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Abstract: The exploration of new bioactive compounds from natural resources as alternatives to syn-
thetic chemicals has recently attracted the attention of scientists and researchers. To our knowledge,
the essential oil (EO) of Kickxia aegyptiaca has not yet been explored. Thus, the present study was
designed to explore the EO chemical profile of K. aegyptiaca for the first time, as well as evaluate its an-
tioxidant and antibacterial activities, particularly the extracts of this plant that have been reported to
possess various biological activities. The EO was extracted from the aerial parts via hydrodistillation
and then characterized by gas chromatography-mass spectrometry (GC-MS). The extracted EO was
tested for its antioxidant activity via the reduction in the free radicals, 2,2-diphenyl-1-picrylhydrazyl
(DPPH) and 2,2′-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). In addition, the EO was
tested as an antibacterial mediator against eight Gram-negative and Gram-positive bacterial isolates.
Forty-three compounds were identified in the EO of K. aegyptiaca, with a predominance of terpenoids
(75.46%). Oxygenated compounds were the main class, with oxygenated sesquiterpenes attaining
40.42% of the EO total mass, while the oxygenated monoterpenes comprised 29.82%. The major
compounds were cuminic aldehyde (21.99%), caryophyllene oxide (17.34%), hexahydrofarnesyl ace-
tone (11.74%), ar-turmerone (8.51%), aromadendrene oxide (3.74%), and humulene epoxide (2.70%).
According to the IC50 data, the K. aegyptiaca EO revealed considerable antioxidant activity, with
IC50 values of 30.48 mg L−1 and 35.01 mg L−1 for DPPH and ABTS, respectively. In addition, the
EO of K. aegyptiaca showed more substantial antibacterial activity against Gram-positive bacterial
isolates compared to Gram-negative. Based on the minimum inhibitory concentration (MIC), the
EO showed the highest activity against Escherichia coli and Bacillus cereus, with an MIC value of
0.031 mg mL−1. The present study showed, for the first time, that the EO of K. aegyptiaca has more
oxygenated compounds with substantial antioxidant and antibacterial activities. This activity could
be attributed to the effect of the main compounds, either singular or synergistic. Thus, further
studies are recommended to characterize the major compounds, either alone or in combination as
antioxidants or antimicrobial agents, and evaluate their biosafety.

Keywords: volatile oils; Linaria aegyptiaca; biological activity; cuminic aldehyde; sesquiterpenes

1. Introduction

Human beings are putting increased pressure on the planet’s various resources. Sci-
entists and researchers are doing their best to explore new, green, eco-friendly natural
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bioactive compounds that can be used in various treatments in agriculture, pharmaceuti-
cals, and industry [1]. Plants are the main source of bioactive compounds (phytochemicals).
Essential oils (EOs) are considered promising bioactive compounds due to their various
biological activities and their chemical diversity [2–4]. Kickxia genus includes 47 species
worldwide including Africa, Europe, Asia, and Macaronesia [5]. The Kickxia genus is one of
the largest genera of the family Plantaginaceae in the flora of Egypt, where it is represented
by 11 species [6]. The plants belonging to Kickxia genus are well known for the presence of
several metabolites such as flavonoids [7,8], alkaloids [9], terpenoids [10], and iridoids [11].
Several traditional uses of Kickxia species around the world have been documented, such
as laxatives, diuretics, tonics, anti-diabetic, and antiscorbutic, alongside the treatment of
disorders such as hemorrhoids, wounds, and vascular treatments [12].

Kickxia aegyptiaca (L.) Nábělek is a wild perennial herbal plant of the family Plantagi-
naceae. It is widely distributed in Egyptian sandy plains, wadis, deserts, Sinai Peninsula,
oases, and the Mediterranean coastal areas [13]. Its synonyms include Antirrhinum aegyptiacum,
Linaria micromerioides, and Linaria aegyptiaca [6]. The plant grows up to 50 cm, with a dense
and woody base. Leaves are ovate or lanceolate, with an entire or dentate margin. The
plant has yellow flowers, and flowering time extends from February to June [13]. Kickxia
species, including K. aegyptiaca, were documented as significant traditional plants in the
treatment of vascular diseases, haemorrhoids, and wounds, along with their uses as laxa-
tives, anti-diabetics, anti-scorbutics, diuretics, and, tonics agents [12,14]. The phytochemical
characterization of this plant revealed that it is rich in flavonoids, phenolic acids, glycosides,
and iridoids [7,15,16]. The different K. aegyptiaca extracts and their isolated metabolites
were documented to have antioxidant activity [17,18], larvicidal activity [18], and cytotoxic
activity [15,19]. Flavonoids, pectolinarigenin, tangeretin, and gardenin were also isolated
from K. aegyptiaca, which exhibited potential antiviral activity against SARS-CoV-2 [16].

