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Abstract. The chemical composition of submicron (fine

mode) and supermicron (coarse mode) aerosol particles has

been investigated at the Jungfraujoch high alpine research

station (3580 m a.s.l., Switzerland) as part of the GAW

aerosol monitoring program since 1999. A clear seasonality

was observed for all major components throughout the pe-

riod with low concentrations in winter (predominantly free

tropospheric aerosol) and higher concentrations in summer

(enhanced vertical transport of boundary layer pollutants). In

addition, mass closure was attempted during intensive cam-

paigns in March 2004, February–March 2005 and August

2005. Ionic, carbonaceous and non-refractory components

of the aerosol were quantified as well as the PM1 and coarse

mode total aerosol mass concentrations. A relatively low

conversion factor of 1.8 for organic carbon (OC) to partic-

ulate organic matter (OM) was found in winter (February–

March 2005). Organics, sulfate, ammonium, and nitrate

were the major components of the fine aerosol fraction that

were identified, while calcium and nitrate were the only

two measured components contributing to the coarse mode.

The aerosol mass concentrations for fine and coarse mode

aerosol measured during the intensive campaigns were not

typical of the long-term seasonality due largely to dynam-

ical differences. Average fine and coarse mode concentra-

tions during the intensive field campaigns were 1.7 µg m−3

and 2.4 µg m−3 in winter and 2.5 µg m−3 and 2.0 µg m−3 in

summer, respectively. The mass balance of aerosols showed

higher contributions of calcium and nitrate in the coarse

mode during Saharan dust events (SDE) than without SDE.

Correspondence to: E. Weingartner

(ernest.weingartner@psi.ch)

1 Introduction

Atmospheric aerosol particles play an important role in the

global radiation balance. The chemical composition and size

distribution of the aerosol are important in quantifying these

radiative effects, through influencing absorption and scatter-

ing. The size and composition also influence the hygroscopic

properties of the aerosol particles and their ability to act as

cloud condensation nuclei, and therefore affect cloud forma-

tion. Aerosol particles can also participate in heterogeneous

reactions in the atmosphere, which are both composition and

morphology dependent.

Measurements of size resolved chemical information pro-

vide information on the sources of aerosol particles. Pri-

mary/secondary and anthropogenic/natural aerosol particles

can have significant chemical and physical differences.

Aerosols are often separated into a coarse fraction (particles

with a diameter d>1 µm) and a fine fraction (PM1; d<1 µm)

during sampling. Primary aerosol refers to particles that are

directly released into the atmosphere in the particle phase.

Primary natural aerosol such as sea-salt, dust or volcanic ash

particles are typically found in the coarse mode. Primary

anthropogenic particles have various sources (black carbon

(BC) for example is emitted by combustion processes) and

is often found primarily in the fine mode. Secondary aerosol

is formed by the transformation of gaseous precursors of ei-

ther natural or anthropogenic origin into condensable mate-

rial. For example, sulfate can be found as natural secondary

aerosol originating from the oxidation of dimethyl sulfide re-

leased from marine plankton (Charlson et al., 1987), or an-

thropogenic secondary aerosol from the oxidation of SO2

(Colbeck, 1998) which is emitted in large concentrations
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from fossil fuel combustion. Automobiles, industry, cook-

ing and combustion are examples of anthropogenic sources

of aerosol precursor gases. Secondary aerosol typically rep-

resents the majority of the fine particle mass (Turpin and

Huntzicker, 1995).

The main constituents of fine atmospheric aerosol are

inorganic ions, organic compounds and to a lesser extent

black carbon (BC) otherwise known as elemental carbon

(EC) (Krivacsy et al., 2001). While inorganic ion species

and their concentrations have been determined at many lo-

cations around the world, data for carbonaceous compounds

are rather limited due to the lack of instrumentation allow-

ing for an artifact free quantification of the organic fraction.

Recently new instrumentation (aerosol mass spectrometry,

thermal-optical carbonaceous analyzers) has become avail-

able, allowing for the quantitative determination of the or-

ganic fraction. These measurements show that organic ma-

terial comprises the dominant fraction of the fine aerosol in

various environments (Zhang et al., 2007).

Knowledge of the chemical composition of atmospheric

aerosol is important to assess its impact on the environment.

Here we present long-term measurements of the chemical

composition of coarse and fine mode aerosol particles from

1999 to 2006 at the Jungfraujoch high-alpine site in the Swiss

Alps. The mass closure for PM1 and coarse mode aerosol

was also investigated during a series of intensive field mea-

surements. Following instrument intercomparisons, mass

fractions of the various components for different seasons and

aerosol types are discussed as well as their partitioning into

the different size fractions.

2 Site, sampling and analysis

Measurements have been performed as part of the Global

Atmosphere Watch (GAW) aerosol program of the World

Meteorological Organization since 1999 and more inten-

sively during Cloud and Aerosol Characterization Experi-

ments (CLACE) at the Jungfraujoch high-alpine research sta-

tion in Switzerland. The intensive field campaigns took place

in March 2004, from mid July to end of September 2004,

from mid February to mid March 2005 and in August 2005.

2.1 Jungfraujoch station

The Jungfraujoch (JFJ) site is located on an exposed moun-

tain saddle in the Swiss Alps at 3580 m a.s.l. Atmospheric

aerosols and gases have been measured at the JFJ within the

GAW program for over a decade. The station is regularly en-

gulfed in clouds (37% of the time based on a year long survey

by Baltensperger et al. (1998)). Due to its elevation, the site

is only weakly influenced by local anthropogenic sources.

These characteristics make the Jungfraujoch site a well suited

ground based location to investigate continental background

aerosols and clouds.

Measured aerosol parameters at the Jungfraujoch exhibit a

strong seasonal cycle with a maximum in summer and a min-

imum in winter. In summer, the site is influenced by injec-

tions of planetary boundary layer air during afternoons when

solar insolation is high or during periods of frontal activity,

leading to variations in the concentrations and properties of

the aerosol measured. Reduced solar heating in winter re-

duces the extent of vertical mixing and results in substantially

lower aerosol concentrations for longer periods (Lugauer et

al., 1998; Weingartner et al., 1999; Henne et al., 2005). Un-

der these circumstances, the site is deemed representative of

the lower free troposphere above a continental area. More in-

formation on the Jungfraujoch site and the long-term aerosol

measurements can be found in Baltensperger et al. (1997)

and Collaud Coen et al. (2007). Table 1 summarizes the

different types of instruments operated during the different

campaigns.

