

Q→ (p)′ ≥ g p
p < 0→ [{x′ = f(x)&Q}]p < 0

Here, both instances of < are replaced uniformly with one of > or ≥, where
(e)′ is the differential of e, for polynomials p, g where p is called a Darboux
polynomial if the premise holds and g is called its cofactor. It is natural to ask
what power is gained by the addition of this proof rule. Certainly it is stronger
than differential invariant reasoning which would require Q→ (p)′ ≥ 0 because
g p are allowed to be negative. Yet its full usefulness goes deeper, as the rule
serves as a basis for differential radical invariant reasoning which is provably
complete for semianalytic invariants [27, Thm. 4.5], a large class of invariants.

Darboux-based rules are complete for large classes of theorems, yet it is
challenging to automatically find suitable polynomials in every case. For our
example model, KeYmaera X did not find a suitable polynomial, but performing
algebra by hand did result in a suitable polynomial: using the definition of the
ODE, solve for a polynomial that satisfies the proof goal, in this case: g ≡
A0 B0 kT. After choosing a suitable Darboux polynomial, the remaining proof
goals completed using KeYmaera X’s default proof method. Further applications
of Taylor approximations are discussed in Sec. 4.

Dynamic Exponents Even our final controlled model, below, makes some im-
portant simplifying assumptions. Note that our model makes the impact of tem-
perature on reaction rate a linear one, whereas the true Arrhenius equation [30,
Eq. 5.1] implies an exponential effect on reaction rate. Linear functions can lo-
cally approximate exponential ones, but exponentials remain of future interest.
Despite these limitations, the final model is important because it shows safety
with both non-trivial heating dynamics and nontrivial concentration dynamics.

The core change in the final model is a more advanced reaction rate dynamics,
where the reaction rate dynamically changes in response to the concentration
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of each reactant. Definitions amts and ε are updated for the same reason. The
timestep ε now changes dynamically: as the reaction proceeds, the acceptable
delay increases, thus becoming easier to satisfy. It simplifies the analysis to have
ε change only at each loop iteration rather than continuously, so we introduce
variables A1,B1 to stand for the values of A,B at the start of each ODE evolution.
The changes to the model are modest, but the dynamic changes are notable:
the reaction rate is now a product of three changing variables, no longer an
exponential with a fixed base. Likewise, additional proof steps will be required to
account for changing concentrations, but the core proof approach is unchanged.

rate ≡ TAB ε ≡ 1/(2A1 B1 kT) amts ≡ ABkT ctrl

const ≡ kA > 0 ∧ kB > 0 ∧ kC > 0 ∧ kT > 0 ∧ ε > 0 ∧ A0 ≥ 0 ∧ B0 ≥ 0

ctrl ≡ {if(Tmax ≤ taylor+(T, ε)){isOn := 0}else{isOn := 1}}; t := 0;A1 := A;B1 := B

ode ≡ {A′ = isOn · −rate kA,B′ = isOn · −rate kB ,C′ = isOn · rate kC ,
T′ = isOn · rate kT, t′ = 1 ∧ t ≤ ε ∧ A ≥ 0 ∧ B ≥ 0 ∧ C ≥ 0 ∧ T ≥ 0}

(P → [α]Q) ≡ (const ∧ T > 0 ∧ T ≤ Tmax ∧ A = A0 ∧ B = B0 → [{ctrl; ode}∗]T ≤ Tmax )

Fig. 5. Bang-bang irreversible model safe with dynamic exponent

Proof. In this proof, the reaction rate changes as the concentration of each
reactant changes, so we strengthen the loop invariant to capture the status of
the reactant concentrations: 0 ≤ T∧T ≤ Tmax∧A ≤ A0∧B ≤ B0. The differential
cuts are similar to before, with an additional lemma that the concentrations of
the first two reactants decrease: A ≤ A1 ∧ A1 ≤ A0 ∧ B ≤ B1 ∧ B1 ≤ B0.
The differential cut for the Taylor series is unchanged, and the same Darboux
polynomial g ≡ A0 B0 kT suffices.