To our knowledge, and according to the literature review, only K. spuria EO chemical
profile was described by Morteza-Semnani, Saeedi and Akbarzadeh [10]. However, its EO K.
aegyptiaca has not been studied to date to the best of our knowledge. Therefore, the present
document (i) describes, for the first time, the chemical characterization of EO of the aerial parts
of K. aegyptiaca, and (ii) evaluates the antioxidant and antibacterial potential of its EO.

2. Results and Discussion
2.1. Chemical Characterization of K. aegyptiaca EO

The hydrodistillation of K. aegyptiaca aerial parts produced a golden–yellow oil of
0.51% (v/w). This amount of EO was found to be comparable to that obtained from K. spuria,
0.40% [10]. The extracted EO was analyzed by GC-MS and the ion chromatogram is pre-
sented in Figure 1. The chemical characterization led to the identification of 43 components,
which are comparable in number with those identified in the EO of K. spuria [10]. The
identified compounds represented 97.36% of the extracted EO.
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The identified chemical compounds are listed in detail, along with their retention
times (Rt), and Kovats indexes (KI) in Table 1. These compounds can be categorized into
seven classes of components, including monoterpenes (oxygenated and hydrocarbons),
sesquiterpenes (oxygenated and hydrocarbons), diterpenes (oxygenated only), carotenoid
derived components, and other hydrocarbons (Figure 2). These data revealed that this
oil is very rich in terpenoid compounds, which represented 75.46% of the total EO mass.
From overall terpenoids, a relative concentration of 70.57% was found in oxygenated forms.
The abundance of terpenoids, particularly the oxygenated ones, was in harmony with the
published data for K. spuria EO [10].
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Sesquiterpenes were identified with a relative concentration of 44.68% of the overall oil
mass, including both the oxygenated sesquiterpenes (40.42%) and sesquiterpenes hydrocarbon
(4.26%) forms. The dominance of the sesquiterpenes is also described in the EO of K. spuria [10].
Out of the 14 identified oxygenated sesquiterpenes, caryophyllene oxide (17.34%), ar-turmerone
(8.51%), aromadendrene oxide (3.84%), and humulene epoxide (2.70%) represented the major
ones (Figure 3), while trans-nerolidol (0.25%) represented the minor.
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Table 1. Chemical profile characterization of the essential oil extracted from the aerial parts of K. aegyptiaca.

No Rt a Conc.% b Compound Formula KI c

Oxygenated monoterpenes
1 6.39 1.31 ± 0.03 α-Terpineol C10H18O 1186
2 9.82 0.55 ± 0.01 α-Linalool C10H18O 1095
3 11.92 21.99 ± 0.21 Cuminic aldehyde C10H12O 1239
4 13.42 2.17 ± 0.06 p-Cymen-7-ol C10H14O 1287
5 13.87 1.45 ± 0.04 Carvacrol C10H14O 1298
6 16.07 1.51 ± 0.04 Eugenol C10H12O2 1356
7 17.26 0.84 ± 0.02 10-(acetylmethyl)-3-Carene C13H20O 1380

