Chemical Constituents from the Leaves of *Hydrangea macrophylla* var. *thunbergii* (III)¹⁾: Absolute Stereostructures of Hydramacrosides A and B, Secoiridoid Glucoside Complexes with Inhibitory Activity on Histamine Release

Hisashi Matsuda, Hiroshi Shimoda, Toshiaki Uemura, Tomohiko Ueda, Johji Yamahara, and Masayuki Yoshikawa*

Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607–8414, Japan. Received July 9, 1999; accepted August 23, 1999

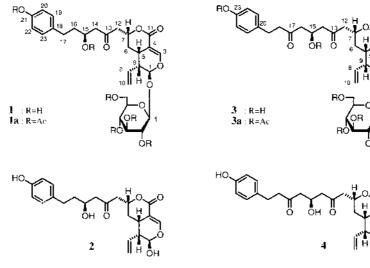
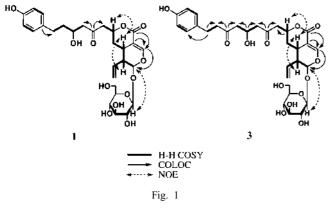
Following the characterization of dihydroisocoumarin constituents, two secoiridoid glucoside complexes, called hydramacrosides A and B, were isolated from the leaves of *Hydrangea macrophylla* SERINGE var. *thunbergii* MAKINO. The absolute stereostructures of hydramacrosides A and B were elucidated on the basis of chemical and physicochemical evidence, which included the application of the ¹³C-NMR glycosylation shift rule of 1,1'-disac-charides and the modified Mosher's method. Hydramacrosides A and B exhibited an inhibitory effect on histamine release from rat mast cells induced by an antigen–antibody reaction.

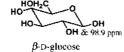
Key words hydramacroside A; hydramacroside B; secoiridoid glucoside complex; *Hydrangea macrophylla* var. *thunbergii*; ¹³C-NMR glycosylation shift; histamine release inhibitor

In the course of our studies on the bioactive constituents of natural medicine²⁾ and medicinal foodstuffs,³⁾ we have reported the isolation and structural elucidation of antiallergic and antimicrobial principles, thunberginols A,⁴ B,⁴ C,⁵ D,⁵ E,⁵⁾ and F,⁴⁾ thunberginol G 3'-O-glucoside,⁵⁾ and hydramacrophyllols A⁶ and B⁶ from Hydrangeae Dulcis Folium, the processed leaves of Hydrangea macrophylla SERINGE var. thunbergii MAKINO (Saxifragaceae).⁷⁾ Furthermore, we have characterized the detailed antiallergic activity and mechanism of thunberginol A, which showed more potent antiallergic activity against type I allergy than commercial antiallergic agents⁴⁾ and was easily synthesized from phyllodulcin, the principle component of this natural medicine.⁶⁾ In addition, ten dihydroisocoumarin glycosides,^{1,8)} 3*R*- and 3*S*-phyllodulcin 3'-O-glucosides, 3R- and 3S-thunberginol H 8-Oglucosides, 3R- and 3S-hydrangenol 4'-O-apiosylglucosides, 3R- and 3S-thunberginol I 4'-O-glucosides, thunberginol I 8-O-glucosides, and 3S-phyllodulcin 8-O-glucoside, were isolated from the dried leaves of this plant and their absolute stereostructures were elucidated. As a continuing study, two

new secoiridoid glucoside complexes called hydramacrosides A (1) and B (3) were also isolated from the dried leaves. In this paper, we present a full account of the structural elucidation of 1 and 3 and their inhibitory effects on histamine release from rat mast cells induced by an antigen–antibody reaction.⁹⁾

Hydramacroside A (1) Hydramacroside A (1) was isolated as colorless fine crystals with a mp of 141—144 °C and negative optical rotation ($[\alpha]_D^{25} - 129.5^\circ$). In the positive-ion FAB-MS of 1, quasimolecular ion peaks were observed at m/z 565 (M+H)⁺ and m/z 587 (M+Na)⁺ and the molecular formula C₂₈H₃₆O₁₂ of 1 was confirmed by high-resolution MS measurement of the quasimolecular ion peak. The IR spectrum of 1 showed absorption bands ascribable to hydroxyl, hydrogen bonded ketocarbonyl, and aromatic rings at 3400, 1700, and 1617 cm⁻¹, while its UV spectrum showed absorption maxima ascribable to an enone function and aromatic rings at 227, 240, and 280 nm. The ¹H-NMR spectrum dimethyl sulfoxide (DMSO)- d_6 of 1 showed signals due to the secoiridoid lactone moiety [δ 5.43 (d, J=1.3 Hz, 1-H),

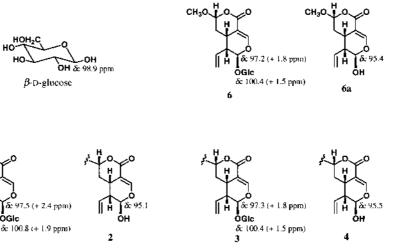




Chart 1

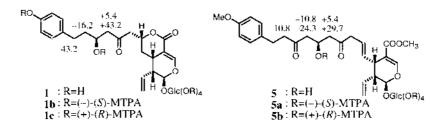
* To whom correspondence should be addressed.