3.2 Uncontrolled Reversible Reactions

We study reversible reactions, which are crucial to society. For example, ammonia
synthesis is critical to modern agriculture [16]. We consider a textbook scenario
where two reactants A and B can each react to form the other:

A
 B

To our knowledge, we provide the first computer-checked proofs for the asymp-
totic behavior of this classic, widely-used textbook scenario. Specifically, our final
model shows persistence [31], a relative of stability: the system eventually gets
arbitrarily close to its equilibrium state, then stays close forever. We build up to
this result with lemmas: the system is always moving toward equilibrium and can
arbitrarily approach equilibrium in finite, bounded time. To complete the story,
we show that although the equilibrium can always be arbitrarily approximated,
it can never be reached exactly.
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Pure Reactant Decreases We consider a scenario where we start with pure
reactant A, which then becomes a mixture. We show the current amount of A
never exceeds the initial amount, which is intuitive by conservation of mass. The
lemma might be of practical use in its own right, e.g., to verify that a container
never overflows, but we mainly use the lemma as a building block for persistence.
Here, the two reactants are named A and B, with initial values A = A0 > 0 and

ode ≡ {A′ = −AkF + BkR,B
′ = AkF − BkR}

const ≡ A0 > 0 ∧ kR > 0 ∧ kF > 0

(P → [α]Q) ≡ (const ∧ A = A0 ∧ B = 0→ [ode]A ≤ A0)

Fig. 6. Reversible model decreases A

B = 0. Reactants A and B are engaged in a reversible reaction where A converts to
B at forward rate kF and B converts to A at reverse rate kR. It is well-known [30,
Ch. 3] that the system asymptotically approaches an equilibrium state, called a
dynamic equilibrium, in which the forward and reverse reactions perfectly cancel
out. We define ode using a classic textbook model of a reversible reaction, which
does not model heat: the reaction rates are based solely on concentrations and
constants.

Proof. This proof completes automatically: the automatic prover successfully
reasons by differential invariant.

Equilibrium Avoidance We show that the amounts of the reactants never
exactly reach the equilibrium. Though not directly used in the persistence proof,
we prove this because it is a fundamental property in its own right which tacitly
influences how a chemical plant is designed and operated. An operator would
never wait for perfect equilibrium to occur, only for the system to get close to
equilibrium, because perfect equilibrium (provably) never occurs.

The initial condition and ODE are unchanged, only the postcondition changes,
which mandates a new proof approach. To state the new postcondition, we de-
fine the amounts Ã and B̃ of A and B present at the equilibrium. The above
definitions of Ã and B̃ can be found by solving for equilibrium (A′ = 0∧B′ = 0)
in ode subject to conservation of mass (A + B = A0).

Proof. A simple change in postcondition creates a major increase in proof com-
plexity, because we now wish to show a lower bound instead of an upper bound.
We use multiple differential cuts, one of which uses Darboux reasoning.

– A−A0 (kR/(kF +kR)) > 0 means A’s rate of change is always in the direction
of the equilibrium

– A + B = A0 is conservation of mass
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ode ≡ {A′ = −AkF + BkR,B
′ = AkF − BkR}

const ≡ A0 > 0 ∧ kR > 0 ∧ kF > 0

Ã ≡ A0 (kR/(kF + kR)) B̃ ≡ A0 (kF/(kF + kR))

(P → [α]Q) ≡ (const ∧ A = A0 ∧ B = 0→[ode]A 6= Ã)

Fig. 7. Reversible model never at equilibrium

– A > 0 ∧ B ≥ 0 means we never have a negative amount of either reactant,
the first being positive. This requires a Darboux argument with polynomial
−(kF +kR) because the amount of the first reactant does decrease with time.

Once these cuts are proved, automation suffices to finish the proof.