Monoterpene hydrocarbons
8 10.82 0.63 ± 0.03 2-Bornene C10H16 1165

Oxygenated sesquiterpenes
9 19.68 0.65 ± 0.03 Neryl acetone C13H22O 1436
10 21.81 0.25 ± 0.01 trans-Nerolidol C15H26O 1561
11 24.02 0.43 ± 0.01 trans-Sesquisabinene hydrate C15H26O 1577
12 24.16 0.97 ± 0.02 Spathulenol C15H24O 1577
13 25.38 0.95 ± 0.02 Isoaromadendrene epoxide C15H24O 1579
14 24.59 17.34 ± 0.11 Caryophyllene oxide C15H24O 1582
15 25.19 0.42 ± 0.01 Carotol C15H26O 1594
16 25.58 1.24 ± 0.03 Widdrol C15H26O 1599
17 26.8 2.70 ± 0.06 Humulene epoxide C15H24O 1608
18 27.05 0.43 ± 0.03 Clov-2-ene-9α-ol C15H24O 1616
19 27.53 3.84 ± 0.07 Aromadendrene oxide-(2) C15H24O 1631
20 28.14 8.51 ± 0.20 ar-Turmerone C15H20O 1669
22 34.21 1.85 ± 0.04 trans-Z-α-Bisabolene epoxide C15H24O 1675
22 36.28 0.53 ± 0.02 (E,E)-Farnesyl acetone C18H30O 1915

Sesquiterpene hydrocarbons
23 17.72 1.07 ± 0.03 Longicyclene C15H24 1374
24 18.24 1.97 ± 0.04 Isocaryophillene C15H24 1408
25 19.42 0.39 ± 0.02 trans-Caryophyllene C15H24 1417
26 20.32 0.57 ± 0.01 β-Farnesene C15H24 1442
27 20.53 0.31 ± 0.01 ar-Curcumene C15H22 1480
28 22.85 0.26 ± 0.01 α-Calacorene C15H20 1544

Oxygenated diterpenes
29 29.86 0.33 ± 0.02 trans-Geranylgeraniol C20H34O 2201

Carotenoid derived compounds
30 12.77 1.21 ± 0.04 dihydroedulan II C13H22O 1284
31 13.13 0.56 ± 0.02 Theaspirane A C13H22O 1298
32 16.84 0.72 ± 0.03 β-Damascenone C13H18O 1384
33 34.02 11.74 ± 0.13 Hexahydrofarnesyl acetone C18H36O 1845

Others
34 28.24 2.32 ± 0.06 Benzyl acetylacetate C11H12O3 1486
35 32.11 0.30 ± 0.01 n-Octadecyl chloride C18H57Cl 1399
36 35.48 0.27 ± 0.01 n-Nonadecane C17H34O2 1900
37 36.77 0.78 ± 0.02 Methyl palmitate C21H44 1921
38 41.77 0.93 ± 0.03 n-Heneicosane C17H34O2 2100
39 43.03 0.50 ± 0.02 9,12-Octadecadienoic acid C18H32O2 2085
40 44.69 0.26 ± 0.01 2-Nonadecanone C19H38O 2106
41 47.52 0.78 ± 0.02 n-Docosane C22H46 2200
42 48.14 0.54 ± 0.01 n-Tetracosane C24H50 2400

43 57.76 0.99 ± 0.04 n-Octacosane C28H58 2800

Total 97.36

a retention time, b average concentration of three replications ± standard deviation, c Kovats retention index.

Caryophyllene oxide was determined in a high concentration (8.90%) in the EO of K.
spuria [10]. Some of the identified compounds were also described in the constituents of K. spuria
EO, such as ar-curcumene, spathulenol, as well as the cis isomer of sesquisabinene hydrate.
Caryophyllene oxide, ar-turmerone, aromadendrene oxide, and humulene epoxide are widely
distributed compounds in the EOs of several plants, such as Centaurea species [20], Artemisia
campestris [21], Cullen plicata [2], Chromolaena odorata [22], and Heliotropium curassavicum [23].
On the other side, five sesquiterpene hydrocarbons were assigned, including isocaryophillene
(1.97%) and longicyclene (1.07%) as the main compounds.
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Monoterpenes represented the second class of identified compounds (30.45%), which
encompass oxygenated monoterpenes as the main compounds, with a relative concen-
tration of 29.82%, along with 0.63% of monoterpene hydrocarbons. Seven compounds
were assigned as oxygenated monoterpenes, in which cuminic aldehyde (21.99%) and p-
cymen-7-ol (2.17%) were determined as major compounds. The profile of the monoterpenes
was totally different compared to that reported in K. spuria EO, except for eugenol [10].
This variation could be ascribed to the genetic differences in both species [24], and the
environmental and climatic conditions have also been reported to affect the composition of
the EO [23,25–27]. Cuminic aldehyde is basically the main compound of Cuminum cyminum,
with a concentration of 22.4–41.5% [28–30]. On the other hand, p-cymen-7-ol was described
as a major compound in the EOs of several plants, for instance, Curcuma cf. xanthorrhiza [31],
Eucalyptus largiflorens [32].