2.2 Inlet

The standard GAW total aerosol inlet was used at the JFJ. It

is heated to 25◦C to evaporate cloud droplets and ice crys-

tals at an early stage of the sampling process (GAW, 2003)

and has been designed to sample cloud droplets smaller than

40 µm at a wind speed up to 20 m s−1 (Weingartner et al.,

1999). The aerosol sample thus consists of aerosols incorpo-

rated into cloud droplets, ice crystals, and un-activated (in-

terstitial) aerosols. Behind the inlet, the aerosol particles are

sampled at laboratory room temperature under dry conditions

(relative humidity <20%).

2.3 Black carbon measurements

The Multi-Angle Absorption Photometer (MAAP, Thermo

ESM Andersen) (Petzold and Schonlinner, 2004) measures

the transmitted and backscattered light intensity from a de-

fined source (λ=630 nm) that is incident on a fiber filter

through which air is also drawn. The particle light absorp-

tion coefficient babs is obtained from a radiative transfer

scheme which corrects for artifacts caused by the interac-

tion of the light with the filter material. The instrument is

used to measure the black carbon mass concentration (BC)

in real time. Black carbon (BC) is the most efficient light-

absorbing aerosol species in the visible spectral range. Thus,

the aerosol light absorption in the visible spectral range is

highly correlated with the concentration of black carbon. The

relationship between the aerosol absorption coefficient babs

(m−1) and the corresponding black carbon mass concentra-

tion BC (g m−3) is established by a mass absorption effi-

ciency σabs,BC (m2 g−1) via the relationship

babs = BC · σabs,BC (1)

where σabs,BC and babs are wavelength dependent. σabs,BC

depends on the type of aerosol, the aging and the size of the

BC particles (Liousse et al., 1993) and thus needs to be de-

termined for each site. The values used throughout this work
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Table 1. Summary of the different set of instrumentation for the different campaigns.

Instrument Sampling interval/averaging time Continuously measured within GAW

March 2004 July–August 2004 February–March 2005 August 2005

Mass concentration

PM1 betameter 1 min/24 h 1 min/24 h 1 min/48 h 1 min/48 h Since 2004

PM1 mass derived from SMPS volume 6 min/24 h 6 min/24 h 6 min/48 h

PM1 mass derived from Scattering coefficient 10 min/48 h Since 1995

TSP betameter 1 min/24 h 1 min/48 h 1 min/48 h 2004–20061

TSP gravimetric filters 48 h 24 h 24 h/48 h 24 h/48 h 1999–20051

Chemical composition

PM1 filters 24 h 24 h 48 h 48 h Since 19992

TSP filters 24 h 24 h 48 h 48 h Since 19992

AMS 1 min/24 h 1 min/48 h

OC/EC Sunset analyzer 6 h/48 h 6 h/48 h

MAAP 1 min/24 h 1 min/24 h 1 min/48 h 1 min/48 h Since 2003

1 A PM10 cut was added to the TSP inlet in January 2007 for the TSP betameter and in January 2006 for the TSP gravimetric filters.
2 Aerosol particles are sampled on filters for 24 h every 6th day.

are 7.4 m2 g−1 for the winter periods and 10.8 m2 g−1 for

the summer at 630 nm and are detailed in Sect. 3.1.2. Mea-

surements were performed with a time resolution of 1 min.

Comparison with another MAAP instrument running behind

a PM2 inlet showed a very high correlation (r2=0.97) and a

slope of 0.95 indicating that most of the BC mass is found

below d=2 µm (Cozic et al., 2007).

Another light absorbing aerosol component is hematite

(Fe2O3), a minor component of mineral dust, which usu-

ally makes a small contribution but can be important during

Saharan dust events (Collaud Coen et al., 2004). Because

of the relatively low mass absorption efficiency of mineral

dust (σabs (660 nm) ∼0.02–0.01 m2 g−1) (Alfaro et al., 2004;

Linke et al., 2006), the overall contribution of this compo-

nent to the absorption coefficient is expected to be small dur-

ing periods that are not influenced by Saharan dust events.

Such Saharan dust episodes occur at the Jungfraujoch site on

average 24 times a year (ranging from 10 to 34 per year in

the last 5 years) with different duration (Collaud Coen et al.,

2004). Light absorbing organic material is another compo-

nent that is suspected to contribute to the measured absorp-

tion coefficient. Again, the low mass absorption efficiency

associated with organic compounds (e.g. for humic like sub-

stances (HULIS) σabs (532 nm) ∼0.03 m2 g−1 (Hoffer et al.,

2005)) would require unrealistically high concentrations of

these compounds to significantly contribute to the measured

absorption coefficient. We therefore assume that the mea-

sured absorption coefficient is entirely due to absorption by

BC except during Saharan dust episodes.

2.4 Semi-continuous OC/EC thermo-optical analyzer

Organic carbon (OC) and elemental carbon (EC) in the

total suspended particles (TSP) were measured using a

semi-continuous OC/EC thermo-optical transmission ana-

lyzer (Sunset Laboratory) (Birch and Cary, 1996; Bae et al.,

2004). Sampled particles are accumulated for 5 hours 45

minutes (flow rate=7.5 L min−1) on a quartz filter housed

within the instrument after the air has passed through a

gas phase denuder (charcoal-impregnated filter strips, Sun-

set Laboratory) (Bae et al., 2004). After sampling, the filter

is heated in an oxygen-free ultra high purity helium atmo-

sphere in four increasing temperature steps, which permits

the detection of various organic carbon fractions. During

these heating steps some organic compounds may be pyrolyt-

ically converted to EC. This pyrolytic conversion is contin-

uously monitored by measuring the transmission of a laser

beam (λ=660 nm) through the filter. The organic compounds

are vaporized and oxidized to carbon dioxide by a manganese

dioxide catalyst held at a temperature of 800–900◦C. The gas

is then switched to a 2% O2/He mixture and the filter heated

in two increasing temperature steps for determination of EC.

In both cases, the evolved CO2 is measured using a continu-

ous, non-dispersive infrared absorption (NDIR) method. At

the end of each analysis an automatic internal calibration is

performed by using a known volume and a fixed concentra-

tion of methane (5% CH4; 95% He). A further, off-line cal-

ibration was conducted at the beginning and the end of each

campaign with an external source of methane gas injected

during the He/O2 phase.