Equilibrium Approach We show that we get arbitrarily close to the equilib-
rium, given sufficient time. For every positive epsilon (ε > 0), there exists a time
when we get that close to the equilibrium. The assumption changes slightly; the
theorem statement changes more: we prove a diamond modality 〈ode〉A ≤ Ã+ ε
because we want to show we eventually approach the equilibrium. The practical
impact of this result is that if an engineer desires an almost-perfect equilibrium,
that can be attained, but the cost is time.

const ≡ A0 > 0 ∧ kR > 0 ∧ kF > 0∧ε > 0

ode ≡ {A′ = −AkF + BkR,B
′ = AkF − BkR}

Ã ≡ A0 (kR/(kF + kR)) B̃ ≡ A0 (kF/(kF + kR))

(P → 〈α〉Q) ≡ (const ∧ A = A0 ∧ B = 0→〈ode〉A ≤ Ã+ ε)

Fig. 8. Reversible model approaches equilibrium

Proof. Previous proofs highlighted advances in proof automation for box prop-
erties of ODEs; this proof relies on advances in proof automation for diamond
properties of ODEs. A differential variant proof is the diamond counterpart to
differential invariant reasoning for box properties. The differential variant prin-
ciple [33, Corr. 24] says: if there is a lower bound on the rate of progress we
make toward our goal at all times, we will get there eventually.

dV
∃
<
∃d > 0∀x(¬(p ≥ 0)→ (p)′ ≥ d)

〈{x′ = f(x)}〉p < 0

where < stands for either > or ≥, where d is a fresh variable and where x′ = f(x)
provably has a global solution (i.e., for all time).



Chemical Case Studies in KeYmaera X 13

The key insight behind our proof is that the rate of progress is proportional to
our current displacement from the equilibrium. Since we seek to get the displace-
ment within some ε, we can assume without loss of generality that the current
displacement is at least ε, giving a bound d on the progress rate: d = ε (kF + kR).
This progress rate also confirms standard intuitions about the system dynamics:
higher rates of progress are made when far away from the equilibrium and when
reaction rates are high.

Persistence Persistence means there exists a point after which we forever re-
main within eps of the equilibrium. Persistence is of practical importance be-
cause it shows both the system can get arbitrarily close to equilibrium and that
the system stays that way indefinitely. In short, this result is important from a
control perspective because it shows the system is well-controlled, even without
a controller As a theorem-proving case study, persistence is an excellent com-
prehensive test case because it combines boxes and diamonds. Only the theorem
statement need be updated; all other definitions are unchanged:

const ≡ A0 > 0 ∧ kR > 0 ∧ kF > 0∧ε > 0

ode ≡ {A′ = −AkF + BkR,B
′ = AkF − BkR}

Ã ≡ A0 (kR/(kF + kR)) B̃ ≡ A0 (kF/(kF + kR))

(P → 〈α〉Q) ≡ (const ∧ A = A0 ∧ B = 0→〈ode〉[ode]A ≤ Ã+ ε)

Fig. 9. Reversible model is stable.

Proof. We combine proof techniques, first showing we eventually approach the
equilibrium (variant reasoning), then showing the concentration of A never in-
creases again (invariant reasoning).

A major strength of logic is compositionality : complex proofs are but com-
binations of simple parts. A dL proof of 〈α〉[α]P can be divided into a variant
proof and invariant proof, for example. At a high level, KeYmaera X lived up
to this compositionality promise. At a low level, there is always room for im-
provement: the [α]P proof assumes const, i.e., it assumes constants never change.
Due to limitations of the differential variant rule, we had to prove the constants
never change, albeit with a simple proof. The limitation appears incidental to
KeYmaera X’s implementation, not fundamental. It speaks well of the imple-
mentation used in these case studies that this was the only instance where the
automation added new proof challenges. This serves as a reminder that theorem-
proving case studies are dually important, showing both the gains from new
automation and which features deserve future optimization.
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4 Related Work

Related work includes hybrid systems verification, reactor design, and reaction
kinetics. We begin with theorem-proving approaches to verification, specifically.

Hybrid Systems Theorem Proving. Specialized hybrid systems theorem-provers [11,35]
provide a high degree of generality and rigor, while making efforts to mitigate
the high degree of user effort typical of theorem-proving. For example, generality
in our case study means many different reactions and reactors are supported by
modifying parameter values, with no new proof effort. Rigor is not merely of
theoretical interest: in many hybrid systems reasoning techniques which do not
share our rigorous logical foundations, many soundness edge cases have recently
been identified [33, Tab. 1]. Soundness violations are unacceptable in verification.