© 1999 Pharmaceutical Society of Japan

7.48 (d, J=2.3 Hz, 3-H), 3.12 (m, 5-H), 1.27, 1.82 (both m, 6-H₂), 4.75 (m, 7-H), 5.44 (m, 8-H), 2.64 (m, 9-H), 5.23 (dd, J=2.3, 9.9 Hz), 5.29 (dd, J=2.3, 17.2 Hz) (10-H₂)] and the side chain moiety (C-12-23) including a p-hydroxybenzene ring [δ 2.75 (dd, J=5.2, 17.1 Hz), 2.87 (dd, J=6.7, 17.1 Hz) $(12-H_2)$, 2.51 (m, 14-H₂), 3.89 (m, 15-H), 1.57 (m, 16-H₂), 2.42, 2.58 (both m, 17-H₂), 6.97 (d, J=8.6 Hz, 19, 23-H), 6.65 (d, J=8.6 Hz, 20, 22-H)] together with a β -D-glucopyranoside part [δ 4.50 (d, J=7.7 Hz, 1'-H)]. In the ¹³C-NMR spectrum (Table 1) of 1, carbon signals due to the secoiridoid lactone glucoside moiety of 1 were superimposable on those of vogeloside $(6)^{10}$ and *epi*-vogeloside, ¹⁰ except for the signals around the 7-methoxyl group. The ¹H- and ¹³C-NMR signals of 1 could be analyzed by use of distortionless enhancement by polarization transfer (DEPT), ¹H–¹H and ¹H– ¹³C correlation spectroscopy (COSY) experiments. Furthermore, the quaternary carbons of 1 were characterized by examination of the correlation via C-H long-range coupling (COLOC) spectrum, in which correlations were observed between the following carbons and protons of 1 (4-C and 3-H, 5-H, 6-H₂; 11-C and 3-H; 13-C and 12-H₂, 14-H₂; 18-C and 17-H₂) (Fig. 1). Acid hydrolysis of 1 with 5% aqueous sulfuric acid-dioxane (1:1) furnished D-glucose, which was identified by gas-liquid chromatography (GLC) analysis of the trimethylsilyl (TMS) thiazolidine derivative.¹¹⁾ Enzymatic hydrolysis of 1 with β -D-glucosidase furnished the aglycone



ŌGle



2, whose positive-ion FAB-MS showed a quasimolecular ion peak at m/z 425 (M+Na)⁺, and the high-resolution MS measurement revealed the molecular formula of 2 to be $C_{22}H_{26}O_7$. The relative stereostructure of 2 was clarified by detailed comparisons of ¹H- and ¹³C-NMR spectra with those for 1, 6, and 6a. Acetvlation of 1 with Ac₂O in pyridine furnished the hexaacetate (1a), whose ¹H-NMR spectrum $(DMSO-d_6)$ showed signals indicative of a phenolic acetoxyl group (δ 2.24), and five alcoholic acetoxyl groups [δ 1.89, 1.95 (6H), 1.98, 2.02]. Comparison of the ¹³C-NMR data (Table 1) for 1 with those for 1a showed acetylation shifts around the C₁₅ and C₂₁ positions of its aglycone moiety. On the basis of the above evidence, the planar structure of 1 was clarified. The relative stereostructure of 1 was deduced by comparison of the ¹H- and ¹³C-NMR data with those for the known secoiridoid glucosides such as 6, epi-vogeloside and sweroside, and was finally determined by the nuclear Overhauser effect spectroscopy (NOESY) spectrum, in which nuclear Overhauser effect (NOE) enhancements were observed in several pairs of protons (1'-H and 1-H; 5-H and 7-H; 5-H and 9-H) (Fig. 1).

The absolute configuration of the C_1 position in 1 has been determined by application of the ¹³C-NMR glycosylation shift rule of 1,1'-disaccharide.¹²⁾ In order to confirm the applicability of the glycosylation shift rule for the dihemiacetal moiety of 1, it was first tested on a known secoiridoid β -Dglucopyranoside, 6. Thus, the aglycone (6a) was obtained from 6 by enzymatic hydrolysis with β -glucosidase, and the C₁ configuration of **6a** was found to be retained according to ¹H-NMR analysis, including NOE experiments. The glycosylation shifts [$\Delta\delta$ +1.5 ppm (1'-C) and +1.8 ppm (1-C)] were found to be characteristic of the R,R-dihemiacetal combination, which corresponded to the absolute stereostructure of 6 (Fig. 2). The glycosylation shifts of 1 also showed $\Delta\delta$ +1.9 ppm (1'-C) and +2.4 ppm (1-C), which were characteristic of the R.R-dihemiacetal combination, so that the absolute stereostructure of the C₁ position was determined to be an S configuration (Fig. 2). Finally, the absolute stereostructure of the C_{15} position in 1 was determined by means of the modified Mosher's method, as shown in Fig.

Gie: β -D-glucopyranosyl

 $\Delta\delta$ values in Hz (= δ S- δ R ; measured at 270 MHz)