The determined EC includes both the original EC in the

particles and that produced by the pyrolysis of organics. The

point where the laser beam transmission through the sam-

ple returns to the original sample transmission defines the

split between organic and elemental carbon (the instrument

response prior to this point is assigned to OC, and after

this point is assigned to EC). This split point is determined
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automatically and is used to distinguish between EC and py-

rolized OC. This discrimination is the major difficulty of the

method: several temperature programs and results of inter-

comparison exercises are described in the literature (Chow et

al., 2001; Schmid et al., 2001; Schauer et al., 2003). These

studies generally show that the sensitivity of the separation

between EC and OC using a TOT (thermal optical transmis-

sion) analysis method depends mainly on the temperature

program and on the type of samples analyzed. Previous ob-

servations from the JFJ have shown that the split point was

quite often in the last OC fraction and the pyrolized fraction

was small.

The analyses were based on a temperature program pro-

vided by NIOSH (National Institute for Occupation Safety

and Health). This consisted of a temperature increase to

840◦C for the analysis of OC in 100% He in a series of stages

(1st step: 310◦C for 60 s, 2nd step: 480◦C for 60 s, 3rd step:

615◦C for 60 s; 4th step: 840◦C for 90 s), and up to 850◦C

for the analysis of EC in 98% He+2% O2 (1st step: 550◦C

for 35 s; 2nd step: 850◦C for 105 s).

2.5 Chemical composition of aerosol filter samples

The filter sampling system was designed to sample two size

fractions, total suspended particles (TSP) and particles with

an aerodynamic diameter d<1 µm (PM1) (Henning et al.,

2003). The two sizes fractions were selected according to the

recommendations of the Global Atmosphere Watch (GAW)

Scientific Advisory Group for Aerosol, reflecting the fact

that the mass scattering efficiency is quite different for sub-

micron and supermicron aerosols (Finlayson-Pitts and Pitts,

2000; GAW, 2007; IPCC, 2007). Four stages of a cascade

impactor (Maenhaut et al., 1996) were used to generate the

cut-off of d=1 µm with a flow rate of 11 L min−1. The flow

was controlled by a mass flow controller (5851E Brooks In-

strument, Fisher-Rosemount AG). The impactor stages were

treated with high-vacuum grease to prevent bouncing. More

details on the sampling system can be found in Henning et

al. (2003).

Teflon filters (PTFE, Sartorius AG) with a pore size of

1.2 µm and 47 mm diameter were used to sample the aerosol

particles, and Nylon filters (Nyabsorb, PALL/Gelman Sci-

ences), with a pore size of 1 µm, were used for the collection

of nitrate evaporating from the first filter (Zhang and Mc-

Murry, 1992; Cheng and Tsai, 1997). As explained by Hen-

ning et al. (2003), gaseous nitric acid was lost to the walls

of the inlet system (4.5 m length, 11 s residence time) during

sampling and so any nitrate measured on the backup Nylon

filter was assumed to originate from ammonium nitrate. In

the following, NO−

3 data are presented as the sum of nitrate

from the Teflon and the Nylon filters in order to obtain the

total aerosol nitrate. For NH+

4 , the total ammonium concen-

tration was obtained by the addition of the ammonium deter-

mined on the Teflon filter plus an equivalent amount of am-

monium estimated from the associated nitrate on the backup

filter.

It was found that cleaning of the filters with deionized wa-

ter, NaOH or methanol was unnecessary because of the low

blank values of the filters. This assumption was tested regu-

larly. All filters were stored in Petri dishes lined with baked

aluminum foil liners and placed in sealed polyethylene bags.

All filters were stored at −18◦C until their analysis.

The samples were analyzed for water soluble ionic com-

ponents with ion chromatography in a clean room after aque-

ous extraction of the filters in SCHOTT bottles. For the

Teflon filters this was done using 0.3 mL of methanol (Baker

CMOS grade) in order to first wet the Teflon filters, followed

with 8.7 mL of deionized (DI) water, while for the Nylon

filters the extraction was performed with 5mL of DI water.

Extracts were analyzed within 1 hour after extraction in or-

der to limit possible oxidation reactions in the liquid phase.

The cations (Na+, NH+

4 , K+, Ca2+) were analyzed with a

DIONEX DX320 chromatograph using a CS16 column 4

mm with a CG16 guard column, and chemical regeneration

was performed with a CSRS ULTRA II autosuppressor. The

injection loop volume was 0.6 mL. The analyses were per-

formed under isocratic MSA conditions, at 40 mM and with

a flow rate of 1.5 mL min−1. Analysis of the anions was per-

formed in parallel with a DIONEX ICS 2500 chromatograph

using an AS11 column (4 mm) with an AG11 guard column

and an ASRS ULTRA II autosuppressor at a flow rate of

1.5 mL min−1. Injections were made via a 1-mL injection

loop. The eluent (KOH) was generated with an EG50 elu-

ent generator. Gradient conditions were adapted from Ricard

et al. (2002) but no methanol was used in the composition of

eluents. The 15-min runs allowed for the detection of the ma-

jor inorganic anions (Cl−, NO−

3 , SO2−

4 ) and of oxalic acid.

Blank levels for each chemical species were calculated

from the analysis of 30 procedural blanks and were sub-

tracted from the measured sample concentrations to obtain

the actual concentrations. Atmospheric detection limits were

calculated as twice the standard deviation of the blank sam-

ple concentrations, using a typical sampling duration of 24 h.

Major components (sulfate, chloride, sodium, ammonium,

nitrate, potassium, and calcium) were almost always above

detection limit (SO2−

4 (8.5), Cl− (5.4), Na+ (9.3), NH+

4 (2.8),

NO−

3 (17.6), K+ (3.0) and Ca2+ (10.7) in ng m−3). The

chemical composition of the coarse mode particles was cal-

culated by the difference between the TSP and PM1 data.