Diterpenes have been known as rarely described compounds in EOs of the aromatic
plants; nevertheless, they were reported as a major compound in the EO of Lactuca serriola [33],
Euphorbia mauritanica [34], Araucaria bidiwillii [35], Araucaria heterophylla [3,36]. The results of
the current study agreed with the scarcity of diterpenes, identifying only one oxygenated
diterpenoid, trans-geranylgeraniol (0.33%), with a complete absence of diterpene hydrocarbons.

In addition to terpenoid components, four carotenoid-derived compounds were de-
termined in the EO of K. aegyptiaca (Table 1). Hexahydrofarnesyl acetone attained a re-
markable concentration (14.23%) in the K. aegyptiaca (Figure 3). This compound was as-
sessed as an abundant constituent of EOs of Launaea mucronata and Launaea nudicaulis [37],
H. curassavicum [23], and Bassia muricata [38]. The other hydrocarbons were represented
with a relative concentration of 7.67% and ten compounds were represented as a mixture of
oxygenated and non-oxygenated compounds. Benzyl acetylacetate with a concentration of
2.32% represented the main non-terpenoids, while n-nonadecane (0.27%) represented the
minor one. The presence of hydrocarbons in the EO of K. aegyptiaca is consistent with the
published data of Iranian K. spuria [10].

2.2. Antioxidant Activity of K. aegyptiaca EO

The EO of K aegyptiaca showed a substantial antioxidant activity based on both DPPD
and ABTS methods compared to the ascorbic acid as a standard synthetic antioxidant
(Figure 4). The scavenging activity increased with the increment of EO concentration. At a
concentration of 20 mg mL−1 of K. aegyptiaca EO, the DPPH and ABTS colors were reduced
by 39.85% and 33.16%, respectively, while ascorbic acid showed a reduction of 83.48% and
71.33%, respectively, at the same concentration (Figure 4).

According to the IC50 data, the K. aegyptiaca EO revealed IC50 values of 30.48 mg L−1

and 35.01 mg L−1 for DPPH and ABTS, respectively. The standard antioxidant, ascorbic
acid, showed IC50 values of 9.45 mg L−1 and 12.61 mg L−1, regarding DPPH and ABTS,
respectively. The considerable antioxidant activity of K. aegyptiaca EO in the present study
could be attributed to the effect of key compounds, such as cuminic aldehyde, caryophyl-
lene oxide, hexahydrofarnesyl acetone, ar-turmerone, aromadendrene oxide, and humulene
epoxide. These compounds could act in either singular or in synergistic ways [39,40]. The
major compound (cuminic aldehyde) has been reported in a high concentration (52.56%)
in C. cyminum, showing strong antioxidant activity [29,41]. On the other hand, the second
major compound in the present study (caryophyllene oxide) has been reported to possess
substantial antioxidant activity [2,42]. The carotenoid-derived compound, hexahydrofarne-
syl acetone, has been reported in the EOs of various plants that showed strong antioxidant
activity, such as Launaea species [37], H. curassavicum [23], and B. muricata [38]. The aro-
madendrene oxide-rich EO of Cleome amblyocarpa has been described to have allelopathic,
antioxidant, and anti-inflammatory activities [43]. The K. aegyptiaca EO showed a higher
antioxidant activity than the EOs of other reported plants, such as Persicaria lapathifolia [25],
Cleome droserifolia [44], and Deverra tortuosa [45], while it showed a lower antioxidant activity
than those reported for the EOs of E. mauritanica [34].
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Figure 4. Antioxidant activity of various concentrations and IC50 of the essential oil of K. aegyptiaca
(a) and a standard antioxidant, ascorbic acid (b) based on the scavenging of DPPH and ABTS. Values
are means (n = 3) ± standard deviation. Different letters inside each graph reveal values significant
variation at p ≤ 0.05 (Duncan’s test).