Fig. 3

Table 1. ¹³C-NMR Data for 1, 1a, 1b, 1c, 2, 3, 3a, 4, 5, 5a, 5b, 6, and 6a

	1 ^{<i>a</i>)}	1 ^{b)}	1 a ^{<i>a</i>)}	1b ^{c)}	1c ^{c)}	2 ^{b)}	3 ^{<i>a</i>)}	3 ^{b)}	3a ^{a)}	4 ^{b)}	5 ^{<i>a</i>)}	5 ^{<i>c</i>)}	5a ^{c)}	5b ^{c)}	6 ^{b)}	6a ^{b)}
1	95.3	97.5	95.2	96.7	96.6	95.1	95.6	97.3	95.3	95.5	95.7	96.7	97.3	97.1	97.2	95.4
3	151.4	152.8	151.1	152.3	152.3	153.6	151.7	152.7	151.2	153.8	152.5	153.9	151.2	152.5	152.8	153.8
4	104.2	104.7	104.4	104.0	104.0	100.7	104.5	104.5	104.4	100.6	107.5	107.6	104.0	104.0	104.3	105.0
5	26.3	27.5	26.6	26.9	28.4	29.9	26.2	27.3	26.6	29.6	39.1	39.7	39.5	39.1	24.7	26.3
6	29.3	30.5	28.9	29.9	29.9	30.0	29.6	30.3	28.9	30.0	132.7	133.7	133.5	134.4	30.9	32.9
7	74.1	74.7	74.5	73.9	71.4	75.2	74.4	74.7	74.5	75.1	124.5	124.7	124.7	124.6	103.5	103.7
8	132.1	133.2	131.4	130.8	130.7	134.9	132.1	132.4	131.2	134.4	134.7	135.4	132.4	133.4	132.2	136.4
9	41.3	42.9	40.6	42.3	43.4	48.0	41.6	42.7	40.6	47.9	44.0	44.9	44.9	44.8	42.8	47.8
10	120.3	120.1	120.8	121.2	121.1	118.4	120.6	120.2	120.8	119.1	118.2	118.6	119.3	119.0	120.4	119.3
11	164.5	165.0	163.9	165.3	164.6	165.3	164.8	165.1	164.0	165.0	166.0	167.0	167.1	167.0	164.5	164.9
12	48.3	49.3	47.9	48.4	47.3	49.6	48.5	49.2	47.8	49.6	37.2	37.7	37.2	37.3		
13	206.7	207.0	204.8	203.4	203.3	206.8	206.5	206.5	204.6	206.6	197.0	198.5	200.8	200.9		
14	50.6	52.0	46.6	47.3	46.9	52.5	50.6	51.2	43.4	51.4	47.3	44.9	43.1	42.8		
15	65.8	67.1	69.0	71.3	72.0	67.2	63.5	64.1	65.7	64.2	64.2	65.7	70.5	70.5		
16	39.4	40.7	35.0	35.4	34.9	40.7	50.1	50.6	46.2	50.8	39.7	37.7	35.7	35.2		
17	30.3	31.7	30.0	30.3	31.9	32.1	208.8	209.0	206.8	208.9	204.2	206.2	209.1	208.7		
18	132.0	132.6	138.7	132.2	132.0	132.3	44.8	45.7	45.6	45.8	32.2	32.9	32.7	32.8		
19	129.0	130.0	129.0	129.8	128.5	130.0	28.3	29.0	28.1	29.1	32.2	32.7	32.7	32.8		
20	114.9	116.3	121.5	121.0	121.1	116.3	131.4	132.0	138.4	132.1	132.6	132.6	132.3	133.1		
21	155.1	157.3	148.5	148.3	147.8	157.2	129.2	129.8	129.1	129.9	129.1	129.3	129.3	129.2		
22	114.9	116.3	121.5	121.0	121.1	116.3	115.2	116.2	121.5	116.3	113.7	113.9	114.0	114.0		
23	129.0	130.0	129.0	129.8	128.5	130.0	155.6	157.0	148.5	157.2	157.5	158.1	158.1	158.2		
24							115.2	116.2	121.5	116.3	113.7	113.9	114.0	114.0		
25							129.2	129.8	129.1	129.9	129.1	129.3	129.3	129.2		
CO_2CH_3											54.9	55.3	55.3	55.3		
23-OCH ₃											50.9	51.4	51.4	51.4	56.5	56.4
1'	97.8	100.8	96.4	98.2	96.6		98.1	100.4	96.4		98.9	99.1	100.6	99.5	100.4	
2'	73.0	74.9	70.3	71.7	70.4		73.3	74.7	70.3		72.9	73.2	71.3	71.9	74.9	
3'	76.1	78.4	70.8	74.3	74.1		76.4	78.1	70.8		76.5	76.0	73.8	73.9	78.4	
4′	69.9	71.4	67.8	68.8	68.6		70.2	71.2	67.7		69.6	70.2	68.2	68.6	71.3	
5'	77.2	79.8	71.3	74.4	74.4		77.5	78.7	71.3		77.1	76.1	76.1	75.7	79.7	
6'	60.9	62.5	61.3	64.1	63.7		61.2	62.4	61.3		60.8	62.2	63.6	65.1	62.5	

The spectra were taken with a) DMSO- d_6 or b) pyridine- d_5 or c) CDCl₃.

3. Thus, the treatment of **1** with (-)-(S)- and (+)-(R)-2-methoxy-2-trifluoromethylphenylacetic acid (MTPA) and 1ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC·HCl) in CH₂Cl₂ in the presence of 4-dimethylaminopyridine (DMAP) furnished the (-)-(S)-MTPA (**1b**) and (+)-(R)-MTPA esters (**1c**). Signals due to protons on the 16-C and 17-C of **1b** appeared at a higher field than those of **1c**, while the 14-proton signals of **1b** were observed at a lower field than those of **1c**, so that the absolute configuration at the C₁₅ position is determined to be an *S* configuration. Consequently, the absolute stereostructure of **1** was determined as shown.

Hydramacroside B (3) Hydramacroside B (3) was isolated as colorless fine crystals with a mp of 154—157 °C and negative optical rotation ($[\alpha]_D^{25} - 106.8^\circ$). In the FAB-MS of **3**, a quasimolecular ion peak was observed at m/z 607

 $(M+H)^+$ and 629 $(M+Na)^+$, and the molecular formula $C_{30}H_{38}O_{13}$ of **3** was confirmed by high-resolution MS measurement of the quasimolecular ion peak. The IR and UV spectra of **3** were similar to those of **1**. The ¹H- and ¹³C-NMR (Table 1) spectra of **3** showed the presence of ketocarbonyl and methylene functions in addition to those of **3**.

The structure of **3** has been elucidated in the same way. Namely, **3** liberated D-glucose by acid hydrolysis, while the ordinary acetylation of **3** furnished the hexaacetate (**3a**). As shown in Fig. 1, the connectivities of the quaternary carbons were clarified by a COLOC experiment and ${}^{1}\text{H}{-}{}^{1}\text{H}$ COSY. Comparison of the NMR data for **3** and **3a** with those for **1** and **1a** led us to elucidate the planar structure of **1**. In the NOESY experiment of **3**, the observation of NOE enhancements between proton pairs in **3** (1'-H and 1-H; 5-H and 9-H; 5-H and 7-H) indicated the relative stereostructure of **3** (Fig.

Table 2. Inhibitory Effects of 1 and 3 on the Histamine Release from Rat Sensitized Peritoneal Exudate Cells Induced by an Antigen–Antibody Reaction.

	Conc. (µм)	Inhibition (%) Mean±S.E. (<i>n</i> =4)
Hydramacroside A (1)	10	9.1±11.4
	30	19.8± 4.0
	100	33.1± 4.2
	300	$70.0\pm$ 3.5
Hydramacroside B (3)	10	21.3 ± 3.7
•	30	21.3 ± 21.8
	100	57.1± 2.6
	300	78.1± 9.5

Sensitized rat peritoneal exudate cells were preincubated with samples for 15 min at 37 $^{\circ}$ C prior to the antigen challenge with phosphatidyl-L-serine and dinitrophenylated bovine serum albumin (DNP-BSA), then incubation was continued for 15 min. Histamine was determined by HPLC.