2.6 Aerosol Mass Spectrometer

An Aerodyne Quadrupole Aerosol Mass Spectrometer (Q-

AMS, Jayne et al. (2000)) was used for measuring on-line

chemically resolved mass concentrations and size distribu-

tions of non-refractory aerosol components (sulfate, nitrate,

ammonium, organics), in a vacuum aerodynamic diameter

range dva=50–700 nm. In the Q-AMS, the particles are

drawn into vacuum through an aerodynamic lens sampling
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inlet system (Zhang et al., 2002), which focuses aerosol par-

ticles into a narrow, collimated beam that impacts on a porous

tungsten surface (the vaporizer) heated typically to 500◦C

under high vacuum (∼10−8 torr). The non-refractory frac-

tion of the particles, mostly the volatile and semi-volatile

components, flash vaporizes upon contact with the vaporizer

surface on a time scale of a few microseconds. The resul-

tant gaseous molecular constituents are ionized using a 70-

eV electron impact ionization source positioned such that the

maximum electron density and the centre of the vaporized

plume are co-located in the extraction zone of the mass spec-

trometer. A quadrupole mass spectrometer (QMA 410, Balz-

ers Instruments, Balzers) is utilized to analyze the positive

ions with unit mass-to-charge (m/z) resolution. For more

details see Allan et al. (2003).

2.7 Particle size distribution measurements

A scanning mobility particle sizer (SMPS, TSI 3934), com-

prising a differential mobility analyzer (DMA, TSI 3071) and

condensation particle counter (CPC, TSI 3022), was used to

measure the particle size distribution between 17 and 900 nm

(dry) diameter (Verheggen et al., 2007). The SMPS had

a closed loop configuration for the sheath and excess air,

which was held constant at 3 L min−1 by a critical orifice,

while the sample flow rate was 0.3 L min−1. A correction

was applied to the measured diameters to account for the re-

duced pressure at the Jungfraujoch (650 mbar on average).

Latex spheres, nebulized into the SMPS were used to con-

firm that the instrument was correctly sizing. The SMPS

was frequently compared to another SMPS and systematic

differences in integrated concentrations <5% were encoun-

tered. Aerosol volume concentrations with d<900 nm were

derived from the measured SMPS number size distributions,

assuming that the particles were spherical.

Additionally, an optical particle counter (OPC, Grimm

Dustmonitor 1.108) was operated to measure the particle size

distribution in the optical diameter range d=0.3–20 µm. The

comparison of the size distribution spectra of the GRIMM

and the SMPS showed a very good agreement for February-

March 2005 whereas for March 2004 the OPC diameters

would need to be slightly shifted (multiplied by 1.2) to larger

sizes to get a good agreement. The slight discontinuity in the

combined number size distribution is likely to result from the

fact that in the OPC the individual particles are classified ac-

cording to their light scattering behavior, which depends on

the particle size, morphology and refractive index. Since the

OPC is calibrated with spherical Latex particles the observed

shift is most probably due to the different refractive index

(and complex morphology) of the measured particles in the

range d=300–1000 nm.

2.8 Betameter TSP and PM1

A beta-attenuation monitor (Thermo ESM Andersen FH62 I-

R) was used for continuous measurements of TSP and PM1

mass concentration (Baltensperger et al., 2001). A glass

fiber filter collects sampled particles whilst being exposed

to a continuous flux of beta particles. The beta particles are

emitted with a continuum energy distribution by a radioiso-

tope source and are attenuated by a reference section and the

sample. The transmitted fraction of the beta particles is mea-

sured using an electron counter. The number of beta parti-

cles transmitted through the sample decreases exponentially

as the thickness of the deposited material increases according

to Evans (1955),

I = I0 · e−µ·x (2)

where I0 is the incident flux, µ is the mass absorption coeffi-

cient for β radiation absorption (cm2 g−1), and x is the mass

thickness of the sample (g cm−2). The mass absorption coef-

ficient is determined through a calibration procedure involv-

ing the measurement of a series of known standards (calibra-

tion foils), which bracket the mass range of interest (Jaklevic

and Gatti, 1981).

2.9 High-volume sampler for TSP

A high-volume sampler (HIVOL DHA80, Digitel, Hegnau)

was used to determine 48-h averages of total suspended mass

concentrations. TSP was collected for 2 days on glass fiber

filters (Ederol 227/1/60, diameter 15 cm, Digitel) with a flow

rate of 45 m3 h−1. The mass concentrations were determined

gravimetrically by weighing the filters before and after sam-

pling (Mettler, AE200). From January 2006 onwards, the

sampling intervals were reduced to 24 h and the glass fiber

filters were replaced by quartz fiber filters (QMA20, What-

man, Dassel).

2.10 Nephelometer

The aerosol light scattering coefficients of TSP were simul-

taneously measured at three wavelengths (λ=450, 550, and

700 nm) by an Integrating Nephelometer (IN, TSI 3563). The

sampled aerosol is illuminated over an angle of 7 to 170◦

by a halogen light source directed through an optical pipe

and an opal glass diffuser. The sample volume is viewed by

three photomultiplier tubes through a series of apertures set

along the axis of the main instrument body. Aerosol scatter-

ing is viewed against the dark backdrop of a very efficient

light trap.

www.atmos-chem-phys.net/8/407/2008/ Atmos. Chem. Phys., 8, 407–423, 2008
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Fig. 1. Comparison of the absorption coefficient from the MAAP with the EC concentration determined by the OC/EC analyzer in February–

March 2005 (a) and August 2005 (b) with 6 h averaging time. The slope represents the mass absorption efficiency.

3 Results

3.1 Measurement validation

3.1.1 Mass absorption efficiency

The mass absorption efficiency σabs,BC of the Jungfrau-

joch aerosol was determined from the EC measurements of

the OC/EC analyzer and the light absorption measurements

(MAAP). σabs,BC is wavelength dependent and is determined

at λ=630 nm. A large range of values (2–25 m2 g−1) has

been reported in the literature (Bond and Bergstrom (2006)

and references therein). This variability is partly caused by

differences in the aerosol mixing state, with external mix-

tures favoring smaller values, while larger values indicate in-

ternal mixing of BC (Liousse et al., 1993). Consequently,

σabs,BC depends on the aerosol composition, mixing state and

to a lesser extent on particle size. However, it is believed

that a major contribution to this wide range is caused by the

variability in the different methods to determine EC and BC

(Schmid et al., 2001).