2.3. Antibacterial Activity of K. aegyptiaca EO

The EO extracted from K. aegyptiaca aerial parts displayed considerable antibacterial activity
against Gram-positive and Gram-negative bacterial isolates (Table 2). The EO showed varying
inhibitory activity on various bacterial strains, but it did not reveal antibacterial activity against
Streptococcus epidermis (Gram-negative strain). The antibacterial effect can be ordered as follows:
Salmonella typhimurium > Bacillus cereus > Escherichia coli > Staphylococcus aureus > Pseudomonas
aeruginosa > Staphylococcus xylosus > Staphylococcus haemolyticus (Table 2).

The selected antibiotics showed varied activity against the bacterial strains, with a gen-
eral trend that Gram-negative bacteria were more resistant than Gram-positive strains. This
observation is consistent with most research [26,45–49], where it is ascribed to the structure
of the bacterial cells [46]. Cephradin showed the highest activity against S. haemolyticus,
while it was inactive against P. aeruginosa and S. typhimurium at a dose of 10 mg mL−1.
The tetracycline exhibited maximum inhibition on S. epidermis, but did not show activity
against P. aeruginosa. On the other hand, the antibiotic azithromycin showed maximum
activity against S. aureus, S. epidermis, and B. cereus at a concentration of 10 mg mL−1, while
it did not show any activity against S. typhimurium. At a concentration of 10 mg mL−1,
ampicillin was detected as a powerful antibacterial agent against S. aureus, while it did not
have any activity against P. aeruginosa and S. typhimurium (Table 2). Based on the data of
the minimum inhibitory concentration (MIC), the EO activity was highest (0.031 mg mL−1)
againt E. coli and B. cereus, while the activity against the other bacterial isolates can be
sequenced as follows: S. typhimurium, P. aeruginosa, S. aureus, S. xylosus, and S. haemolyticus.
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However, S. epidermis was comopletely resistant to the EO of K. aegyptiaca. The antibacterial
activity of the K. aegyptiaca EO in the present study was higher than those reported for the
EO of D. tortuosa [45] and Teucrium polium [48], while it was lower than others, such as
Thymus decussatus [48], Achillea fragrantissima, Artemisia Judaica, and Tanacetum sinaicum [47].

Table 2. Antibacterial activity of the essential oil extracted from K. aegyptiaca aerial parts, expressed
by the diameter of the inhibition zone (mm) and minimum inhibitory concentration (MIC), as well as
some selected reference antibiotics at a concentration of 10 mg mL−1.

Microbes K. aegyptiaca
(10 mg mL−1)

MIC
(10 mg mL−1) Cephradin Tetracycline Azithromycin Ampicillin

Gram-negative bacteria
Escherichia coli 22.04 ± 0.74 C,# 0.031 15.67 ± 0.42 E 20.11 ± 0.55 B 18.08 ± 0.44 C 20.97 ± 0.75 C

Pseudomonas
aeruginosa 13.67 ± 0.91 E 0.044 0.00 G 0.00 E 12.57 ± 0.31 D 0.00 F

Salmonella
typhimurium 26.08 ± 1.02 A 0.038 0.00 G 9.47 ± 0.37 D 0.00 E 0.00 F

Streptococcus
epidermis 0.00 H 0.00 11.05 ± 0.81 F 21.07 ± 0.98 A 20.36 ± 0.77 A 10.57 ± 0.57 D

Gram-positive bacteria
Bacillus cereus 23.11 ± 0.58 B 0.031 19.6 ± 0.43 C 9.68 ± 0.27 D 20.15 ± 0.33 A 6.45 ± 0.36 E

Staphylococcus
aureus 16.17 ± 0.51 D 0.052 20.17 ± 0.79 B 18.51 ± 0.65 C 20.48 ± 0.49 A 29.14 ± 1.20 A

Staphylococcus
haemolyticus 6.24 ± 0.11 G 0.562 24.17 ± 0.66 A 20.30 ± 1.01 B 19.19 ± 0.61 B 20.95 ± 0.94 C

Staphylococcus
xylosus 11.61 ± 0.32 F 0.092 18.34 ± 0.77 D 18.48 ± 0.88 C 18.75 ± 0.73 B 24.66 ± 0.68 B

LSD0.05 0.51 *** 0.52 *** 0.49 *** 0.45 *** 0.44 ***

# values are average (n = 3) ± standard error. Dissimilar superscript letters in each treatment express significant
variation at a probability level of 0.05 (Duncan’s test). LSD: least significant difference. *** p < 0.001.