1). The enzymatic hydrolysis of **3** yielded the aglycone (**4**), whose relative stereostructure was elucidated by detailed ¹H-NMR examination including NOE observation between proton pairs in 4 (1-H and 8-H; 5-H and 7, 9-H). By comparison of the chemical shift for 3 with those for 4 and β -D-glucopyranose, glycosylation shifts characteristic of the R,R-dihemiacetal linkage $[\Delta \delta + 1.5 \text{ ppm (1'-C)}, +1.8 \text{ ppm (1-C)}]$ were observed, so that the C1-configuration of 3 was determined to be an S configuration. In order to determine the absolute configuration of the C_{15} position in 3, the modified Mosher's method had been applied directly. But, the desired MTPA ester of 3 was not obtained because of preferential elimination of the 15-OH group. Finally, the following conversion has been carried out. Treatment of 3 with pig liver esterase in phosphate buffer (pH 7.0) followed by methylation with CH₂N₂ furnished the olefin methyl ester (5), which was converted to the (-)-(S)-MTPA ester (5a) and the (+)-(R)-MTPA ester (5b). The absolute configuration at the C_{15} position of 5 has been shown to be S by means of NMR analysis $[\Delta\delta$ values for the protons on C₁₆ (-10.8, -24.3 Hz), C₁₈ (-10.8 Hz) and C₁₄ (+5.4, +29.7 Hz)]. Based on this evidence, the absolute stereostructure of 3 was determined as shown.

Inhibitory Effects of 1 and 3 on Histamine Release As a part of our studies characterizing the antiallergic components from the leaves of *Hydrangea macrophylla* var. *thunbergii*, we examined the inhibitory effects of 1 and 3 on histamine release. As shown in Table 2, 1 and 3 were found to inhibit the histamine release from rat peritoneal exudate cells induced by an antigen–antibody reaction in a concentration-dependent manner $(10^{-5}-3\times10^{-4} \text{ M})$.

Experimental

The instruments used for obtaining physical data and experimental conditions for chromatography were the same as described previously¹⁾

Isolation of Hyramacrosides A (1) and B (3) As described in a previous report,⁹⁾ the fraction 7—4 (422 mg) was subjected to HPLC [YMC-pack R&D-ODS-5A ($250 \times 10 \text{ mm i.d.}$), MeOH–H₂O (1 : 1, v/v)] followed by chiral column HPLC [Ceramospher Chiral RU-1 (Shiseido Ltd.), MeOH] to afford **1** (28.0 mg) and **3** (30.0 mg) together with 3*R*- (1.4 mg) and 3*S*-hydrangenol 4'-*O*-apiosylglucoside¹⁾ (4.8 mg), (+)-hydrangenol 4'-*O*-glucoside⁵⁾ (1.7 mg), (-)-hydrangenol 4'-*O*-glucoside⁵⁾ (3.4 mg).

Hydramacroside A (1): Colorless fine crystals, mp 141—144 °C, $[\alpha]_{D}^{25}$ -129.5° (*c*=0.516, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₂₈H₃₇O₁₂ (M+H)⁺: 565.2285. Found: 565.2295. UV λ_{max}^{EiOH} nm (log ε): 227 (4.3), 240 (4.2), 280 (3.3). IR (KBr) cm⁻¹: 3400, 1700, 1617. ¹H-NMR (500 MHz, DMSO- d_6) δ : 1.27, 1.82 (2H, both m, 6-H₂), 1.57 (2H, m, 16-H₂), 2.42, 2.58 (2H, both m, 17-H₂), 2.51 (2H, m, 14-H₂), 2.64 (1H, m, 9-H), 2.75 (1H, dd, J=5.2, 17.1 Hz), 2.87 (1H, dd, J=6.7, 17.1 Hz) (12-H₂), 3.12 (1H, m, 5-H), 3.89 (1H, m, 15-H), 4.50 (1H, d, J=7.7 Hz, 1'-H), 4.75 (1H, m, 7-H), 5.23 (1H, dd, J=2.3, 9.9 Hz), 5.29 (1H, dd, J=2.3, 17.2 Hz) (10-H₂), 5.43 (1H, d, J=1.3 Hz, 1-H), 5.44 (1H, m, 8-H), 6.65 (2H, d, J=8.6, 20 Hz, 22-H), 6.97 (2H, d, J=8.6 Hz, 19, 23-H), 7.48 (1H, d, J=2.3 Hz, 3-H). ¹³C-NMR (125 MHz, DMSO- d_6), (68 MHz, pyridine- d_5) δ_C : given in Table 1. Positive-ion FAB-MS m/z: 565 (M+H)⁺, 587 (M+Na)⁺.

Hydramacroside B (3): Colorless fine crystals, mp 154—157 °C, $[\alpha]_D^{25}$ -106.8° (*c*=0.309, MeOH). High-resolution positive-ion FAB-MS: Calcd for C₃₀H₃₉O₁₃ (M+H)⁺: 607.2391. Found: 607.2415. UV $\lambda_{max}^{\rm EOH}$ nm (log ε): 227 (4.2), 240 (4.1), 278 (3.5). IR (KBr) cm⁻¹: 3400, 1707, 1617. ¹H-NMR (500 MHz, DMSO-*d*₆) δ : 1.33, 1.81 (2H, both m, 6-H₂), 2.50 (4H, m, 14, 16-H₂), 2.64 (1H, m, 9-H), 2.65 (2H, m, 19-H₂), 2.68 (2H, m, 18-H₂), 2.75 (1H, dd, *J*=5.3, 17.5 Hz), 2.87 (1H, dd, *J*=7.3, 17.5 Hz) (12-H₂), 3.10 (1H, m, 5-H), 4.35 (1H, m, 15-H), 4.49 (1H, d, *J*=8.0 Hz, 1'-H), 4.77 (1H, m, 7-H), 5.23 (1H, dd, *J*=2.3, 9.9 Hz), 5.29 (1H, dd, *J*=2.3, 17.2 Hz) (10-H₂), 5.43 (1H, d, *J*=1.6 Hz, 1-H), 5.43 (1H, m, 8-H), 6.64 (2H, d, *J*=8.6 Hz, 22, 24-H), 6.97 (2H, d, *J*=8.6 Hz, 21, 25-H), 7.48 (1H, d, *J*=2.3 Hz, 3-H). ¹³C-NMR (125 MHz, DMSO-*d*₆), (68 MHz, pyridine-*d*₅) δ_C : given in Table 1. Positive-ion FAB-MS *m/z*: 607 (M+H)⁺, 629 (M+Na)⁺.