Figure 1 shows the comparison between the absorption co-

efficient babs measured by the MAAP with the EC concentra-

tion determined by the OC/EC analyzer in February–March

2005 and in August 2005. A reduced major axis regres-

sion was performed on the data to account for the error of

each instrument (Ayers, 2001). Noise was introduced into

the data to estimate the error on the mass absorption effi-

ciency. The mass absorption efficiency is higher in summer

(11.1±0.2 m2 g−1) compared to winter (7.6±0.2 m2 g−1).

The reasons for this difference are currently unclear but could

be due to a greater coating of BC particles by e.g. organic

compounds due to increased photochemical activity during

summer. Such coatings may lead to increases in the mass ab-

sorption efficiency (Fuller et al., 1999). This seasonality in

the mass absorption efficiency has been seen in other stud-

ies such as Sharma et al. (2002) in the Canadian Arctic, but

not in a previous study at the Jungfraujoch (Lavanchy et al.,

1999). The latter may be due to the fact that different proce-

dures were applied in the different campaigns: Lavanchy et

al. (1999) used a 2-step thermal method which did not cor-

rect for potential pyrolysis and the Aethalometer data were

not corrected for scattering effects.

3.1.2 Q-AMS collection efficiency

It is known that the collection efficiencies of ambient aerosol

particles are often less than 100% within the aerosol mass

spectrometer, and so the Q-AMS data have to be corrected

for this. This requirement arises because particles containing

large fractions of slightly less-volatile mass (such as solid

ammonium sulfate) can sometimes bounce off the Q-AMS

heater before they evaporate, and so the “missing mass” of

these particles is not measured. The collection efficiency

compensates for this missing mass, and is usually derived

by comparing the data for the non-refractory aerosol com-

ponents (such as SO2−

4 ) with simultaneously collected filter

data (in this case the PM1 filter data).

Figure 2 shows the comparison of the SO2−

4 concentra-

tions measured with the Q-AMS and on the filters. The slope

of the linear correlation yields the Q-AMS collection effi-

ciency. A collection efficiency of 0.48 was determined for

sulfate. Since the aerosol in the fine mode has been shown to

be mainly internally mixed at Jungfraujoch (Weingartner et

al., 2002; Cozic et al., 2007), the collection efficiency of 0.48

was applied to all compounds (SO2−

4 , NO−

3 , NH+

4 , organics)

measured by the Q-AMS. The coefficient is consistent with

values found in previous studies (Canagaratna et al., 2007

and references therein).
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Fig. 2. Comparison of the SO2−

4
(PM1) concentrations measured

with Q-AMS and on filters over 24-h averaging intervals in March

2004.

Fig. 3. Comparison of the organic mass from the Q-AMS (OM)

with the organic carbon concentration from the OC/EC analyzer

(OC) for February–March 2005, with an averaging time of 6 h.

3.1.3 Organic Matter (OM) and Organic Carbon (OC)

The OC/EC analyzer measures organic carbon (OC) and does

not consider the other atoms associated with organic matter,

such as O, H, N and S. In contrast, the organic mass con-

centration from the Q-AMS represents the total organic mat-

ter (OM) associated with all atoms present. The comparison

between these two measurements yields information on the

conversion factor of OC to OM for the Jungfraujoch aerosol.

This comparison was only possible in February-March 2005

when the Q-AMS and the Sunset analyzer were sampling si-

multaneously. An offset correction was applied to the OC

concentration data obtained from the Sunset analyzer, as a

detailed analysis revealed an offset in the Sunset data of

about 0.3 µg m−3. Laboratory tests were performed to de-

termine the source of this offset. All tests were conducted

in nitrogen gas (quality 5.0), which was further purified with

Fig. 4. Comparison of the PM1 mass concentration (betameter)

with the aerosol volume concentration derived from the SMPS for

winter and summer (24-h averaging time). The slope yields the

effective density.

a pure air generator (AADCO Instruments Inc., 737-250 se-

ries). According to the manufacturer’s specifications impuri-

ties were <1 ppb each for ozone, methane and non-methane

hydrocarbons, oxides of nitrogen (NO/ NOx), hydrogen sul-

fide (H2S), sulfur dioxide (SO2), carbonyl sulfide (COS),

carbon monoxide (CO), sulfur hexafluoride (SF6), and flu-

orocarbons. In addition, a particle filter and a denuder were

installed in front of the instrument inlet to remove particles

and semi volatile gases from the air. The source of this off-

set could not be determined. It did not increase with sam-

pling time (up to 24 h) and was only present in the first two

steps of the OC temperature program. A leak or penetra-

tion of compounds through the denuder would have resulted

in a blank that increased with sampling time. These offsets

were estimated to 0.2 and 0.1 µg for the 1st and 2nd peaks,

respectively, and were subtracted from the respective peaks

measured in the field.

As can be seen in Fig. 3 there is a high correlation between

the OC and the OM (r2=0.89) and the conversion factor of

OC to OM is 1.84. This finding is in agreement with litera-

ture data where values between 1.6 to 2.1 have been reported

(Turpin and Lim, 2001). An even higher OM:OC ratio might

be expected for the Jungfraujoch aerosol due to its remote

location. This coefficient could be slightly decreased by the

size cut of 1 µm used for the Q-AMS whereas the OC/EC an-

alyzer was running with TSP. However, it is not expected that

this will have a strong influence at the JFJ as, like sulfate, the

major fraction of OC is found in the fine mode. The same co-

efficient is used in this analysis for winter and summer data

since no Q-AMS was running during the summer period. In

summer this coefficient is expected to be higher due to the

larger biogenic emissions and increased photochemical ac-

tivity.
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Fig. 5. Comparison of the TSP mass determined with a betameter and by gravimetry for January 2004 to January 2006 (a) and the TSP and

PM1 mass measured with betameters for February 2004 to January 2007 (b) for 48-h averaging intervals.

3.1.4 Betameter PM1 and SMPS mass concentration

The PM1 data from the betameter have very low signal to

noise ratios and so long periods are used to average the data

(typically 1 day). A higher temporal resolution of PM1

can be obtained by correlating the PM1 data (24-h aver-

ages) with the volume concentrations obtained from the mea-

sured SMPS size spectra (d=17–900 nm) and estimating an

aerosol density. Although there are a large number of par-

ticles with d<17 nm, these small particles can be neglected

when calculating the submicrometer aerosol volume concen-

tration (Imhof et al., 2005). The missing aerosol volume be-

tween 900 and 1000 nm can also be considered as negligible

when strong episodes of mineral dust are absent, as shown in

the size distributions below (Sect. 3.4).