We use the KeYmaera X [11] prover for its exceptional rigor: its axioms have
been proved sound in a theorem-prover [5] and it soundly derives its advanced
proof methods [33,27, Tab. 1] from sound axioms.

Hybrid Hoare Logic (HHL) [17,35] is another notable hybrid prover; an HHL
case study similar to ours could be interesting future work. HHL Prover and
KeYmaera X both base their ODE invariant automation on the same core algo-
rithm [18], so this aspect of automation is likely comparable in both.

Other Logical Approaches We are aware of only one prior logical proof [36] of
a chemical process with nontrivial hybrid dynamics. Unlike ours, it is not in
a theorem-prover and does not address persistence nor reactions, but rather
a mixing process. General-purpose theorem-provers [1,8,21,29] have formalized
hybrid systems, including stability [29,21], but not applied them to reactions.

Reachability Model-checkers based on reachability analysis [6,2,7,9] are the pri-
mary competitors to hybrid systems theorem-provers. They provide greater au-
tomation at the cost of accepting restrictions in generality. Details vary, but
common restrictions include special-case guarantees (is a specific reaction safe?),
time-bounded analyses (am I safe for a time?) or conservative approximations
of dynamics. Their trusting computing base is typically larger than a theorem-
prover’s, complicating rigor.

Taylor approximations, particularly Taylor models [4], are broadly useful in
reachability analysis, e.g., in Flow* [6] and CORA [2]. We have shown that Taylor
approximations are equally useful in KeYmaera X, where they come with proofs.

Stability and Persistence Hybrid system stability is well-studied both inside [34,21,29]
and outside [15,22,19] theorem-provers, with persistence also studied [31]. Lya-
punov functions have shown stability of a chemical reaction on paper, but not
in a prover [13]. Stability and its relatives in KeYmaera X specifically are a
new topic [34]; we contribute the first worked KeYmaera X case study for an
application of industrial interest.
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Chemical Engineering. The chemical engineering results we formalized are clas-
sical; our innovation is the generality and rigor with which we formalize them
in KeYmaera X. Standard textbooks provided kinetics for well-mixed adiabatic
batch reactors [30, Eq. 2.93], uncontrolled reversible reactions [30, Ch. 3], and the
Arrhenius equation [30, Eq. 5.1]. Standard control theory textbooks introduce
model-predictive control and bang-bang control [12].

Although basic models of reactors are widely-used in formal methods, ours
is the first in a theorem-prover. It additional overcomes others’ limitations:

– Previous chemical proofs ignored persistence and reactors [36]
– Optimal scheduling [28] and safety arguments [20] have used simplistic finite

state machines
– A verified plant design used simple piecewise-constant dynamics [14]
– CEGAR verification of tanks [24] ignored reactors

Though we build on such broad related work, our contribution of general-
purpose proofs about chemical reactors and reactions in a theorem-prover fills a
significant gap in the verification literature.

5 Conclusion

We used the KeYmaera X theorem prover for differential dynamic logic to for-
malize two case studies: a batch reactor and a reversible reaction, each of which
consisted of four models and their proofs. This work served two purposes:

– To our knowledge, we provide the first proof in a theorem prover of these
foundational chemical engineering results

– We demonstrate how recent advances in KeYmaera X’s automation, such as
its implementation invariant checking, Darboux reasoning, and differential
variants, contribute to the proofs

One direction for future work is verifying reactors with more advanced controllers
such as PID (proportional-integral-derivative) controllers [32, Ch. 13]. However,
potential future work is broad in nature, reaching well beyond chemical reactor
design. Techniques such as invariant checking and Taylor series are of general
applicability using various tools, though KeYmaera X provides a rigorous im-
plementation of both. Differential variants are widely useful for proving ODE
properties that are true eventually, but not at every moment. We have shown
one significant application for all these proof techniques; their are certainly oth-
ers because the applications of hybrid systems models are diverse.
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