Acid Hydrolysis of 1 and 3 A solution of hydramacroside (1, 3, 2 mg each) in 5% aqueous H₂SO₄-dioxane (1:1, v/v, 1 ml) was heated under reflux for 2 h. After cooling, the reaction mixture was neutralized with Amberlite IRA-400 (OH⁻ form) and the resin was removed by filtration. After removal of the solvent under reduced pressure from the filtrate, the residue was passed through a Sep-Pak C₁₈ cartridge and eluted with H₂O and MeOH. The H₂O eluate was concentrated under reduced pressure and the residue was treated with L-cysteine methyl ester hydrochloride (2 mg) in pyridine (0.02 ml) at 60 °C for 1 h. After the reaction was complete, the solution was treated with *N*,O-bis(trimethylsilyl) trifluoroacetamide (0.01 ml) at 60 °C for 1 h. The supernatant was then subjected to GLC analysis to identify the derivative of p-glucose from 1 and 3. GLC conditions: column, Supelco SPRTM-1, 0.25 mm i.d. ×30 m; column temperature, 230 °C; t_R , 24.2 min.

Acetylation of 1 A solution of 1 (3.3 mg) in pyridine (0.25 ml) was treated with Ac_2O (0.1 ml), and the reaction mixture was stirred at room temperature (20 °C) for 1 h. The reaction mixture was poured into brine and the whole was extracted with AcOEt. The AcOEt extract was washed successively with 5% aqueous HCl, saturated aqueous NaHCO₃ and brine, then dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, the hexaacetate (1a, 4.6 mg) was obtained.

Hydramacroside A Hexaacetate (1a): Colorless fine crystals, mp 55— 58 °C, $[\alpha]_{D}^{25}$ -86.3° (*c*=0.130, CHCl₃). IR (KBr) cm⁻¹: 1757, 1736 (sh), 1615. ¹H-NMR (270 MHz, DMSO-*d*₆) δ: 1.89 (3H, OCOCH₃), 1.95 (6H, OCOCH₃×2), 1.98 (3H, OCOCH₃), 2.02 (3H, OCOCH₃), 2.24 (3H, OCOCH₃), 4.67 (1H, m, 7-H), 5.15 (1H, s, 1-H), 7.01 (2H, d, *J*=8.6 Hz, 20, 22-H), 7.22 (2H, d, *J*=8.6 Hz, 19, 23-H₂), 7.53 (1H, d, *J*=1.7 Hz, 3-H). ¹³C-NMR (68 MHz, DMSO-*d*₆) $\delta_{\rm C}$: given in Table 1.

Enzymatic Hydrolysis of 1 A solution of **1** (3.4 mg) in acetate buffer (pH 4.4, 0.7 ml) was treated with β -glucosidase (Oriental Yeast Co., Ltd., Japan, 3.4 mg) and the reaction mixture was left standing at 38 °C for 2.5 h. The reaction mixture was poured into H₂O and the whole was extracted with CH₂Cl₂. The CH₂Cl₂ extract was washed with brine, then dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography [1.0 g, CHCl₃–MeOH (10:1)] to give **2** (2.2 mg).

2: Colorless fine crystals, mp 154—157 °C, $[\alpha]_D^{25}$ +10.7° (*c*=0.118, CHCl₃). IR (KBr) cm⁻¹: 3453, 1713, 1619. ¹H-NMR spectrum (270 MHz, CDCl₃) δ : 4.29 (1H, m, 15-H), 4.78 (1H, m, 7-H), 5.35 (1H, s, 1-H), 6.75 (2H, d, *J*=8.5 Hz, 20, 22-H), 7.06 (2H, d, *J*=8.5 Hz, 19, 23-H), 7.63 (1H, d, *J*=2.4 Hz, 3-H). ¹³C-NMR spectrum (68 MHz, pyridine- d_5) δ_C : given in Table 1. Positive-ion FAB-MS *m/z*: 425 (M+Na)⁺.

Preparation of the MTPA Esters (1b, 1c) from 1 A solution of **1** (5.5 mg) in CH₂Cl₂ (2.0 ml) was treated with (*R*)-MTPA (23.4 mg, 0.1 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide HCl (19.2 mg, 0.1 mmol) and DMAP (7.3 mg, 0.06 mmol), and the whole mixture was stirred at room temperature (25 °C) for 5 min. The reaction mixture was poured into brine and the whole was extracted with AcOEt. The AcOEt extract was successively washed with 5% aqueous HCl, aqueous saturated NaHCO₃, and brine, and then dried over MgSO₄ and filtered. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue (14.0 mg), which was purified by silica gel column chromatography [2.0 g, *n*-hexane–AcOEt (3 : 2)] to

give a 1b (4.0 mg). 1c (4.3 mg) was also obtained from 1 (5.5 mg) by the same procedure described above.

1b: A white powder, $[\alpha]_D^{25} - 8.4^{\circ}$ (c=0.178, CHCl₃). ¹H-NMR (270 MHz, CDCl₃) δ : 1.25, 1.83 (2H, m, 6-H₂), 1.98 (2H, m, 16-H₂), 2.52, 2.87 (2H, m, 14-H₂), 2.53 (1H, m, 9-H), 2.65 (2H, m, 17-H₂), 2.67 (2H, m, 12-H₂), 2.89 (1H, m, 5-H), 4.77 (1H, m, 7-H), 4.78 (1H, d, *J*=7.9 Hz, 1'-H), 5.18, 5.27 (2H, m, 10-H₂), 5.22 (1H, m,8-H), 5.28 (1H, br s, 1-H), 5.49 (1H, m, 15-H), 7.04 (2H, d, *J*=8.6 Hz, 20, 22-H), 7.17 (2H, d, *J*=8.6 Hz, 19, 23-H), 7.40 (1H, d, *J*=3.0 Hz, 3-H). ¹³C-NMR (68 MHz, CDCl₃) δ_C : given in Table 1.