Figure 4 shows the comparison of the PM1 mass concen-

tration with the submicrometer aerosol volume for March

2004, February–March 2005, and August 2004 (24 h aver-

aging time). The correlation is rather weak (r2=0.53) as a

result of the low signal to noise ratio of the betameter mea-

surements. The conversion factor corresponds to an effec-

tive particle density of 1.5 g cm−3 which is consistent with

the values observed at Monte Cimone (Putaud et al., 2004b),

Hyytiälä (Virtanen et al., 2006) and those summarized by

McMurry et al. (2002). Thus we conclude that it is appropri-

ate to estimate the PM1 mass concentration from the SMPS

volume concentration when SMPS measurements were avail-

able (winter campaigns) by using an effective particle density

of 1.5 g cm−3. In summer, the concentrations were higher,

resulting in higher signal to noise ratios in the betameter data.

3.1.5 Betameter TSP and Gravimetric TSP

The correlation between the two TSP measurements (Fig. 5a)

is high (r2=0.94), with a slope slightly higher than unity

(TSPbetameter=1.12×TSPgravimetric). The slightly high slope

could be due to the calibration of the betameter at the

Jungfraujoch. The comparison between the betameter data

for TSP and PM1 (Fig. 5b) reveals that the signal of the

PM1 betameter is much lower than TSP betameter as ex-

pected (TSPbetameter=1.58×PM1betameter), but is also noisier

and yields a lower correlation (r2=0.41). Episodes of Saha-

ran dust (yellow points in Fig. 5b determined by the method

described by Collaud Coen et al. (2004)) were excluded from

the correlation, since they show much higher concentrations

of coarse mode particles.

3.2 Long-term chemical composition

Since June 1999 inorganic compounds in PM1 and TSP have

been determined on a semi-continuous basis (24 h sampling

every 6th day) on the JFJ within the GAW aerosol program

and are available at http://www.nilu.no/projects/ccc/create/

database.htm. Long-term ionic measurements at various Eu-

ropean sites were published by Putaud et al. (2004a). How-

ever, only annual averages were presented for fewer compo-

nents. Malm et al. (2004) presented a summary of monthly

data for different sites within the US. They showed temporal

variations over a year but no year to year variation was dis-

cussed. Long-term series are available for individual compo-

nents such as sulfate (e.g., Malm et al., 2002). This paper is

to our knowledge the longest time series of inorganic aerosol

composition at a high altitude site presented so far. In ad-

dition the mass concentrations of PM1 and TSP have been

measured since February 2004 and June 1999 respectively.

Figure 6 presents the long-term measurements of the ma-

jor PM1 and TSP compounds detected (SO2−

4 , NH+

4 , NO−

3 ,

Ca2+, K+, C2O2−

4 , Cl−, Na+), as well as the TSP mass con-

centration determined by gravimetry and the PM1 mass de-

termined with a betameter (since January 2004 only).

For all compounds a clear seasonality is observed with low

concentrations in winter when the aerosol is typical of the

undisturbed free troposphere, and maximum concentrations
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Fig. 6. Temporal evolutions of monthly averaged mass (TSP (gravimetry); PM1 (betameter) and chemical component concentrations (filters)

for the period June 1999 to September 2006. Orange bands represent the time periods when further information on chemical composition

was measured during intensive field campaigns.

in summer when the Jungfraujoch is influenced by injections

from the planetary boundary layer (PBL). First evidence

on the importance of vertical transport for the Jungfraujoch

aerosol was published by Baltensperger et al. (1991). De-

tailed analyses on the influence of the PBL were presented

by Lugauer et al. (2000, 1998) showing that vertical aerosol

transport by thermally driven convection, acting between late

spring and late summer, is the dominant transport process at
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Fig. 7. Ratio of the measured NH4 mass to the NH4 calculated to

reach neutralization (i.e. formation of (NH4NO3;(NH4)2SO4)) as a

function of the total ion mass concentration for PM1 measured with

filters (daily averages). The exponential fitted line is also presented.

the Jungfraujoch. This was also shown for individual chem-

ical components (Zellweger et al., 2000). Gehrig and Buch-

mann (2003) presented an overview of seasonal variations

of aerosol concentrations at various sites in Switzerland and

showed that the PM concentrations are higher in winter than

in summer due to reduced vertical transport. For SO2, this

reduced dilution along with enhanced emissions during win-

ter results in higher concentrations in winter than in sum-

mer (Hueglin et al., 2005; Fisseha et al., 2006). Conversely,

in summer the photochemical oxidation rates are enhanced.

Therefore, the resulting SO2−

4 is relatively constant over the

year in the valleys (Hueglin et al., 2005). Thus, the higher

concentrations at the Jungfraujoch in summer are mainly due

to enhanced vertical transport. Such seasonal behavior was

also observed by Fischer et al. (2007) at Mount Washington.

In contrast, for Alert, a remote site in the Arctic, Sirois and

Barrie (1999) showed an opposite seasonal cycle with higher

concentrations in winter than in summer, driven by a strong

seasonality in south to north transport and in wet and dry re-

moval.

In Fig. 6 it can be seen that highest TSP mass concentra-

tions were reached in summer 2003 when Europe encoun-

tered exceptionally high temperatures which led to increased

convection in the Alps and thus enhanced injection of PBL

air. These high signals in summer 2003 were also observed

in other continuous aerosol measured parameters such as

the light scattering coefficients (Collaud Coen et al., 2007).

However, of the chemical components measured, only NO−

3

showed a significant enhancement.

No statistically significant trends in the major ionic species

could be obtained from this data set in contrast to other

aerosol parameters measured within the GAW program for

which clear trends were observed (Collaud Coen et al.,

2007). This might be explained by a lower temporal cov-

erage of the chemical composition samples (24 h sampling

Fig. 8. Ratio of the NH4 mass to the NH4 calculated to reach neu-

tralization (i.e. formation of (NH4NO3;(NH4)2SO4)) as a function

of the total ion mass concentration for PM1 during the intensive

campaigns (daily averages).

every 6 days instead of continuously as for the other parame-

ters) and/or by a higher year to year variation. Both possibili-

ties lead one to conclude that there is a need for a longer time

series to detect statistically significant trends. In addition, a

decrease with time was observed for the TSP mass concen-

tration for the period 1975 to 2005, however, this trend was

not significant for the last 9 years (Christoph Hüglin, per-

sonal communication). Husain et al. (2004) presented long-

term trends of sulfate from 1984 to 2003 at a site comparable

to the Jungfraujoch (Whiteface Mountain) and showed a de-

creasing trend in sulfate concentrations. Nevertheless, they

also indicated that this trend was less pronounced since 1995.