The observed antibacterial activity of K. aegyptiaca could be attributed to the activity
of the major compounds (cuminic aldehyde, caryophyllene oxide, hexahydrofarnesyl
acetone, ar-turmerone, aromadendrene oxide, and humulene epoxide), either singly or
synergistically. The insecticidal activity of Rosmarinus officinalis has been attributed to
the synergistic interaction between camphor and 1,8-cineole [40]. A similar study by de
Sousa, et al. [50] indicated that the combination of carvacrol and 1,8-cineole maximizes
the inhibitory activity against bacterial strains associated with vegetable processing. In
addition, cuminic aldehyde has been reported to have antibacterial effects [29,30]. In
contrast to our results, the EO of C. cyminum, rich with cuminic aldehyde, did not show
antibacterial activity against Pseudomonas species [29].

Caryophyllene oxide has been reported as a strong antimicrobial agent against a wide
range of microbes [51]. In addition, the EOs that were rich in caryophyllene oxide were
reported to have a considerable antimicrobial activity, such as Satureja coerulea [52], Psidium
guajava [53], and Pinus eldarica [54]. Moreover, EOs rich in hexahydrofarnesyl acetone
have been described as possessing considerable antimicrobial activity [55,56]. In addition,
ar-turmerone has been reported as antimicrobial agent in Artemisia integrifolia [57]. Our
findings supported the potential uses of the EO of K. aegyptiaca in the food industries, as
well as in the manufacturing of cosmetics and aromas, due to its potent antioxidant and/or
antimicrobial significance.

3. Materials and Methods
3.1. Plant Materials

The K. aegyptiaca aerial parts were collected during the flowering season (April 2019)
from different populations growing in Wadi Araba, Eastern Desert, Egypt (28.9781482N,
32.2019523E). The collected samples were healthy and flowering. Plant authentication was
carried out following Boulos [13] and Tackholm [58]. From the collected sample, a voucher
specimen was prepared and deposited in the Botany Department Herbarium at College of
Science, Mansoura University, Egypt, with the code Mans.191101007 (Figure 5).
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3.2. Extraction of EO and GC-MS Analysis

The EO was extracted via the subjection of ~180 g of the air-dried K. aegyptiaca aerial
parts to hydro-distillation for 3 h over the Clevenger apparatus. The separation of the EO
layer was performed by n-hexane, dried by anhydrous Na2SO4 (0.5 g), and then saved
at 4 ◦C in glass vials until further chemical and biological analyses. The extracted EO
was chemically analyzed via gas chromatography-mass spectrometry (GC-MS). The char-
acterization and identification of chemical constituents were performed with the same
conditions and protocol as described previously [25,59]. The GC-MS apparatus was made
up of TRACE GC Ultra-Gas Chromatographs (THERMO Scientific™ Corporate, Waltham,
MA, USA) with a quadrupole mass spectrometer (Thermo Scientific ISQ™ EC, Waltham,
MA, USA). The GC-MS column dimension was 30 m × 0.32 mm and i.d. 0.25 µm film
thickness. At a flow rate of 1.0 mL per min, helium was used as a transporter gas, with
a split ratio of 1 to 10. The temperature program was accustomed as follows: 60 ◦C for
1 min., raised to 240 ◦C with 4 ◦C/min. The diluted sample in n-hexane (1 µL) at a ratio of
1:10 (v/v) was injected into the instrument, where the injector and detector were adjusted
at 210 ◦C. The mass spectra of compounds were charted by electron ionization (EI) at
70 eV, using a spectral range of m/z 40–450. The authentication and identification of the
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chemical compounds were performed using the Automated Mass spectral Deconvolution
and Identification (AMDIS) software, NIST library database, Wiley spectral library collec-
tion, retention indices relative to n-alkanes (C8–C22), or assessment of the mass spectrum
with authentic standards compounds. The relative concentrations of the compounds were
performed based on Tentatively Identified Compounds (TICs) of the EO.