1c: A white powder, $[\alpha]_D^{25} - 111.3^\circ$ (*c*=0.372, CHCl₃). ¹H-NMR (270 MHz, CDCl₃) δ: 1.38, 1.78 (2H, m, 6-H₂), 1.92 (2H, m, 16-H₂), 2.49 (2H, m, 17-H₂), 2.56 (1H, m, 9-H), 2.63, 2.85 (2H, m, 12-H₂), 2.68, 2.89 (2H, m, 14-H₂), 2.96 (1H, m, 5-H), 4.78 (1H, d, *J*=8.0 Hz, 1'-H), 4.80 (1H, m, 7-H), 5.17, 5.24 (2H, m, 10-H₂), 5.22 (1H, m, 8-H), 5.24 (1H, d, *J*=2.3 Hz, 1-H), 5.53 (1H, m, 15-H), 7.00 (2H, d, *J*=8.9 Hz, 20, 22-H), 7.07 (2H, d, *J*=8.9 Hz, 19, 23-H), 7.46 (1H, d, *J*=3.3 Hz, 3-H). ¹³C-NMR (68 MHz, CDCl₃) δ_c: given in Table 1.

Acetylation of 3 A solution of 3 (4.1 mg, 0.0068 mmol) in pyridine (0.3 ml) was treated with Ac_2O (0.15 ml), and the reaction mixture was stirred at room temperature (20 °C) for 1 h. The reaction mixture was poured into brine and the whole was extracted with AcOEt. The AcOEt extract was washed successively with 5% aqueous HCl, saturated aqueous NaHCO₃ and brine, then dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, the hexaacetate (**3a**, 5.5 mg, quant.) was obtained.

Hydramacroside B Hexaacetate (**3a**): Colorless fine crystals, mp 82– 85 °C, $[\alpha]_{D}^{25}$ -79.3° (*c*=0.091, CHCl₃). IR (KBr) cm⁻¹: 1757, 1726, 1624. ¹H-NMR (270 MHz, DMSO-*d*₆) δ : 4.66 (1H, m, 7-H), 5.15 (1H, s,1-H), 7.01 (2H, d, *J*=8.3 Hz, 22, 24-H), 7.22 (2H, d, *J*=8.3 Hz, 21, 25-H), 7.52 (1H, d, *J*=2.0 Hz, 3-H). ¹³C-NMR (68 MHz, DMSO-*d*₆) δ_{C} : given in Table 1.

Enzymatic Hydrolysis of 3 A solution of **3** (8.6 mg, 0.014 mmol) in acetate buffer (pH 4.4, 1.7 ml) was treated with β -glucosidase (8.6 mg) and the reaction mixture was left standing at 38 °C for 2.5 h. The reaction mixture was poured into H₂O, and the whole was extracted with CH₂Cl₂. The CH₂Cl₂ extract was washed with brine, then dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, a residue (10.8 mg) was purified by silica gel column chromatography [4.0 g, CHCl₃: MeOH (10:1)] to give **4** (5.5 mg, 91.7%).

4: Colorless fine crystals, mp 123—126 °C, $[\alpha]_D^{25}$ +13.9° (*c*=0.121, CHCl₃). IR (KBr) cm⁻¹: 3453, 1717, 1620. ¹H-NMR (270 MHz, CDCl₃) δ : 4.30 (1H, m, 15-H), 4.72 (1H, m, 7-H), 5.35 (1H, d, *J*=1.3 Hz, 1-H), 6.69 (2H, d, *J*=8.6 Hz, 22, 24-H), 6.95 (2H, d, *J*=8.6 Hz, 21, 25-H), 7.57 (1H, d, *J*=1.3 Hz, 3-H). ¹³C-NMR (68 MHz, pyridine-*d*₅) δ_C : given in Table 1. Positive-ion FAB-MS *m/z*: 467 (M+Na)⁺.

Conversion from 3 to 5 A solution of **3** (11.8 mg, 0.019 mmol) in phosphate buffer (pH 7.0, 5.0 ml) was treated with pig liver esterase (40.0 mg), and the reaction mixture was stirred at 38 °C for 2 d. After removal of the solvent under reduced pressure, a residue (55.0 mg) was purified by reversed-phase silica gel column chromatography (4.0 g, $H_2O \rightarrow 40\%$ MeOH) to give the olefin derivative (11.1 mg, quant.). A solution of the olefin derivative (11.1 mg, quant.) a solution of the olefin derivative ($H_2N_2 \cdot E_2O$ (2.5 ml), and the reaction mixture was left standing at room temperature for 2 h. After removal of the solvent under reduced pressure, the olefin methyl ester (**5**, 11.2 mg, quant.) was obtained.

5: A white powder, $[\alpha]_{D}^{25} - 38.2^{\circ}$ (*c*=0.490, MeOH). IR (KBr) cm⁻¹: 3410, 1655, 1615 (sh). ¹H-NMR (270 MHz, CDCl₃) δ : 2.50, 2.62 (2H, m, 12-H₂), 2.51, 2.59 (2H, m, 14-H₂), 2.55, 2.66 (2H, m, 16-H₂), 2.66 (1H, m, 9-H), 2.68 (4H, m, 18, 19-H₂), 3.42 (1H, m, 5-H), 3.60 (3H, s, 11-CO₂CH₃), 3.76 (3H, s, 23-OCH₃), 4.15 (1H, m, 15-H), 4.72 (1H, d-like, 1'-H), 5.13, 5.18 (2H, m, 10-H₂), 5.57 (1H, d, *J*=9.0 Hz, 1-H), 5.68 (3H, m, 6, 7, 8-H), 6.80 (2H, d, *J*=8.6 Hz, 22, 24-H), 7.05 (2H, d, *J*=8.6 Hz, 21, 25-H), 7.57 (1H, s, 3-H). ¹³C-NMR (68 MHz, CDCl₃) δ_C : given in Table 1. Positive-ion FAB-MS *m/z*: 639 (M+Na-H₂O)⁺.