The different intensive campaigns are marked as orange

bands in Fig. 6. There are clear differences between the two

winter campaigns. During the period February–March 2005,

unusually high concentrations were observed for a winter pe-

riod (e.g. ∼700 ng m−3 for SO2−

4 instead of <400 ng m−3

for winter in other years) and concentrations similar to those

found in summer were measured. The campaign in August

2005 was performed after the maximum PBL influence at the

JFJ in that year, and the month of August 2005 was cool and

cloudy which resulted in low influence from the PBL.

3.3 Aerosol neutralization

The degree of neutralization of the aerosol (PM1 only) is pre-

sented in Fig. 7, which shows the ratio of the measured NH+

4

to the amount of NH+

4 that is needed to neutralize nitric and

sulfuric acid as a function of the total ion mass concentra-

tion. The entire 6-year data set is shown in the figure, each

data point representing a single 24-h sample. The Jungfrau-

joch aerosol is, to within the noise in the data, neutralized,

since the average ratio is about 80%. At low mass concen-

trations there is a slight tendency for an increased acidity,

but there is considerable scatter at these low concentrations.

This tendency might be due to the fact that ammonia has a

very strong gradient with altitude (Beig and Brasseur, 2000);
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Fig. 9. Time series of the chemical composition of PM1 (left) and the coarse mode (right) for March 2004, February–March 2005, and

August 2005. The inorganic composition was determined from filters, BC was measured with a MAAP and OM fraction was measured with

an OC/EC analyzer (except for March 2004 where OM data are from a Q-AMS). PM1 mass concentration was derived from SMPS (except

for August 2005 where it was deduced from the aerosol scattering coefficient at 450 nm). TSP mass concentration was measured with a

betameter (except for March 2004 where data are from gravimetric measurement).

thus a high degree of acidity may indicate an influence of free

tropospheric air.

During the intensive field campaigns in March 2004, the

aerosol was found to be substantially more acidic than in

February–March 2005 and August 2005 (Fig. 8). As ex-

plained above, this might indicate an influence of free tro-

pospheric air. There are more rigorous methods to determine

aerosol acidity (Keene et al., 2004), but the necessary mea-

surements were not made during these campaigns.

3.4 Chemical mass balance for PM1 and the coarse mode

Time series of the chemical mass balance for PM1 and coarse

mode for three intensive field campaigns in March 2004,

February–March 2005 and August 2005 are presented in

Fig. 9. No mass closure is given for July–August 2004 since

the organic mass concentration was not measured during this

period.

Figure 9 presents the various measured chemical fractions

as well as total PM1, total coarse and TSP mass concen-

trations. As explained in Sect. 3.1.4, the PM1 mass con-

centration was derived from the SMPS volume concentra-

tion for March 2004 and February-March 2005. No SMPS

data were available for the August 2005 experiment. For this

campaign, the aerosol light scattering coefficient at wave-

length λ=450 nm was used as a proxy for the PM1 mass

concentration. The SMPS derived volume concentrations

were compared to the measured aerosol light scattering co-

efficients at 450 nm. The analysis showed a high corre-

lation (r2=0.71, slope=5.95×10−6 m−1 cm3 µm−3 (March

2004); r2=0.98, slope=6.14×10−6 m−1 cm3 µm−3 (July–

August 2004); r2=0.94, slope=6.92×10−6 m−1 cm3 µm−3

www.atmos-chem-phys.net/8/407/2008/ Atmos. Chem. Phys., 8, 407–423, 2008
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Fig. 10. Top: Size distributions measured with an SMPS for diameters below 800 nm and with an OPC for diameters above 300 nm. Bottom:

back-trajectories calculated with the FLEXTRA model for two periods without (a) and with (b) influence of mineral dust.

(February–March 2005)) between these parameters. This re-

sults from the particle size distribution of the accumulation

mode being relatively invariant, as shown by Weingartner et

al. (1999), and justifies the use of the scattering coefficient as

a PM1 proxy for August 2005.

Figure 9 shows that the two mass fractions present a highly

different chemical composition. The PM1 mode is mainly

composed of organics and sulfate (SO2−

4 ) along with signifi-

cant fractions of BC, nitrate (NO−

3 ), and ammonium (NH+

4 ).

The non-determined mass (ND) is quite small and is assumed

to be composed of insoluble compounds such as silicate from

mineral dust. As mentioned previously, the aerosol is sam-

pled at laboratory temperature (i.e. under dry conditions) and

the ND fraction is therefore not expected to be explained by

condensed water. In contrast, the coarse mode is dominated

by the ND fraction. The major determined compound in the

coarse mode is calcium (Ca2+), which is a known component

of mineral dust. The contribution of the measured inorganic

compounds is very small, and nitrate seems to be present

in the same proportion as sulfate. As shown by Krueger et

al. (2004), NO−

3 can be linked with Ca2+ in the coarse mode

by the reaction of mineral dust particles with nitric acid to

form Ca(NO3)2. Other compounds were not measured (e.g.

silica).

The large contributions of Ca2+ on 14 and 20 March

(shown in Fig. 9) are due to distinct episodes of Saharan dust

over the Jungfraujoch region. These mineral dust episodes

were confirmed by the method developed by Collaud Coen

et al. (2004), where the wavelength dependence of the single

scattering albedo (expressed as the SSA exponent) was found

to be an indicator for the presence of dust particles. This ex-

ponent becomes negative in the presence of mineral dust. For

these two cases the ND fraction in PM1 can be explained by a

substantial extension of the coarse mode size distribution into

PM1 (Fig. 10), as also shown by Schwikowski et al. (1995).

During March 2004, the ND fraction in PM1 is surpris-

ingly high even when Saharan dust events had been excluded.