3.3. Antioxidant Activity of the EO

To test the antioxidant activity K. aegyptiaca EO, two protocols were considered:
(a) reduction in the radical 2,2-diphenyl-1-picrylhydrazyl (DPPH, Sigma-Aldrich, Darm-
stadt, Germany) and (b) reduction in the radical 2,2′-azinobis(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS, Sigma-Aldrich, Darmstadt, Germany). In the DPPH assay, the EO
was prepared in a concentration range of 5–50 mg L−1, using methanol as a solvent. This
range was selected based on the scavenging activity that enabled us to determine the IC50
(EO amount necessary to reduce the radical by 50%) [45]. According to Miguel [60], equal
volumes of each concentration and DPPH (0.3 mM) were shaken vigorously and kept in
dark conditions for 30 min. The absorbance was assessed at 517 nm via spectrophotome-
ter, model Spectronic 21D, Milton Roy, CA, USA. On the other side, the ABTS assay was
conducted according to Re, et al. [61]. In brief, about 0.2 mL of each concentration was
mixed with 2 mL of freshly prepared ABTS and incubated in a dark condition for 6 min.
The range of the EO concentration was similar to those of DPPH (5–50 mg L−1). The color
absorbance was measured at 734 nm by Spectronic 21D spectrophotometer, Milton Roy,
CA, USA. In addition, to refer the antioxidant activity to standard antioxidant, various
concentrations (1–20 mg L−1) of ascorbic acid were prepared and their antioxidant activity
was determined as previously described for the EO. The scavenging activity was calculated
based on the following formula:

Scavenging activity (%)= 100 ×
(

Absorbancesample − Absorbancesample

Absorbancesample

)

3.4. Antibacterial Activity of the EO

The EO extracted from K. aegyptiaca aerial parts was tested for its antibacterial activity
against four Gram-negative bacterial strains (E. coli (ATCC 10536), P. aeruginosa (ATCC
9027), S. typhimurium (ATCC 25566), and S. epidermis (ATCC 12228)) and four Gram-positive
bacterial strains (B. cereus (EMCC number), S. aureus (ATCC 6538), S. haemolyticus (ATCC
29970), and S. xylosus (NCCP 10937)). The bacterial isolates were obtained from the Cairo
Microbiological Resources Centre (Cairo MIRCEN), College of Agriculture, Ain Shams
University, Egypt. The bioassay was performed using the agar diffusion method [62]. In
brief, filter paper discs (Whatman no.1, 5 mm) were saturated with the EO of K. aegyptiaca
at a concentration of 10 mg mL−1 in dimethyl sulfoxide. Petri dishes (90 mm) were
prepared and filled with sterilized nutrient agar medium and inoculated with 106 colony-
forming units (CFU)/mL of each bacterial strain. The filter paper disc was adjusted
above the medium in the center of the Petri dish, and the 1080 plates were immediately
sealed with Parafilm® tape (Sigma, St. Louis, MO, USA) and incubated for 24 h at 37 ◦C.
After incubation, the diameter of the inhibition zone (clear zone around disc without
growth) was measured in mm at three random positions. The MIC was determined based
on the dimensions of the inhibition zone for different EO concentrations. To compare
the antibacterial activity of the EO with reference antibiotics, cephradin, tetracycline,
azithromycin, and ampicillin were subjected to the same procedures.

3.5. Statistical Analysis

The experiments of both antioxidant activity and antibacterial activity were achieved
three times with three replications for each treatment. The data were subjected to one-way
analysis of variance (ANOVA), after Duncan’s test using CoStat software program (version
6.311, CoHort Software, Monterey, CA, USA). The data were expressed as mean values
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with standard error. The IC50 value for antioxidant assays was graphically calculated using
MS-Excel 2016.

4. Conclusions

A GC-MS analysis of the extracted EO from the aerial parts of K. aegyptiaca revealed,
for the first time, the presence of 43 compounds, mainly terpenes. Oxygenated compounds
were predominant, particularly sesquiterpenes and monoterpenes. Cuminic aldehyde,
caryophyllene oxide, hexahydrofarnesyl acetone, ar-turmerone, aromadendrene oxide, and
humulene epoxide were identified as major compounds with a concentration of 66.02%
of the total mass. The extracted EO showed considerable antioxidant activity as well
as antibacterial activity. The major compounds have been reported to possess various
biological activities, including antioxidant and antimicrobial activities. Therefore, further
studies are recommended to evaluate the various biological activities of the major identified
compounds, either alone or in combination, as well as to assess their biosafety.
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