Preparation of the MTPA Esters (5a, 5b) from 5 A solution of **5** (5.8 mg, 0.0091 mmol) in CH₂Cl₂ (2.9 ml) was treated with (*R*)-MTPA (21.1 mg, 0.09 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide HCl (17.3 mg, 0.090 mmol) and DMAP (6.6 mg, 0.054 mmol), and the whole mixture was stirred at room temperature (25 °C) for 1 h under N₂ atmosphere. The reaction mixture was poured into brine and the whole was extracted with AcOEt. The AcOEt extract was successively washed with 5% aqueous HCl, aqueous saturated NaHCO₃ and brine, then dried over MgSO₄ and filtered. Evaporation of the solvent from the filtrate under reduced pressure furnished a residue (11.3 mg), which was purified by silica gel column chromatography [1.5 g, *n*-hexane–AcOEt (3:2 \rightarrow 1:1)] to give **5a** (3.1 mg). **5b** (3.9 mg) was obtained from **5** by the same procedure.

5a: A white powder, $[\alpha]_D^{25} - 15.3^{\circ}$ (*c*=0.533, CHCl₃). ¹H-NMR (270 MHz, CDCl₃) δ: 2.52, 2.62 (2H, m, 12-H₂), 2.54 (1H, m, 9-H), 2.56, 2.71 (2H, m, 14-H₂), 2.62, 2.70 (2H, m, 16-H₂), 2.66 (4H, m, 18, 19-H₂), 3.47 (1H, m, 5-H), 3.64 (3H, s, 11-CO₂CH₃), 3.78 (3H, s, 23-OCH₃), 4.78 (1H, d, *J*=7.9 Hz, 1'-H), 5.13, 5.18 (2H, m, 10-H₂), 5.30 (1H, d, *J*=8.3 Hz, 1-H), 5.40 (1H, m, 15-H), 5.58 (1H, m, 8-H), 5.85 (1H, m, 7-H), 5.87 (1H, m, 6-H), 6.82 (2H, d, *J*=8.6 Hz, 22, 24-H), 7.05 (2H, d, *J*=8.6 Hz, 21, 25-H), 7.54 (1H, s, 3-H). ¹³C-NMR spectrum (68 MHz, CDCl₃) δ_C : given in Table 1.

5b: A white powder, $[\alpha]_D^{25} - 75.1^{\circ} (c=1.066, CHCl_3)$. ¹H-NMR spectrum (270 MHz, CDCl₃) δ : 2.46 (1H, m, 9-H), 2.53, 2.59 (2H, m, 12-H), 2.53, 2.66 (2H, m, 16-H₂), 2.62 (4H, m, 18, 19-H₂), 2.67, 2.73 (2H, m, 14-H₂), 3.46 (1H, m, 5-H), 3.65 (3H, s, 11-CO₂CH₃), 3.78 (3H, s, 23-OCH₃), 4.76 (1H, d, J=7.9 Hz, 1'-H), 5.13, 5.20 (2H, m, 10-H₂), 5.26 (1H, d, J=8.2 Hz, 1-H), 5.43 (1H, m, 15-H), 5.59 (1H, m, 8-H), 5.86 (2H, m, 6, 7-H), 6.81 (2H, d, J=8.6 Hz, 22, 24-H), 7.03 (2H, d, J=8.6 Hz, 21, 25-H), 7.53 (1H, s, 3-H). ¹³C-NMR (68 MHz, CDCl₃) δ_C : given in Table 1.

Enzymatic Hydrolysis of 6 A solution of **6** (3.2 mg, 0.0079 mmol) in acetate buffer (pH 4.4, 0.7 ml) was treated with β -glucosidase (Oriental Yeast Co., Japan, 3.2 mg), and the reaction mixture was left standing at 38 °C for 2 h. The reaction mixture was poured into H₂O and the whole was extracted with CH₂Cl₂. The CH₂Cl₂ extract was washed with brine, then dried over MgSO₄ and filtered. After removal of the solvent under reduced pressure, the residue (9.6 mg) was purified by silica gel column chromatography [4.0 g, CHCl₃: MeOH (5:1)] to give **6a** (2.0 mg, quant.).

6a: Colorless fine crystals, mp 79–82 °C, $[\alpha]_D^{25}$ –80.7° (*c*=0.132, CHCl₃). IR (KBr) cm⁻¹: 3453, 1686, 1619. UV $\lambda_{\text{max}}^{\text{EtOH}}$ nm (log ε): 231 (3.9), 313 (3.2). ¹H-NMR spectrum (270 MHz, CDCl₃) δ : 2.64 (1H, ddd, *J*=1.7, 4.0, 11.9 Hz, 9-H), 3.59 (3H, s, 7-OCH₃), 5.20 (1H, dd, *J*=2.7, 9.9 Hz, 7-H), 5.23 (1H, dd, *J*=1.3, 18.6 Hz), 5.28 (1H, dd, *J*=1.3, 10.1 Hz, 10-H₂), 5.43 (1H, d, *J*=2.0 Hz, 3-H). ¹³C-NMR spectrum (68 MHz, pyridine-*d*₅) δ_C : given in Table 1.