As can be seen in Fig. 9, this cannot be explained by the pres-
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Fig. 11. Trajectory residence time statistics for trajectory points below 1000 m above ground level for the two periods (a) March 2004 and

(b) February–March 2005. Both plots were derived from 900 individual trajectories.

ence of mineral dust since there is no elevated coarse mode

and the SSA exponent is not negative. Figure 10 presents

two typical volume size distributions from combined SMPS

and OPC data during events where continental background

aerosol was sampled under conditions that were and were not

influenced by mineral dust particles. As explained earlier,

the slight discontinuity in the combined number size distri-

bution is likely to result from the difference of the refractive

index (and complex morphology) of the measured particles

with the spherical Latex particles which are used to calibrate

the OPC. No correction was applied as no known calibration

factor was available for the ambient aerosol.

The high ND fractions observed in March 2004 were care-

fully checked for systematic biases. First, the SMPS de-

rived volume concentrations were compared to the measured

aerosol light scattering coefficients at 450 nm. As presented

above these two parameters showed a very high correlation,

and virtually the same ratio (VSMPS/bscat) was determined

during March 2004 compared to the other campaigns. This

indicates that the aerosol volume is not a critical factor in the

unexplained ND fraction. Second, to validate the chemistry

data, the SO2−

4 measured with the filters was compared with

the mass concentration of sulfate determined daily within the

Swiss National Air Pollution Monitoring Network by Empa.

Particulate sulfate was collected for 24 h using cellulose fil-

ters with a flow rate of 2.5 L min−1. The sulfur concentra-

tions were determined with x-ray fluorescence which sub-

sequently were converted to SO2−

4 concentrations. A rela-

tively high correlation between the two measured fractions

(r2=0.57; SO2−

4(PSI)=0.81×SO2−

4(EMPA)) was found which sug-

gests that the concentrations of the filters were correct. Thus,

the ND fraction could originate either from an unknown com-

ponent or from a non-identified problem.

To analyze differences in the air mass origin of the two pe-

riods (March 2004 and February-March 2005), backward air

mass trajectories were calculated with the trajectory model

FLEXTRA (Stohl et al., 1995) based on ECMWF (T511L60)

analysis with a horizontal resolution of 1◦×1◦. Trajectories

were initialized at the JFJ every 4 h, together with 4 other

trajectories, which were initialized equidistantly spaced on

a circle of 0.25◦ radius around the site to assess the uncer-

tainty. The starting altitude was set to the 700-hPa level. Due

to the smoothed model topography this level is about 1400 m

above the model ground and about 700 m below the real sta-

tion height. However, this starting altitude was found to best

represent the larger scale flow conditions at the JFJ.

120-h back-trajectories are shown for the two periods in

the two lower panels of Fig. 10. The trajectories were ini-

tialized every 4 h and only the trajectories arriving during the

specified measurement period are shown. The different col-

ors represent different arrival times at JFJ, thick trajectories

represent the reference trajectories, while thin lines repre-

sent uncertainty trajectories. These back-trajectories confirm

a potential influence of dust on 13–14 March as the air mass

originated close to the surface over the north-western Saha-

ran region. On 6–7 March the air mass came from the UK

and across France at an altitude of >2000 m a.s.l. and was

thus in the free troposphere.

Residence time maps (footprints) were calculated from

these trajectories for both periods. Residence times were

only evaluated when the trajectory remained close to the sur-

face (1000 m above model ground level) so as to focus on

possible surface sources of aerosol. The regions influenc-

ing the JFJ as indicated by the residence time maps (Fig. 11)

showed distinct differences for the two periods. In general,

near surface (1000 m above ground level) residence times
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Fig. 12. Mass closure of PM1 and coarse mode for the three campaigns. See text and Table 1 for details on the employed instrumentation.

were increased during March 2004 compared to February–

March 2005. There was a larger contribution from the west-

ern Alpine region and also from the upper Po valley. Further-

more, for 2004 there was a larger contribution from the south

especially also from Spain and Algeria, while in 2005 the in-

fluence was more from the North. This indicates a potentially

enhanced influence of fine mode mineral dust in 2004, which

is a likely source of the large unexplained fraction of around

50%.

During 25 February and 10 March 2005, the concentra-

tions of individual species were exceptionally high for the

season, and close to summer values when the Jungfraujoch

is influenced by injection of PBL layer air into the lower free

troposphere. This is also confirmed by an observed scatter-

ing coefficient (at 450 nm) of 1.2×10−5 m−1compared to the

long-term average of 3.2×10−6 m−1(years 1995 to 2006) for

this time of the year. The reason for these high concentra-

tions is presently unknown. The contribution of mineral dust

to PM1 was small during this period as confirmed by the SSA

exponent and OPC size distributions (not shown).

The last campaign presents a summer situation when the

site is influenced by the PBL much more frequently. Much

higher organic fractions in PM1 were observed than during

the winter, as expected since biogenic emissions and photo-

chemistry are enhanced in summer. The PM1 mass shows

negative values due to the low signal to noise ratio of the

betameter used here since no SMPS data were available.

Figure 12 presents the averages of the chemical composi-

tion for the three campaigns as pie charts. These pie charts

confirm the highly different composition of fine and coarse

mode particles, as well as the higher organic fraction in sum-

mer compared to winter. The two winter campaigns are

quite different, with a much higher non-determined frac-

tion in PM1 in March 2004. In contrast, February-March

2005 was a period with a much higher concentration of wa-

ter soluble inorganic species, as outlined above. In March

2004 the mean average concentrations of the fine and coarse

mode were 1.7 µg m−3 and 2.4 µg m−3, respectively, com-

pared with 2.0 µg m−3 and 0.9 µg m−3 during February–

March 2005.

4 Conclusions

The chemical composition of PM1 and TSP has been mea-

sured since 1999 at the Jungfraujoch high alpine site as part

of the GAW aerosol program. A clear seasonality in all inor-

ganic compounds was observed with minima in winter typi-

cal of the undisturbed free troposphere and maxima in sum-

mer where the site is influenced by injections of boundary

layer air. In addition, intensive campaigns permitted a chem-
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ical mass closure of PM1 and the coarse mode. These two

fractions present highly different chemical composition, with

PM1 dominated by organics, sulfate, nitrate, ammonium, BC

and the coarse mode composed of mainly calcium and the

non-determined fraction, along with minor fractions of ni-

trate and sulfate. A clear influence of mineral dust episodes

was observed in the coarse mode. A conversion factor from

OC to OM of 1.84 in winter was found, which is within the

range of values reported in the literature.
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