Bioassay Test for the Inhibitory Activity on Histamine Release methods of bioassay testing are the same as described previously.^{4c,g)}

References and Notes

- Part II: Yoshikawa M., Ueda T., Shimoda H., Murakami T., Yamahara J., Matsuda H., *Chem. Pharm. Bull.*, 47, 383–387 (1999).
- a) Yoshikawa M., Shimoda H., Nishida N., Li Y., Toguchida I., Yamahara J., Matsuda H., Chem. Pharm. Bull., 46, 113—119 (1998); b) Yoshikawa M., Murakami T., Yashiro K., Yamahara J., Matsuda H., Saijoh R., Tanaka O., *ibid.*, 46, 647—654 (1998); c) Yoshikawa M., Murakami T., Yashiro K., Matsuda H., *ibid.*, 46, 1339—1340 (1998); d) Matsuda H., Li Y., Murakami T., Matsumura N., Yamahara J., Yoshikawa M., *ibid.*, 46, 1399—1403 (1998); e) Yoshikawa M., Murakami T., Yamahara J., Yoshikawa M., *ibid.*, 46, 1399—1403 (1998); e) Yoshikawa M., Murakami T., Yamahara J., Matsuda H., *ibid.*, 46, 1764—1769 (1998); f) Matsuda H., Murakami T., Li Y., Yamahara J., Yoshikawa M., *Bioorg. Med. Chem.*, 6, 1019—1023 (1998); g) Matsuda H., Li Y., Murakami T., Yamahara J., Yoshikawa M., *Eur. J. Pharmacol.*, 368, 237—243(1999).
- a) Yoshikawa M., Murakami T., Komatsu H., Yamahara J., Matsuda 3) H., Heterocycles, 47, 397-405 (1998); b) Yoshizumi S., Murakami T., Kadoya M., Matsuda H., Yamahara J., Yoshikawa M., Yakugaku Zasshi, 118, 188-192 (1998); c) Yoshikawa M., Murakami T., Komatsu H., Matsuda H., Chem. Pharm. Bull., 46, 812-816 (1998); d) Komatsu H., Murakami T., Matsuda H., Yoshikawa M., Heterocycles, 48, 703-710 (1998); e) Yoshikawa M., Murakami T., Shimada H., Fukada N., Matsuda H., Sashida Y., Yamahara J., ibid., 48, 869-873 (1998); f) Yoshikawa M., Murakami T., Shimada H., Yoshizumi S., Saka M., Yamahara J., Matsuda H., Chem. Pharm. Bull., 46, 1008-1014 (1998); g) Yoshikawa M., Murakami T., Kadoya M., Yamahara J., Matsuda H., ibid., 46, 1758-1763 (1998); h) Matsuda H., Li Y., Murakami T., Yamahara J., Yoshikawa M., Life Sci., 63, PL245-250 (1998); i) Idem, J. Pharm. Exp. Ther., 289, 729-734 (1999); j) Idem, Bioorg. Med. Chem., 7, 323-327 (1999); k) Matsuda H., Li Y., Yoshikawa M., Life Sci., 65, PL27-32 (1999); l) Li Y., Matsuda H., Yoshikawa M., Bioorg. Med. Chem., 7, 1201-1205 (1999).
- a) Yoshikawa M., Uchida E., Chatani N., Murakami N., Yamahara J., *Chem. Pharm. Bull.*, 40, 3121–3123 (1992); b) Yoshikawa M., Harada E., Naitoh Y., Inoue K., Matsuda H., Shimoda H., Yamahara J., Murakami N., *ibid.*, 42, 2225–2230 (1994); c) Yamahara J., Matsuda H., Shimoda H., Wariishi N., Yagi N., Murakami N., Yoshikawa M., *Nippon Yakurigaku Zasshi*, 105, 365–379 (1995); d) Matsuda H.,

Shimoda H., Yamahara J., Yoshikawa M., *Bioorg. Med. Chem. Lett.*, **8**, 215—220 (1998); *e*) Shimoda H., Matsuda H., Yamahara J., Yoshikawa M., *Biol. Pharm. Bull.*, **21**, 809—813 (1998); *f*) Shimoda H., Matsuda H., Yoshikawa M., *J. Trad. Med.*, **15**, 296—297 (1998); *g*) Matsuda H., Shimoda H., Yoshikawa M., *Bioorg. Med. Chem.*, **7**, 1445—1450 (1999); *h*) Matsuda H., Shimoda H., Yamahara J., Yoshikawa M., *Biol. Pharm. Bull.*, **22**, 870—872 (1999); *i*) Matsuda H., Shimoda H., Kageura T., Yoshikawa M., *ibid.*, **22**, 925—931 (1999).

- a) Yoshikawa M., Uchida E., Chatani N., Kobayashi H., Naitoh Y., Okuno Y., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, 40, 3352–3354 (1992); b) Yoshikawa M., Matsuda H., Shimoda H., Shimada H., Harada E., Naitoh Y., Miki A., Yamahara J., Murakami N., *ibid.*, 44, 1440–1447 (1996).
- a) Yoshikawa M., Harada E., Yagi N., Muraoka O., Aoyama H., Murakami N., *Chem. Pharm. Bull.*, 42, 721–723 (1994); b) Yoshikawa M., Shimada H., Yagi N., Murakami N., Shimoda H., Yamahara J., Matsuda H., *Chem. Pharm. Bull.*, 44, 1890–1898 (1996).
- 7) a) Yoshikawa M., Chatani N., Harada E., Nishino Y., Yamahara J., Mu-

rakami N., Yakugaku Zasshi, **114**, 176—181 (1994); b) Yamahara J., Matsuda H., Shimoda H., Ishikawa H., Kawamori S., Wariishi N., Harada E., Murakami N., Yoshikawa M., *ibid.*, **114**, 401—413 (1994); c) Yamahara J., Miki A., Tsukamoto K., Murakami N., Yoshikawa M., *Nat. Med.*, **49**, 84—87 (1995); d) Yamamoto H., Yamamoto M., Yamamoto K., Chatani N., Yoshikawa M., *Biol. Pharm. Bull.*, **21**, 1003— 1004 (1998).

- Yoshikawa M., Murakami T., Ueda T., Shimoda H., Yamahara J., Matsuda H., *Heterocycles*, 50, 411–418 (1999).
- A preliminary communication on this subject: Yoshikawa M., Ueda T., Matsuda H., Yamahara J., Murakami N., *Chem. Pharm. Bull.*, 42, 1691—1693 (1994).
- Iglesias M. C. R., Marston A., Hostettmann K., *Phytochemistry*, 31, 1387–1389 (1992).
- 11) Hara S., Okabe H., Mihashi K., *Chem. Pharm. Bull.*, **34**, 1843—1845 (1986).
- Nishizawa M., Kodama S., Yamane Y., Kayano K., Hatakeyama S., Yamada H., *Chem. Pharm. Bull.*, 42, 982–984 (1994).